跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅肇欣 
研究生(外文):Chao-Hsin Lo
論文名稱:真空度對熱阻與熱傳導係數的影響
論文名稱(外文):The effects of vacuum level on the thermal conductivity and resistance
指導教授:蘇程裕蘇程裕引用關係黃振康
口試委員:李文興葉仲基
口試日期:2009-07-07
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:92
中文關鍵詞:真空度真空絕熱熱傳導係數熱阻
外文關鍵詞:vacuum levelvacuum insulationthermal conductivitythermal resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3714
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主旨在探討真空度改變時對熱阻與熱傳導係數的影響。研究過程係藉由探究真空絕熱技術的原理與機制,以及仿效密集式真空保溫技術(Compact Vacuum Insulation,簡稱CVI)的製法,選擇鋁合金及不鏽鋼材料分別製成三類不同高度、厚度與外型的柱狀空心試件,利用實驗的方式探討以空氣為絕熱保溫層的構件,在絕熱保溫層的真空度改變時,對熱傳導係數與熱阻的影響。同時,將廣用於建築及大型儲槽保溫層的岩綿及玻璃棉材料,以同樣的實驗方法,研究此類保溫層之真空度的改變,對熱傳性的影響。實驗結果顯示空氣絕熱保溫層外殼使用厚0.8mm的AISI 304不鏽鋼製作,在絕熱保溫層厚度80mm以上、真空度9×10-2 Torr及輸入功率3W時的熱阻值比未抽真空時增加約75%;等效熱傳導係數值下降約43%;而在外殼換作使用厚1.2mm的AISI 304不鏽鋼製作時,在絕熱保溫層厚度90mm、真空度9×10-2 Torr及輸入功率3W時的熱阻值比未抽真空時僅增加3.7%,等效熱傳導係數值下降4.05%。以密度80 kg/m3岩棉為絕熱保溫層,在真空度9×10-2 Torr時,熱阻值比未抽真空時最多增加約68%;等效熱傳導係數值下降約40%。以密度56 kg/m3玻璃棉為絕熱保溫層,在真空度9×10-2 Torr時,熱阻值比未抽真空時增加約22%;等效熱傳導係數值下降約18%。此結果除了顯示利用改變絕熱層的真空度能有效降低熱傳導係數與提高熱阻之外,固體的熱傳導對構件絕熱保溫性能的影響也不容小覷。
This research mainly aims at probing into the impact on thermal resistance and thermal conductivity when the vacuum level changes. By investigating the principle and mechanism of the adiabatic technology of vacuum and simulating the Compact Vacuum Insulation (CVI) technology, we use aluminum alloy and stainless steel material respectively to make three kinds of hollow column form test pieces with different heights and thicknesses. The experiment is performed to study when the vacuum level of the adiabatic heat preservation changes, the impact on thermal conductivity and thermal resistance for the component taking air as adiabatic heat preservation. Also, by using the same experiment methods, we study the impact on heat-conduction with the change of the vacuum level of heat preservation for rock wool and glass wool materials that are widely used in buildings and large-scale store devices. The experimental result reveals for the material to be made with outer cover of adiabatic heat preservation using AISI 304 stainless steel of thick 0.8mm that at adiabatic heat preservation thickness more than 80mm, vacuum level 9×10-2 Torr, and input power 3W, the thermal resistance value increase by about 75% and the effective thermal conductivity value drops by about 43% comparing with the non-vacuum condition. When the outer cover is changed to use AISI 304 stainless steel of thick 1.2mm, the thermal resistance value only increases by 3.7% and the effective thermal conductivity value drops by 4.05% comparing with the non-vacuum condition in thickness 90mm of adiabatic heat preservation, vacuum level 9×10-2 Torr and input power 3W. Regarding rock wool of density 80 kg/m3 as the adiabatic heat preservation, in the vacuum level 9×10-2 Torr, the thermal resistance value increases by about 68% at most and the effective thermal conductivity value drops by about 40% comparing with the non-vacuum condition. Regarding glass wool of density 56 kg/m3 as the adiabatic heat preservation, in the vacuum level 9×10-2 Torr, thermal resistance value increases by about 22% and the effective thermal conductivity value drops by about 18% comparing with the non-vacuum condition. This result shows that by changing the vacuum level of adiabatic heat preservation layer can reduce thermal conductivity value and increase thermal resistance effectively, but the solid heat-conduction does have a large influence on the adiabatic heat preservation of component.
目 錄

摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1背景 1
1.2現況 4
1.3研究動機 7
1.4本文架構 9
第二章 文獻回顧 10
2.1 真空技術的演進與應用 10
2.2 絕熱保溫材料 13
2.3 先進保溫技術的發展與研究 16
2.3.1 超微粒絕熱保溫技術 16
2.3.2 多層絕熱保溫技術 17
2.3.3 氣凝膠絕熱保溫技術 18
2.3.4 開孔型發泡絕熱保溫技術 19
2.3.5 密集式真空絕熱保溫技術 20
2.4 真空保溫片製備 20
2.4.1 蕊材 20
2.4.2外層真空絕熱保護層 21
2.4.3 吸氣劑 22
2.5 理論背景 24
2.5.1 熱傳遞原理 24
2.5.2 測量VIP等效熱傳導係數的相關研究 24
2.5.3 接觸熱阻的相關研究 25
2.5.4導熱性測量之規範 29
第三章 實驗設備與方法 32
3.1實驗目的 32
3.2實驗設備 32
3.2.1 熱阻量測試驗機 33
3.2.2 多功能顯示器 33
3.2.3 掌上型RTD溫度顯示器 34
3.2.4 低溫循環水槽 35
3.2.5 真空泵 35
3.2.6 電子天平 36
3.2.7 絕熱材料 36
3.3 試件準備 37
3.3.1 試件外型結構與製法 37
3.3.2 試件的結構材料 41
3.3.3 試件的填充材料 42
3.4 實驗方法與步驟 43
3.4.1 實驗原理 43
3.4.2 熱傳導係數與熱阻的計算 44
3.4.3 實驗方法與步驟 45
第四章 結果與討論 49
4.1 熱平衡溫度的擷取原則 49
4.2 試件外部絕熱保溫必要性之實驗結果 50
4.3 真空壓力對熱阻與熱傳導係數的影響 51
4.3.1 Cu-Al試件實驗結果分析 51
4.3.2 S1-Air試件實驗結果分析 54
4.3.3 S2-Air試件實驗結果分析法 56
4.3.4 S2-RW試件實驗結果分析 66
4.3.5 S2-GW試件實驗結果分析 74
4.3.6 各試件實驗結果比較分析 82
第五章 結論 84
5.1 結論 84
5.2 建議與未來展望 86
參考文獻 87
符號彙編 91
參考文獻

[1] 經濟部,「2007年能源科技研究發展白皮書」,第四篇,第411頁。
[2] Hu, Y. C. Du Y. J. and Tao, W. H., “A Study of Thermal Insulation Properties of Rigid Open-cell Polyurethane Vacuum Insulation Panel System,” Chieses Culture University Hwa Kang Journal of Engineering. vol. 12,1998, pp. 121-146.
[3] 趙中興,「先進保溫材料之探討」,冷凍空調&熱交換雜誌,第2期,1994年9月,第1-14頁。
[4] 張志成,「真空保溫片芯材發泡製作及應用技術」,第45期,冷凍與空調,2007,第54-56頁。
[5] 金重勳,機械材料(全),台北:復文書局,1982,第455-456頁。
[6] 王惠齡、汪京榮,超導應用低溫技術,北京:國防工業出版社, 2008,第276-278頁。
[7] 陳國邦,低溫工程材料, 中國杭州:浙江大學出版社, 1998
[8] Fricke, J., “ Vacuum insulation panels From research to market,” Surface Engineering, Surface Instrumention & Vacuum Technolocy, vol. 82 , 2008,pp.680-690.
[9] Chu,H, S., Stretton, J. A. and Tien, C. L., “Radiative Heat Transfer in Ultra- Fine Powder Insulation,” Int. J. Heat Mass Transfer, vol. 31,1988 ,pp. 1627-1634.
[10] 曾重仁,超微顆粒絕熱材料之熱傳研究,碩士論文,國立交通大學機械工程研究所,新竹,1988。
[11] 陳東星,超微顆粒絕熱材料之傳導與輻射熱傳研究,碩士論文,國立交通大學機械工程研究所,新竹,1989。
[12] Kuntomo, T. Tsuboi, Y. and Shafey, H. M., “Dependent Scattering and Dependent Absorption of Light in a Fine-Particle Dispersed Medium,”Bull.JSME, vol. 28,1985 ,pp. 854-859.
[13] Kumar, S. and Tien, C. L., “Dependent Scattering and Absorption of Radiation by Small Particles,” in Fundamentals and Applications of Radiation Heat Transfer, A. M. Smith and T. F. Smith, eds., 1987, pp. 1-7, ASME HTD-vol.72 , 24th National Heat Transfer Conference, August 9- 12, Pittsburgh, PA
[14] Chu, H. S. and Tseng, C. J., “Thermal Performance of Ultra-Fine Powder Insulations at High Temperatures,” J. Thermal Insulation, vol. 12, 1989, pp. 298-312.
[15] 楊振華,抽真空超微顆粒隔熱材料系統之隔熱性能研究,碩士論文,國立交通大學機械工程研究所,新竹,1995。
[16] Tien C. L. and Cunnington, G.. R.,“Cryogenic Insulation Heat Transfer,” Advanced in Heat Transfer, vol. 9,1962, pp. 349-417, Academic Press, N.Y.
[17] Stoy, S. T., “Cryogenic Insulation Development,” Advanced in Cryogenic Engineering, vol. 5, 1959, pp. 216-221.
[18] Matsch, L. C., “Advances in Multilayer Insulations,” Advanced in Cryogenic Engineering, vol. 7,1961, pp. 413-418.
[19] Pride, P. M. and Wang, D. I-J., “Characteristics and Applications of Some super insulations,” Advanced in Cryogenic Engineering, vol. 5, 1959, pp.209-2l5.
[20] Kropschot, R. H., Schrodt, J. E., Fulk, M. M. and Hunter, B. J., “Multiple-Layer Insulation,” Advanced in Cryogenic Engineering, vol. 5, 1959, pp. 189-198.
[21] Black, I. A., Fowle A. A. and Glaser, P. E., “Development of High-Efficiency Insulation,” Advanced in Cryogenic Engineering, vol. 15, 1959, pp. 181-188.
[22] Getty, R. C., Clay, J. P., Kremzier B. J. and Leonhard, K. E., “Experimental Evaluation of Some Selected Lightweight Super insulation for Space vehicles,” Advanced in Cryogenic Engineering, vol.11,1963, pp. 35-48.
[23] Black, I. A. and Glaser, P. E., “Effects of Compressive Loads on the Heat Flux Through Multilayer Insulations,” Advanced in Cryogenic Engineering, vol. 11, 1965, pp. 26-34.
[24] Halaczek, T. L. and Rafalowicz, 3., “Heat Transport in Self-Pumping Multilayer Insulation,” Cryogenics, vol.26,1986, pp. 373-376.
[25] Halaczek, T. L. and Rafalowicz, 3., “Temperature Variation of Thermal Conductivity of Self-Pumping Multilayer insulation,” Cryogenics, vol. 26,1986, pp. 544-547.
[26] Pagson, J. T. and Macgregor, R. K., “Effective Conductance Along Parallel Radiation Shields)” Cryogenics, vol. 27,1987, pp 473-486.
[27] 尤江成,多層狀絕熱系統之輻射熱傳研究,碩士論文,國立交通大學機械工程研究所,新竹,1992。
[28] Tabor, R. L., “ Microcellular Polyurea Xerogels for Use in Vacuum Panels,” 35th Annual Polyurethane Technical/Marketing Conference, Boston, U.S.A, 1994, pp. 288-294.
[29] Glicksman, L. R., Schuetz, M. and Sinofsky, M.,” Radiation Heat Transfer in Foam insulation,” mt. J. Heat Mass Transfer, vol. 30, no. 1, 1987, pp.187-197.
[30] Schuetz, M. A. and Glicksman, L. R, “ A Basic Study of Heat Transfer Through Foam Insulation,” J. Cellular Plastics, vol. 20, no. 2, 1984, pp.114-121.
[31] Kuhn, 3., Ebert, H. P., Arduini-Schiister, M. C., Buttner D. and Fricke, 3., “ Thermal Transport in Polystyrene and Polyurethane Foam Insulations,” Tnt. J. Heat Mass Transfer, vol. 35, no.7, 1992, pp. 1795-1801.
[32] King, J. A. and Latham, D. D., “ Relationship of k-Factor Versus Density for Various Appliance Foam Formulation Containing Next Generation Blowing Agents, “ 35th Annual Polyurethane Technical Marketing Conference, Boston, U.S.A, 1994 , pp. 200-203
[33] Kodama, K., Yuge K. and Masuda, Y.,” Development of Micro Cellular Open Cell Rigid Polyurethane Foams,” Proceedings of Polyurethane World Congress, Vancouver, Canada,1993, pp. 140-144.
[34] 宋文發,開孔型硬質PU發泡隔熱材料之隔熱性能研究,碩士論文,國立交通大學機械工程研究所,新竹,1996。
[35] 胡應強,開孔型硬質聚氨基甲酸泡棉真空保溫片之隔熱性能研究,碩士論文,私立中國文化大學造紙印刷研究所,台北,1997。
[36] Viskanta, R. and Grosh, R. 1, “Heat Transfer by Simultaneous Conduction and Radiation in an Absorbing Medium,” ASME J. Heat Transfer, vol.88C, 1965, pp. 63-72.
[37] Lick, W., “Energy Transfer by Radiation and Conduction, Proceedings of Heat Transfer and Fluid Mechanics,” Stanford Univ. Press, 1963, pp. 14-23.
[38] Chu, H. S., Stretton, A. J. and Tien, C. L, “Radiative Heat Transfer in Ultra-Fine Powder Insulation,” Tnt. 3. Heat Mass Transfer, vol. 31, 1988, pp.1627-1634.
[39] Don Kearns,“Improving Accuracy and Flexibility of ASYM D5470 for High Performance Thermal interface Materials,”19th IEEE SEMI- THERM Symposium, 2003, pp. 129-133.
[40] Ravi, S., Prasher, Paul Kenning, James Shipley and Amit Devpura, “Dependence of thermal conductivity and mechanical rigidity of particle-laden polymeric thermal interface material on particle volume fraction” Transactions of the ASME, September 2003, vol. 125, PP. 389-391.
[41] Nishino, K., Yamashita, S. and Toni, K., “Thermal Contact Conductance under Low Applied Load in a Vacuum Environment,” Experimental Thermal and Fluid Science, vol. 10,1995, pp. 258-271.
[42] Fletcher, L. S., Blanchard, D. G., and Kin near, K. P., “Thermal Conductance of Multilayered Metallic Sheets,” Journal of Thermo physics and Heat Transfer, vol. 7, no. 1,1993, pp. 120-126.
[43] Chung, K. C. and Sheffield, J. W., “Enhancement of Thermal Contact Conductance of Coated Junctions,” Journal of Thermo physics and Heat Transfer, vol. 9, no. 2,1995, pp. 329-334.
[44] Padgett, D. L., and Fletcher, L. S., “The Thermal Conductance of Dissimilar Metals,” AL4A/ASME 3’ Joint Thermo physics, Fluids, Plasma and Heat Transfer Conference, 1982.
[45] Somers, R. R., Miller, J. W., and Fletcher, L. S., “Thermo Contact/Conductance ot Dissimilar Metals,” The 2 AL4A,ASME Thermo physics and Heat Transfer Conference,1978, pp. 78-873.
[46] Lewis, D. V. , and Perkins, H. C. , “Heat Transfer at the Interface of Stainless Steel and Aluminum - the Influence of Surface Conductions on the Directional Effect.” hit. I Heat Mass Transfer, vol. Ti,1968,pp. 1371-1383.
[47] ASTM, Standard Test Method for Thickness of Solid Electrical Insulation, Designation D374 -99, 2003, pp. 172-182.
[48] ASTM, Standard Test Method for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials, Designation U 5470 - 01, 2003, pp. 548-551.
[49] ASTM, Standard Test Method for Thermal Conductive of Solid by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique, Designation El 225- 99, 2003, pp. 3 39-346.
[50] ASTM, Standard Test Method for Steady-state Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus, Designation C177-97, 2003, pp. 21-42.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top