|
中文部分 教育部(2014)。校園學術倫理教育與機制發展計畫。取自:http://ethics.nctu.edu.tw/ 英文部分 Agudo-Peregrina, #westeur002# . F., Iglesias-Pradas, S., Conde-Gonz#westeur034#lez, M. #westeur002# ., &; Hern#westeur034#ndez-Garc#westeur046#a, #westeur002# . (2014). Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning. Computers in Human Behavior, 31(0), 542-550. doi: 10.1016/j.chb.2013.05.031 Ali, L., Asadi, M., Gašević, D., Jovanović, J., &; Hatala, M. (2013). Factors influencing beliefs for adoption of a learning analytics tool: An empirical study. Computers &; Education, 62(0), 130-148. doi: 10.1016/j.compedu.2012.10.023 Austin, K. A., Gorsuch, G. J., Lawson, W. D., &; Newberry, B. P. (2011). Developing and designing online engineering ethics instruction for international graduate students. Instructional Science, 39(6), 975-997. Bakeman, R. (1997). Observing interaction: An introduction to sequential analysis: Cambridge University Press. Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191. Black, E. W., Dawson, K., &; Priem, J. (2008). Data for free: Using LMS activity logs to measure community in online courses. The Internet and Higher Education, 11(2), 65-70. doi: 10.1016/j.iheduc.2008.03.002 Chen, H., Chiang, R. H., &; Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165-1188. Chen, K. C., &; Jang, S. J. (2010). Motivation in online learning: Testing a model of self-determination theory. Computers in Human Behavior, 26(4), 741-752. doi: 10.1016/j.chb.2010.01.011 Choi, K., &; Kim, D. Y. (2013). A cross cultural study of antecedents on career preparation behavior: Learning motivation, academic achievement, and career decision self-efficacy. Journal of Hospitality, Leisure, Sport &; Tourism Education, 13(0), 19-32. doi: 10.1016/j.jhlste.2013.04.001 79Davis, F. D., Bagozzi, R. P., &; Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace1. Journal of applied social psychology, 22(14), 1111-1132. Davis, F. D., Bagozzi, R. P. &; Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. Davis Jr., F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts Institute of Technology. Deci, E. L., &; Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior, : Plenum, New York. Eryilmaz, E., Chiu, M. M., Thoms, B., Mary, J., &; Kim, R. (2014). Design and evaluation of instructor-based and peer-oriented attention guidance functionalities in an open source anchored discussion system. Computers &; Education, 71, 303-321. doi: 10.1016/j.compedu.2013.08.009 Fredricks, J. A., Blumenfeld, P., Friedel, J., &; Paris, A. (2005). School engagement What do children need to flourish? (pp. 305-321): Springer. Fredricks, J. A., Blumenfeld, P. C., &; Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of educational research, 74(1), 59-109. Gardner, J. S. (2008). Simultaneous media usage: Effects on attention. Virginia Polytechnic Institute and State University. Gil-Flores, J., Torres-Gordillo, J.-J., &; Perera-Rodr#westeur046#guez, V.-H. (2012). The role of online reader experience in explaining students’ performance in digital reading. Computers &; Education, 59(2), 653-660. doi: 10.1016/j.compedu.2012.03.014 Guerbas, A., Addam, O., Zaarour, O., Nagi, M., Elhajj, A., Ridley, M., &; Alhajj, R. (2013). Effective web log mining and online navigational pattern prediction. Knowledge-Based Systems, 49(0), 50-62. doi: 10.1016/j.knosys.2013.04.014 Haythornthwaite, C., de Laat, M., &; Dawson, S. (2013). Introduction to the Special Issue on Learning Analytics Introduction. American Behavioral Scientist, 57(10), 1371-1379. doi: 10.1177/0002764213498850 He, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90-102. doi: 10.1016/j.chb.2012.07.020 80 Horzum, M. B., #westeur023#nder, İ., &; Beşoluk, Ş. (2014). Chronotype and academic achievement among online learning students. Learning and Individual Differences, 30(0), 106-111. doi: 10.1016/j.lindif.2013.10.017 Hou, H. T. (2011). A case study of online instructional collaborative discussion activities for problem-solving using situated scenarios: An examination of content and behavior cluster analysis. Computers &; Education, 56(3), 712-719. Hou, H. T. (2012a). Analyzing the Learning Process of an Online Role-Playing Discussion Activity. Educational Technology &; Society, 15(1), 211-222. Hou, H. T. (2012b). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers &; Education, 58(4), 1225-1233. doi: 10.1016/j.compedu.2011.11.015 Hou, H. T., &; Li, M. C. (2014). Evaluating multiple aspects of a digital educational problem-solving-based adventure game. Computers in Human Behavior, 30(0), 29-38. doi: 10.1016/j.chb.2013.07.052 Hou, H. T., &; Wu, S. Y. (2011). Analyzing the social knowledge construction behavioral patterns of an online synchronous collaborative discussion instructional activity using an instant messaging tool: A case study. Computers &; Education, 57(2), 1459-1468. doi: 10.1016/j.compedu.2011.02.012 Hu, Y. H., Lo, C. L., &; Shih, S. P. (2014). Developing early warning systems to predict students’ online learning performance. Computers in Human Behavior, 36(0), 469-478. doi: 10.1016/j.chb.2014.04.002 Hung, J. L., &; Zhang, K. (2008). Revealing online learning behaviors and activity patterns and making predictions with data mining techniques in online teaching. MERLOT Journal of Online Learning and Teaching. Johnson, L., Adams, S., Cummins, M., Estrada, V., Freeman, A., &; Ludgate, H. (2013). The NMC Horizon Report: 2013 Higher Education Edition. Austin, Texas: The New Media Consortium. Johnson, L., Adams, S., and Cummins, M. . (2012). The NMC Horizon Report: 2012 Higher Education Edition. Austin, Texas: The New Media Consortium. Johnson, L., Becker, S., Estrada, V., &; Freeman, A. (2014). The NMC Horizon Report: 2014 Higher Education Edition. Austin, Texas: The New Media Consortium. Johnson, L., Smith, R., Willis, H., Levine, A., &; Haywood, K. (2011). The NMC Horizon Report: 2011 Higher Education Edition. Austin, Texas: The New 81 Media Consortium. Kl#westeur055#sgen, W., &; Zytkow, J. M. (2002). Handbook of data mining and knowledge discovery: Oxford University Press, Inc. Kong, J. S. L., Kwok, R. C. W., &; Fang, Y. (2012). The effects of peer intrinsic and extrinsic motivation on MMOG game-based collaborative learning. Information &; Management, 49(1), 1-9. doi: 10.1016/j.im.2011.10.004 Kudryavtseva, M. G. (2014). Possibilities of distance learning as a means of foreign language learning motivation among students of economics. Procedia - Social and Behavioral Sciences, 152(0), 1214-1218. doi: 10.1016/j.sbspro.2014.09.301 Lee, M. K. O., Cheung, C. M. K., &; Chen, Z. (2005). Acceptance of Internet-based learning medium: the role of extrinsic and intrinsic motivation. Information &; Management, 42(8), 1095-1104. doi: 10.1016/j.im.2003.10.007 Lepper, M. R., &; Hodell, M. (1989). Intrinsic motivation in the classroom. Research on motivation in education, 3, 73-105. Liu, C. C., Cheng, Y. B., &; Huang, C. W. (2011). The effect of simulation games on the learning of computational problem solving. Computers &; Education, 57(3), 1907-1918. doi: 10.1016/j.compedu.2011.04.002 Liu, Z. (2005). Reading behavior in the digital environment: Changes in reading behavior over the past ten years. Journal of documentation, 61(6), 700-712. Lohr, S. (2012). The age of big data. New York Times, 11. Ma, J., Han, X., Yang, J., &; Cheng, J. (2015). Examining the necessary condition for engagement in an online learning environment based on learning analytics approach: The role of the instructor. The Internet and Higher Education, 24(0), 26-34. doi: 10.1016/j.iheduc.2014.09.005 Macfadyen, L. P., &; Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers &; Education, 54(2), 588-599. doi: 10.1016/j.compedu.2009.09.008 Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., &; Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McAfee, A., &; Brynjolfsson, E. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68. Moore, M. G. (1989). Editorial: Three types of interaction. 82 Mustapaşa, O., Karahoca, A., Karahoca, D., &; Uzunboylu, H. (2011). “Hello world”, web mining for e-learning. Procedia Computer Science, 3(0), 1381-1387. doi: 10.1016/j.procs.2011.01.019 Nunnally, J. C., &; Bernstein, I. (1994). Psychological theory(3rd ed.): New York: McGraw-Hill. O'Brien, H. L., &; Toms, E. G. (2008). What is user engagement? A conceptual framework for defining user engagement with technology. Journal of the American Society for Information Science and Technology, 59(6), 938-955. O'Brien, H. L., &; Toms, E. G. (2010). The development and evaluation of a survey to measure user engagement. Journal of the American Society for Information Science and Technology, 61(1), 50-69. O’Brien, H. L., &; Toms, E. G. (2012). Examining the generalizability of the User Engagement Scale (UES) in exploratory search. Information Processing &; Management, 49(5), 1092-1107. doi: 10.1016/j.ipm.2012.08.005 Ophir, E., Nass, C., &; Wagner, A. D. (2009). Cognitive control in media multitaskers. Proceedings of the National Academy of Sciences, 106(37), 15583-15587. Pellas, N. (2014). The influence of computer self-efficacy, metacognitive self-regulation and self-esteem on student engagement in online learning programs: Evidence from the virtual world of Second Life. Computers in Human Behavior, 35(0), 157-170. doi: 10.1016/j.chb.2014.02.048 Pe#westeur050#a-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications, 41(4, Part 1), 1432-1462. doi: 10.1016/j.eswa.2013.08.042 Perera, D., Kay, J., Koprinska, I., Yacef, K., &; Za#westeur048#ane, O. R. (2009). Clustering and sequential pattern mining of online collaborative learning data. Knowledge and Data Engineering, IEEE Transactions on, 21(6), 759-772. Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ). Pintrich, P. R., &; Schunk, D. H. (1996). Motivation in education: Theory, research, and applications: Merrill Englewood Cliffs, NJ. Raab, R. T., Ellis, W. W., &; Abdon, B. R. (2001). Multisectoral partnerships in e-learning: a potential force for improved human capital development in the Asia Pacific. The Internet and Higher Education, 4(3), 217-229. Rideout, V. J., Foehr, U. G., &; Roberts, D. F. (2010). Generation M [superscript 2]: 83 Media in the Lives of 8-to 18-Year-Olds. Henry J. Kaiser Family Foundation. Ruip#westeur042#rez-Valiente, J. A., Mu#westeur050#oz-Merino, P. J., Leony, D., &; Delgado Kloos, C. (2014). ALAS-KA: A learning analytics extension for better understanding the learning process in the Khan Academy platform. Computers in Human Behavior(0). doi: 10.1016/j.chb.2014.07.002 Ryan, R. M., &; Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary educational psychology, 25(1), 54-67. Saad#westeur042#, R. G., He, X., &; Kira, D. (2007). Exploring dimensions to online learning. Computers in Human Behavior, 23(4), 1721-1739. doi: 10.1016/j.chb.2005.10.002 Shukor, N. A., Tasir, Z., Van der Meijden, H., &; Harun, J. (2014). A Predictive Model to Evaluate Students’ Cognitive Engagement in Online Learning. Procedia - Social and Behavioral Sciences, 116(0), 4844-4853. doi: 10.1016/j.sbspro.2014.01.1036 Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist, 57(10), 1380-1400. doi: 10.1177/0002764213498851 Skinner, E., Furrer, C., Marchand, G., &; Kindermann, T. (2008). Engagement and disaffection in the classroom: Part of a larger motivational dynamic? Journal of educational psychology, 100(4), 765. Sun, J. C. Y., &; Rueda, R. (2012). Situational interest, computer self-efficacy and self-regulation: Their impact on student engagement in distance education. British Journal of Educational Technology, 43(2), 191-204. doi: 10.1111/j.1467-8535.2010.01157.x Sung, Y. T., Hou, H. T., Liu, C. K., &; Chang, K. E. (2010). Mobile guide system using problem‐solving strategy for museum learning: a sequential learning behavioural pattern analysis. Journal of Computer Assisted learning, 26(2), 106-115. Thompson, K., Ashe, D., Carvalho, L., Goodyear, P., Kelly, N., &; Parisio, M. (2013). Processing and Visualizing Data in Complex Learning Environments. American Behavioral Scientist, 57(10), 1401-1420. doi: 10.1177/0002764213479368 Tseng, S.-C., &; Tsai, C.-C. (2010). Taiwan college students' self-efficacy and motivation of learning in online peer assessment environments. Internet and 84 Higher Education, 13(3), 164-169. doi: 10.1016/j.iheduc.2010.01.001 Venkatesh, V., Morris, M. G., Davis, G. B., &; Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3). Wang, S. L., &; Lin, S. S. J. (2007). The effects of group composition of self-efficacy and collective efficacy on computer-supported collaborative learning. Computers in Human Behavior, 23(5), 2256-2268. doi: 10.1016/j.chb.2006.03.005 Wulder, M. A. (2005). A practical guide to the use of selected multivariate statistics: Canadian Forest Service Pacific Forestry Centre. Yoo, S. J., Han, S.-h., &; Huang, W. (2012). The roles of intrinsic motivators and extrinsic motivators in promoting e-learning in the workplace: A case from South Korea. Computers in Human Behavior, 28(3), 942-950. doi: 10.1016/j.chb.2011.12.015 Z#westeur034#mečn#westeur046#k, R. (2014). The Measurement of Employee Motivation by Using Multi-factor Statistical Analysis. Procedia - Social and Behavioral Sciences, 109(0), 851-857.
|