跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林念親
研究生(外文):Nian-Cin Lin
論文名稱:利用旋轉塗佈法製備石墨烯氧化物軟性電阻式記憶體之研究
論文名稱(外文):Research of Graphene-Oxide-Based Flexible Resistive Switching Memory Fabricated by Spin-Coated Method
指導教授:林群傑林群傑引用關係
指導教授(外文):Chun-Chieh Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:72
中文關鍵詞:電阻式記憶體旋轉塗佈法石墨烯氧化物彎曲測試軟性電子
外文關鍵詞:Resistive Random Access MemorySpin CoatingGraphene OxideBending TestFlexible Electronics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:767
  • 評分評分:
  • 下載下載:148
  • 收藏至我的研究室書目清單書目收藏:0
本論文章結分為:第一章前言,簡介研究背景和研究動機、石墨烯氧化物的
特性應用簡介以及電阻式記憶體操作方式;第二章實驗步驟流程,介紹實驗中的
元件製備儀器、物性分析儀器跟電性量測方式,其流程敘述從石墨粉末至石墨烯
氧化物懸浮液的製備;第三章探討元件物性分析及分別實作於矽基板和軟性基板上,再針對具有可撓性的石墨烯氧化物進行彎曲測試,提出轉態模型來說明,最
後說明元件之改良,過去以滴附方式製備氧化石墨烯電阻轉換層之研究與以旋轉
塗佈法製備電阻轉換層之本研究的特性差異比較;第四章結論則是將實驗特性與
改良結果提出總結。
本研究利用旋轉塗佈法將氧化石墨烯水溶液,製備於Si 基板及PES 基板之
電阻式記憶體,研究發現元件有雙極性轉態特性,隨著彎中及彎後的電性量測,
元件之高阻態電流值明顯上升且集中穩定,記憶時間皆達105 秒,接著再進行第
二次彎中及彎後量測,發現其高電阻態電流值再度微幅上升,推測受到彎曲應力
影響產生的缺陷,缺陷使細絲更容易形成,因此元件轉態特性變得穩定,實驗證
明以具有可撓性的石墨烯氧化物製備之軟性電阻式記憶體在軟性電子元件上有
相當大的潛力。
This thesis is divided into four chapters. The first chapter introduces the background, motivation, characteristic of graphene oxide, and operation of resistive random access memory. The second chapter is the experimental procedures, including the describing of experimental instruments, and electrical measurement methods. The third chapter discusses the physical analyses and electrical analyses of the samples fabricated on both silicon and flexible substrates. Then, bending tests were performed on the flexible sample, and a possible resistive switching model is proposed. Finally,the improvement on the graphene-oxide-based devices fabricated by dripping and spin coating methods are proposed. The last chapter is a conclusion of the characteristics and the improvement of the flexible devices.
In this study, the graphene-oxide-based resistive random access memory was fabricated on both silicon and flexible substrates by spin coating method. The device performs bipolar resistive switching characteristics. For electrical measurements of the samples bending and after bending, the currents of high resistance state increase and become more stable.The retention time is over 10^5 seconds for flexible samples. For the second bending test, the currents of the high resistance state increase again slightly. We infer that bending stress generates some defects, which makes the conductive filaments formed easily. That is why the device become stable. Based on the experimental results, the flexible graphene-oxide-based resistive random access memory has considerable potential in flexible electronics in the future.
致謝.............................................. I
摘要.............................................. II
Abstract ........................................ III
目錄.............................................. IV
表目錄............................................ VI
圖目錄............................................ VII
第一章前言......................................... 1
1.1 研究背景與研究動機............................. 1
1.2 電阻式記憶體操作方式........................... 2
1.3 電阻轉換層材料介紹............................. 3
1.4 導電機制..................................... 5
1.5 電阻轉換機制................................. 9
第二章實驗製備與流程............................... 21
2.1 實驗設備.................................... 21
2.2 電阻轉換層與元件製備流程....................... 21
2.3 物性分析.................................... 23
2.4 電性分析.................................... 24
第三章結果與討論................................... 35
3.1 物性量測分析................................. 35
3.1.1 FE-SEM.................................. 35
3.1.2 AFM..................................... 35
3.1.3 XPS..................................... 35
3.2 電性量測分析................................. 36
3.2.1 Si 基板電性量測........................... 36
3.2.2 元件製備於Si 基板與PES 基板上之特性 ......... 37
3.2.3 PES 基板元件彎曲量測....................... 38
3.2.4 PES 基板元件第二次彎中、彎後特性量測.......... 40
3.2.5 PES 基板元件電性之比較..................... 42
3.3 電阻轉太模型推論.............................. 43
3.4 元件之改良................................... 44
第四章結論........................................ 67
參考文獻.......................................... 69
[1] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer grapheme,” Science, vol. 321, no. 5887,pp.
385-388, 2008.
[2] A. K. Geim, “Graphene: status and prospects,” Science, vol. 324, no. 5934, pp.1530-1534, 2009.
[3] S. Hong, D. X. Long, I. Hwang, J.-S. Kim, Y. C. Park, S. O. Kang, and B. H.Park, “Unipolar resistive switching mechanism speculated from irreversible low resistance state of Cu2O films” Appl. Phys. Lett., vol. 99, no.5, 2011,# 052105.
[4] C. Chen, C. Song, J. Yang, F. Zeng, and F. Pan, “Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure,” Appl.Phys. Lett., vol. 100, no. 25, 2012, # 253509.
[5] N. R. McDonald, S. M. Bishop, B. D. Briggs, J. E. Van Nostrand, and N.C. Cady,“Analysis of nonpolar resistive switching exhibited by Al/CuxO/Cu memristive devices created via room temperature plasma oxidation,” in International Semiconductor Device Research Symposium (ISDRS), pp. 1-2, 2011.
[6] H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T.Wu, “Electrode dependence of resistive switching in Mn-doped ZnO:Filamentary versus interfacial mechanisms,” Appl. Phys. Lett., vol. 96, no. 19,2010, #192113.
[7] J.-W. Huang, R. Zhang, T.-C. Chang, T.-M. Tsai,and K.-C. Chang, “The effect of high/low permittivity in bilayer HfO2/BN resistance random access memory.” Appl. Phys. Lett., vol.102, no.20, 2013, #203507.
[8] J.-J. Ke, Z.-J. Liu, C.-F. Kang, S.-J. Lin, and J.-H. He, “Surface effect on resistive switching behaviors of ZnO,” Appl. Phys. Lett., vol. 99, no. 19, 2011, #192106.
[9] E. Hern´andez-Rodr´ıguez, A M´arquez-Herrera, E Zaleta-Alejandre, M Mel´endez-Lira, W de la Cruz, and M Zapata-Torres “Effect of electrode type in the resistive switching behaviour of TiO2 thin films,” J. Phys. D: Appl. Phys., vol. 46, no. 4, 2013, # 045103.
[10] 黃嘉興,“舊材料的新見解-氧化石墨烯之界面活性”,工業材料雜誌3 月號,第291 期,第123-134 頁,2011。
[11] 蘇清源,“物理專文:石墨烯氧化物之特性與應用前景”,物理雙月刊,第33
卷,第2 期,第163-167 頁,2011。
[12] A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater, vol. 6, no.3, pp. 183-191, 2007.
[13] B. C. Brodie, “On the atomic weight of graphite,” Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259, 1859.
[14] Hummers Jr, William S., and Richard E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc., vol.80, no. 6, pp. 1339-1339, 1958.
[15] C. L. He, F. Zhuge, X. F. Zhou, M. Li, G. C. Zhou, Y. W. Liu, J. Z. Wang, B. Chen, W. J. Su, Z. P. Liu, Y. H. Wu, P. Cui, and R.-W. Li, “Nonvolatile resistive switching in graphene oxide thin films,” Appl. Phys. Lett., vol. 95, no. 23, 2009, # 232101.
[16] S. K. Hong, J. E. Kim, S. O. Kim, S.-Y. Choi, and B. J. Cho, “Flexible resistive switching memory device based on graphene oxide,” IEEE Electron Device Lett., vol. 31,no. 9, pp. 1005-1007, 2010.
[17] F. Yuan, Y. R. Ye, J.-C. Wang, Z. Zhang, L. Pan, J. Xu, and C.-S. Lai, “Retention behavior of graphene oxide resistive switching memory on flexible substrate,” in IEEE 5th International Nanoelectronics Conference (INEC), January 2th-4th, Singapore, pp. 288-290, 2013.
[18] C.-C. Lin, Y.-D. Chen and N.-C. Lin, “Graphene oxide based device for flexible RRAM application,” in IEEE 2nd International Symposium on Next-Generation Electronics (ISNE), Feb. 25-26, Kaohsiung, Taiwan, pp. 396-398, 2013.
[19] Sze, Simon M., “Physics of semiconductor devices,”3rd ed., Wiley-interscience, pp. 227-229, 2006.
[20] R. Ebrahim, N. Wu, and A. Ignatiev, “Multi-mode bipolar resistance switching in CuxO films,” J. Appl. Phys., vol. 111, no. 3, 2012, # 034509.
[21] P. Huang, X.Y. Liu, W.H. Li, Y.X. Deng, B. Chen, Y. Lu, B. Gao, L. Zeng, K.L. Wei, G. Du, X. Zhang, and J.F. Kang, “A Physical Based Analytic Model of RRAM Operation for Circuit Simulation,” IEEE International Electron Devices Meeting (IEDM), pp. 26.6.1 - 26.6.4, 2012.
[22] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett., vol. 85, no. 18, pp. 4073-4075, 2004.
[23] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, “Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: homogeneous/inhomogeneous transition of current distribution,” Phys. Rev. B, vol. 77, no. 3, 2008, # 035105.
[24] 葉威廷,“氧化石墨烯 MIS 光偵測器”,國立東華大學/碩士論文。
[25] 陳怡達,“石墨烯氧化物軟性電阻式記憶體之特性研究”,國立東華大學/
碩士論文。
[26] 汪建民,「材料分析」,初版,中國材料科學學會,第121-141,267-286,353-354 頁,1988 年。
[27] D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev., vol. 39, pp. 228-240, 2010.
[28] L. Zhang, Y. Li, L. Zhang, D.-W. Li1, D. Karpuzov, and Y.-T. Long,
“Electrocatalytic oxidation of NADH on graphene oxide and reduced graphene oxide modified screen-printed electrode,” Int. J. Electrochem. Sci., vol. 6, no. 3, pp. 819-829, 2011.
[29] V. Grieken, Rene E., and A. A. Markowicz. “Handbook of X-ray spectrometry,” 2002.





連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top