[1] D. Purves, G. J. Augustine, and D. Fitzpatrick, Neuroscience, 5th Edition. Sinauer Associates, Inc., 2012.
[2] J. W. Gardner and P. N. Bartlett, “A brief history of electronic noses,” Sensors Actuators B Chem., vol. 19, pp. 211–220, 1994.
[3] D. W. Ballantine, R. M. White, and S. J. Martin, Acoustic Wave Sensors: Theory Design and Physico-Chemical Applications. Academic Press, 1997.
[4] J. W. Gardner, Handbook of Machine Olfaction. WILEY-VCH, 2003.
[5] P. C. Jain and R. Kushwaha, “Wireless gas sensor network for detection and monitoring of harmful gases in utility areas and industries,” 2012 Sixth Int. Conf. Sens. Technol., pp. 642–646, 2012.
[6] K.-T. Tang, S.-W. Chiu, C.-H. Shih, C.-L. Chang, C.-M. Yang, D.-J. Yao, J.-H. Wang, C.-M. Huang, H. Chen, K.-H. Chang, C.-C. Hsieh, T.-H. Chang, M.-F. Chang, C.-M. Wang, Y.-W. Liu, T.-J. Chen, C.-H. Yang, H. Chiueh, J.-M. Shyu, “A 0.5V 1.27mW Nose-on-a-Chip for Rapid Diagnosis of Ventilatorassociated Pneumonia,” the 2014 IEEE international Solid-State Circuits Conference (ISSCC 2014), pp. 420–421, 2014
[7] 許柏安, 「快速混合氣體辨識方法之研究」, 國立清華大學資訊工程研究所, 碩士論文, 2012.[8] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” TIP, 19(11):2861-2873, 2010.
[9] L Tan, A. Alwan, G Kossan, ML. Cody, and CE. Taylor, “Dynamic time warping and sparse representation classification for birdsong phrase classi- fication using limited training data”. J Acoust Soc Am, 137(3):1069–1080, 2015.
[10] I. Naseem, R. Togneri, and M. Bennamoun, “Sparse Representation for Speaker Identification,” in Proc. of ICPR, pp. 4460-4463, 2010.
[11] J. Wright , A. Yang , A. Ganesh , S. Sastry and Y. Ma “Robust face recognition via sparse representation”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp.210 -227, 2009
[12] 王光耀, 「基於稀疏表示之語者辨識之研究」, 國立中央大學資訊工程學系, 碩士論文, 2013.[13] “Figaro Sensor.” Retrieved: http://www.figarosensor.com/.
[14] R. Gutierrez-Osuna and H. T. Nagle, “A method for evaluating data-preprocessing techniques for odor classification with an array of gas sensors,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 29, no. 5, pp. 626–632, 1999.
[15] NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2003.
[16] M. K. Muezzinoglu, A. Vergara, R. Huerta, N. Rulkov, M. I. Rabinovich, A. Selverston, and H. D. I. Abarbanel, “Acceleration of chemo-sensory information processing using transient features,” Sensors Actuators B Chem., vol. 137, no. 2, pp. 507–512, Apr. 2009.
[17] S. Marco and A. Gutiérrez-gálvez, “Signal and Data Processing for Machine Olfaction and Chemical Sensing : A Review,” vol. 12, no. 11, pp. 3189–3214, 2012.
[18] M. Dash and H. Liu, “Feature selection for classification,” Intell. Data Anal., vol. 1, no. 3, pp. 131–156, 1997.
[19] 王家銘, 「利用樣式識別實現電子鼻肺炎偵測」, 國立清華大學電機工程研究所, 碩士論文, 2013.[20] G. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset selection problem.” ICML, pp. 121–129, 1994.
[21] C. C. Reyes-Aldasoro and a. Bhalerao, “The Bhattacharyya space for feature selection and its application to texture segmentation,” Pattern Recognit., vol. 39, no. 5, pp. 812–826, 2006.
[22] A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 2, pp. 228–233, 2001.
[23] A. Fort, N. Machetti, S. Rocchi, M. B. Serrano Santos, L. Tondi, N. Ulivieri, V. Vignoli, and G. Sberveglieri, “Tin oxide gas sensing: Comparison among different measurement techniques for gas mixture classification,” IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 921–926, Jun. 2003.
[24] I.T. Jolliffe, Principal Component Analysis, 2nd ed, vol. 98. Springer-Verlag, 2002.
[25] 周志成(2013)。主成分分析。民104年8月29日,取自:https://ccjou.wordpress.com/2013/04/15/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90/
[26] H. Y. Jie, H. Yu, and J. Yang, “A direct LDA algorithm for high-dimensional data-with application to face recognition,” Pattern Recognit., vol. 34, no. 10, pp. 2067–2070, 2001.
[27] 周志成(2014)。費雪的判別分析與線性判別分析。民104年8月29日,取自:https://ccjou.wordpress.com/2014/03/14/%E8%B2%BB%E9%9B%AA%E7%9A%84%E5%88%A4%E5%88%A5%E5%88%86%E6%9E%90%E8%88%87%E7%B7%9A%E6%80%A7%E5%88%A4%E5%88%A5%E5%88%86%E6%9E%90/
[28] Y. Shin, S. Lee, J. Lee, and H.-N. Lee, “Sparse representation-based classification scheme for motor imagery-based brain–computer interface systems,” Journal of Neural Engineering, vol. 9, no. 5. p. 056002, 2012.
[29] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
[30] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag., vol. 24, no. 4, p. 118, 2007.
[31] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, 2008.
[32] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207–1223, 2006.
[33] M. Elad, “Sparse and Redundant Representations,” Sparse Redundant Represent. From Theory to Appl. Signal Image Process., pp. 359–361, 2010.
[34] S. Gao, I. W. H. Tsang, and L. T. Chia, “Kernel sparse representation for image classification and face recognition,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6314 LNCS, no. PART 4, pp. 1–14, 2010.
[35] M. Zhang and Z. Zhou, “A k-Nearest Neighbor Based Algorithm for Multi-label Classification,” 2005 IEEE Int. Conf. Granul. Comput., vol. 2, pp. 718–721 Vol. 2, 2005.
[36] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” in International Joint Conference on Artificial Intelligence, 1995, vol. 14, no. 12, pp. 1137–1143.
[37] R. Gutierrez-Osuna, “Pattern analysis for machine olfaction: A review,” IEEE Sensors Journal, vol. 2, no. 3. pp. 189–202, 2002.
[38] M. Aly, “Survey on multiclass classification methods extensible algorithms,” Neural Networks, no. November, pp. 1–9, 2005.
[39] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, vol. 19. Belmont, California: Wadsworth, 1984.
[40] J. R. Quinlan, C4.5: Programs for Machine Learning, vol. 1, no. 3. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1993.
[41] C. M. Bishop, Neural Networks for Pattern Recognition, vol. 92. Oxford University Press, USA, 1995.
[42] S. D. Bay, “Combining nearest neighbor classifiers through multiple feature subsets,” in Proceedings of the 17th International Conference on Machine Learning, pp. 37–45, 1998.
[43] I. Rish, “An empirical study of the naive Bayes classifier,” IJCAI 2001 Work. Empir. methods Artif. Intell., vol. 22230, pp. 41–46, 2001.
[44] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995.
[45] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov., vol. 2, pp. 121–167, 1998.
[46] E. A. Cherman, M. C. Monard, J. Metz , “Multi-label problem transformation methods: a case study,” CLEI Electron. J., vol. 14, no. 4, 2011.
[47] C. Z. S. Z. Tao L., “Empirical studies on multi-label classification,” in Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, 2006, pp. 86–89.
[48] K. Trohidis and G. Kalliris, “Multi-label classification of music into emotions,” Learning, vol. 2008, pp. 325–330, 2008.
[49] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label scene classification,” Pattern Recognit., vol. 37, no. 9, pp. 1757–1771, 2004.
[50] M. Zhang and Z. Zhou, “Multi-label learning by instance differentiation,” AAAI, pp. 669–674, 2007.
[51] 楊廷然, 「利用多標籤分類器實現電子鼻混合氣體識別方法之研究」, 國立清華大學電機工程研究所, 碩士論文, 2014.[52] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,” Data Min. Knowl. Discov. Handb., pp. 667–685, 2010.
[53] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-label classification,” Mach. Learn., vol. 85, no. 3, pp. 333–359, Jun. 2011.