跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范皓鈞
研究生(外文):Hao-Chun Fan
論文名稱:溫度對台灣滑蜥(Scincella formosensis)生活史之影響:動態能量收支模式(DEB model)之參數化
論文名稱(外文):Temperature impact on the life history of the Taiwanese smooth skink Scincella formosensis: parameterization of a DEB model
指導教授:夏燦風黃淑萍黃淑萍引用關係
指導教授(外文):ROMAIN RICHARDHUANG, SHU-PING
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:88
中文關鍵詞:爬蟲類亞熱帶物種氣候變遷溫度敏感性溫度耐受性個體能量學
外文關鍵詞:ReptileSubtropical speciesClimate changeThermal sensitivityThermal toleranceIndividual energetics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
氣候變遷已經對許多爬蟲類的分佈範圍、活動時間和族群動態造成影響,預測氣候變遷如何影響物種可利用發展動態能量收支模式(Dynamic energy budget model, DEB model)來研究個體對溫度產生的反應。DEB model 提供了一個與熱力學一致的框架,可量化生物體內的能量及物質流動,並用於估算生物和非生物的條件組合如何影響生物體的生活史。台灣滑蜥(Scincella formosensis)棲息於森林中,是台灣唯一一種成體於冬季活動的石龍子,其在3月下旬至5月上旬產卵,並於5月下旬至6月孵化。由於胚胎及幼體主要於春夏季發育,這兩個生活史階段可能更容易受到暖化的影響。本研究測量台灣滑蜥的生活史和生理機能對溫度的反應(包含胚胎發育、幼體生長和CO2產生率),並將生理形質用於參數化此物種的DEB模式。數據顯示,在≥28°C的溫度下,生長速度會下降,然而CO2產生率在這些溫度下沒有明顯的下降跡象,暗示攝食率和能量利用率對高溫的反應不同。基於此發現,我使用兩個溫度校正函數參數化一個DEB model,該模式對個體的溫度生理學和生活史特徵有良好的解釋力。基於這些結果,我認為暖化可能對台灣滑蜥之胚胎發育、幼體生長、能量儲備、成熟及最終體型造成潛在影響。對於未來的應用,完全參數化後的模式可以結合生物物理模式與野外氣候數據,以預測全球氣候變遷如何影響年度週期內生活史事件的發生時間以及可能對此物種造成的挑戰。
Climate change affects the distribution range, activity time and population dynamics of reptiles. In this context, using measured reptile''s thermal physiological traits to develop a dynamic energy budget (DEB) model is useful to explore an individual’s response to temperature, and to predict how climate change affects the species ultimately. The Taiwanese smooth skink, Scincella formosensis is a forest species, and is the only lizard in sub/tropical Taiwan that the adults are mainly active during cool season. Their egg-laying and hatching occurs from late March to June and juveniles develop during summer. The largest part of the development occurs in summer, making embryos and juveniles potentially more vulnerable to rising temperatures. This study measured how various aspects of S. formosensis’ life history and physiology responded to temperature, including embryonic development, juvenile growth and rate of CO2 production, in order to parameterize a DEB model. The data show a decline of growth at temperatures ≥28°C, although CO2 production did not show any obvious sign of decline at these temperatures. This observation suggests that the ingestion rate responds differently than other rates to high temperatures. I included this finding by parameterizing two temperature correction functions, which produced a model that captures very well the major patterns of individuals’ thermal physiology and life history. I used these results to draw some conclusions on the potential impact of warming on this species’ life cycle. For future application, this model can be combined with a biophysical model and field climate data to predict how global climatic changes may affect the timing of life history events within the annual cycle and the challenges this could pose to this species.
Thesis/Dissertation Validation Letter i
Thesis/Dissertation Authorization Letter ii
Acknowledgement iii
Abstract (Chinese) iv
Abstract (English) v
Table of Contents vi
Table of Figures ix
Table of Tables x
Table of Appendix xi
Chapter 1. Introduction 1
1.1. Impacts of climate change on reptiles 1
1.2. Dynamic Energy Budget theory as an effective approach to study the physiological response to temperature over the life cycle 2
1.3. Study animal: Scincella formosensis 5
1.4. Research goals 6
Chapter 2. Materials and Methods 8
2.1. Collection of empirical data 8
2.1.1. Collection and maintenance of animals 8
2.1.2. Embryonic development experiment 9
2.1.2.1. Egg collection and treatment 9
2.1.2.2. Experiment setting 10
2.1.3. Juvenile growth and CO2 production 11
2.1.3.1. Growth of laboratory hatchlings (2019) 11
2.1.3.2. Growth of field hatchlings (2020) 12
2.1.3.3. CO2 production rate 12
2.1.4. Sources of other life history data 13
2.1.5. Pseudo-data 14
2.2. Modelling and parameter estimation 15
2.2.1. General description of the model 15
2.2.2. Parameter estimation 16
2.2.2.1. Objective function and weight coefficients of the data sets 16
2.2.2.2. Mass-length relation 18
2.2.2.3. Temperature dependence 18
2.2.2.4. CO2 production rate estimation 19
2.2.2.5. Estimation of the age of individuals collected from the field 19
Chapter 3. Results 21
3.1. Differences between the two C_T 21
3.2. Embryonic development and state at birth 22
3.3. Growth of juveniles 22
3.4. Mass-SVL relation 23
3.5. CO2 production rate 24
3.6. Other life history traits 25
Chapter 4. Discussion 26
4.1. Thermal physiological traits of the early life stages 26
4.2. Performance of the DEB model 28
4.2.1. The main reasons for using two C_T 29
4.2.2. Impact of using multiple temperature corrections on the predictions 31
4.2.3. Model limitations 33
4.3. Challenges for S. formosensis to climate warming 34
4.4. Differences from DEB models used in other reptile studies 35
4.5. Future directions and possible applications 38
References 41
Appendix 64
Agüera, A., Ahn, I. Y., Guillaumot, C., & Danis, B. (2017). A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism. PloS one, 12(8), e0183848.
Amiel, J. J., & Shine, R. (2012). Hotter nests produce smarter young lizards. Biology Letters, 8(3), 372-374.
Arnall, S. G., Mitchell, N. J., Kuchling, G., Durell, B., Kooijman, S. A. L. M., & Kearney, M. R. (2019). Life in the slow lane? A dynamic energy budget model for the western swamp turtle, Pseudemydura umbrina. Journal of sea research, 143, 89-99.
Ballen, C. J., Shine, R., & Olsson, M. M. (2015). Developmental plasticity in an unusual animal: the effects of incubation temperature on behavior in chameleons. Behaviour, 152(10), 1307-1324.
Bennett, A. F., & Dawson, W. R. (1972). Aerobic and anaerobic metabolism during activity in the lizard Dipsosaurus dorsalis. Journal of Comparative Physiology, 81(3), 289-299.
Brandt, B. W., Kelpin, F. D., van Leeuwen, I. M., & Kooijman, S. A. (2004). Modelling microbial adaptation to changing availability of substrates. Water research, 38(4), 1003-1013.
Brett, J. R. (1971). Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). American zoologist, 11(1), 99-113.
Burger, J. (1989). Incubation temperature has long-term effects on behaviour of young pine snakes (Pituophis melanoleucus). Behavioral Ecology and Sociobiology, 24(4), 201-207.
Carlo, M. A., Riddell, E. A., Levy, O., & Sears, M. W. (2018). Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change. Ecology letters, 21(1), 104-116.
Chamaille-jammes, S. I. M. O. N., Massot, M., Aragon, P., & Clobert, J. (2006). Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Global Change Biology, 12(2), 392-402.
Chen, T. Y., Richard, R., Lin, T. E., & Huang, S. P. (2021). Landscape forest impacts the potential activity time of an invasive lizard and its possibilities for range expansion in Taiwan under climate warming. Journal of Thermal Biology, 98, 102948.
Clobert, J., Garland Jr, T., & Barbault, R. (1998). The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution. Journal of Evolutionary Biology, 11(3), 329-364.
Congdon, J. D., Dunham, A. E., & Tinkle, D. W. (1982). Energy budgets and life histories of reptiles. Biology of the Reptilia, 13, 233-271.
Dubey, S., & Shine, R. (2011). Predicting the effects of climate change on reproductive fitness of an endangered montane lizard, Eulamprus leuraensis (Scincidae). Climatic Change, 107(3), 531-547.
Dunham, A. E. (1993). Population responses to environmental change. Biotic interactions and global change, 5-119. in P. M. Kareiva, J. G. Kingsolver, and R. B. Huey, eds. Biotic interactions and global change. Sinauer, Sunderland, MA.
Elphick, M. J., & Shine, R. (1998). Longterm effects of incubation temperatures on the morphology and locomotor performance of hatchling lizards (Bassiana duperreyi, Scincidae). Biological Journal of the Linnean Society, 63(3), 429-447.
Englund, G., Öhlund, G., Hein, C. L., & Diehl, S. (2011). Temperature dependence of the functional response. Ecology letters, 14(9), 914-921.
Feldmeier, S., Schmidt, B. R., Zimmermann, N. E., Veith, M., Ficetola, G. F., & Lötters, S. (2020). Shifting aspect or elevation? The climate change response of ectotherms in a complex mountain topography. Diversity and Distributions, 26(11), 1483-1495.
Fonds, M., Cronie, R., Vethaak, A. D., & Van der Puyl, P. (1992). Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Netherlands Journal of Sea Research, 29(1-3), 127-143.
Freedberg, S., Greives, T. J., Ewert, M. A., Demas, G. E., Beecher, N., & Nelson, C. E. (2008). Incubation environment affects immune system development in a turtle with environmental sex determination. Journal of Herpetology, 42(3), 536.
Gibbons, J. W., Scott, D. E., Ryan, T. J., Buhlmann, K. A., Tuberville, T. D., Metts, B. S., ... & Winne, C. T. (2000). The Global Decline of Reptiles, Déjà Vu Amphibians: Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience, 50(8), 653-666.
Grossowicz, M., Marques, G. M., & van Voorn, G. A. (2017). A dynamic energy budget (DEB) model to describe population dynamics of the marine cyanobacterium Prochlorococcus marinus. Ecological Modelling, 359, 320-332.
Gunderson, A. R., & Leal, M. (2012). Geographic variation in vulnerability to climate warming in a tropical Caribbean lizard. Functional Ecology, 26(4), 783-793.
Hainsworth, F. R., & Wolf, L. L. (1978). The economics of temperature regulation and torpor in nonmammalian organisms. Strategies in cold, 147-184.
Harlow, H. J., Hillman, S. S., & Hoffman, M. (1976). The effect of temperature on digestive efficiency in the herbivorous lizard, Dipsosaurus dorsalis. Journal of comparative physiology, 111(1), 1-6.
Hayward, A., & Gillooly, J. F. (2011). The cost of sex: quantifying energetic investment in gamete production by males and females. PLoS One, 6(1), e16557.
Hedley, J. (2012). Metabolic bone disease in reptiles: part 1. UK Vet Companion Animal, 17(6), 52-54.
Heesen, M., Rogahn, S., Ostner, J., & Schülke, O. (2013). Food abundance affects energy intake and reproduction in frugivorous female Assamese macaques. Behavioral Ecology and Sociobiology, 67(7), 1053-1066.
Huang, S. P., Hung, K. W., Fan, H. C., Lin, T. E., & Richard, R. (2020). Temperature rise curtails activity period predicted for a winter-active forest lizard, Scincella formosensis, from subtropical areas in Taiwan. Journal of thermal biology, 87, 102475.
Huey, R. B., & Stevenson, R. D. (1979). Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist, 19(1), 357-366.
Huey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Álvarez Pérez, H. J., & Garland Jr, T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 276(1664), 1939-1948.
Huey, R. B., & Tewksbury, J. J. (2009). Can behavior douse the fire of climate warming?. Proceedings of the National Academy of Sciences, 106(10), 3647-3648.
Huey, R. B., & Kingsolver, J. G. (2019). Climate warming, resource availability, and the metabolic meltdown of ectotherms. The American Naturalist, 194(6), E140-E150.
Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Austral Ecology, 28(4), 423-443.
James, C. D. (1991). Growth rates and ages at maturity of sympatric scincid lizards (Ctenotus) in central Australia. Journal of Herpetology, 284-295.
Jobling, M. A. L. C. O. L. M. (1997, January). Temperature and growth: modulation of growth rate via temperature change. In Seminar series-society for experimental biology (Vol. 61, pp. 225-254). Cambridge University Press.
Jusup, M., Klanjscek, T., Matsuda, H., & Kooijman, S. A. L. M. (2011). A full lifecycle bioenergetic model for bluefin tuna. PLoS One, 6(7), e21903.
Kaufmann, J. S., & Bennett, A. F. (1989). The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiological Zoology, 62(5), 1047-1058.
Kearney, M., & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology letters, 12(4), 334-350.
Kearney, M., Shine, R., & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proceedings of the National Academy of Sciences, 106(10), 3835-3840.
Kearney, M. R., Munns, S. L., Moore, D., Malishev, M., & Bull, C. M. (2018). Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecological Monographs, 88(4), 672-693.
Klepsatel, P., Wildridge, D., & Gáliková, M. (2019). Temperature induces changes in Drosophila energy stores. Scientific reports, 9(1), 1-10.
Kooijman, B., & Kooijman, S. A. L. M. (2010). Dynamic energy budget theory for metabolic organisation. Cambridge university press.
Kooijman, S. A. L. M. (1986). Energy budgets can explain body size relations. Journal of Theoretical Biology, 121(3), 269-282.
Kooijman, S. A. L. M. (2001). Quantitative aspects of metabolic organization: a discussion of concepts. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1407), 331-349.
Le Galliard, J. F., Marquis, O., & Massot, M. (2010). Cohort variation, climate effects and population dynamics in a short‐lived lizard. Journal of Animal Ecology, 79(6), 1296-1307.
Le Galliard, J. F., Massot, M., Baron, J. P., & Clobert, J. (2012). 9. Ecological effects of Climate Change on European Reptiles. In Wildlife conservation in a changing climate (pp. 179-203). University of Chicago Press.
Leibold, M. A. (1995). The niche concept revisited: mechanistic models and community context. Ecology, 76(5), 1371-1382.
Lemoine, N. P., & Burkepile, D. E. (2012). Temperature‐induced mismatches between consumption and metabolism reduce consumer fitness. Ecology, 93(11), 2483-2489.
Les, H. L., Paitz, R. T., & Bowden, R. M. (2009). Living at extremes: development at the edges of viable temperature under constant and fluctuating conditions. Physiological and Biochemical Zoology, 82(2), 105-112.
Lighton, J. R., & Turner, R. J. (2004). Thermolimit respirometry: an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus. Journal of Experimental Biology, 207(11), 1903-1913.
Lika, K., Kearney, M. R., Freitas, V., van der Veer, H. W., van der Meer, J., Wijsman, J. W., ... & Kooijman, S. A. (2011). The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach. Journal of Sea Research, 66(4), 270-277.
Llandres, A. L., Marques, G. M., Maino, J. L., Kooijman, S. A. L. M., Kearney, M. R., & Casas, J. (2015). A dynamic energy budget for the whole life‐cycle of holometabolous insects. Ecological Monographs, 85(3), 353-371.
Lourdais, O., Shine, R., Bonnet, X., Guillon, M., & Naulleau, G. (2004). Climate affects embryonic development in a viviparous snake, Vipera aspis. Oikos, 104(3), 551-560.
Maino, J. L., Kong, J. D., Hoffmann, A. A., Barton, M. G., & Kearney, M. R. (2016). Mechanistic models for predicting insect responses to climate change. Current opinion in insect science, 17, 81-86.
Marn, N., Kooijman, S. A. L. M., Jusup, M., Legović, T., & Klanjšček, T. (2017). Inferring physiological energetics of loggerhead turtle (Caretta caretta) from existing data using a general metabolic theory. Marine environmental research, 126, 14-25.
Marn, N., Jusup, M., Legović, T., Kooijman, S. A. L. M., & Klanjšček, T. (2017). Environmental effects on growth, reproduction, and life-history traits of loggerhead turtles. Ecological Modelling, 360, 163-178.
Marn, N., Jusup, M., Catteau, S., Kooijman, S. A. L. M., & Klanjšček, T. (2019). Comparative physiological energetics of Mediterranean and North Atlantic loggerhead turtles. Journal of sea research, 143, 100-118.
Marques, G. M., Lika, K., Augustine, S., Pecquerie, L., & Kooijman, S. A. (2019). Fitting multiple models to multiple data sets. Journal of sea research, 143, 48-56.
Marshall, D. J., & McQuaid, C. D. (2011). Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proceedings of the Royal Society B: Biological Sciences, 278(1703), 281-288.
Mawdsley, J. R., O’MALLEY, R. O. B. I. N., & Ojima, D. S. (2009). A review of climate‐change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology, 23(5), 1080-1089.
McCarty, J. P. (2001). Ecological consequences of recent climate change. Conservation biology, 15(2), 320-331.
Molnár, P. K., Derocher, A. E., Thiemann, G. W., & Lewis, M. A. (2010). Predicting survival, reproduction and abundance of polar bears under climate change. Biological Conservation, 143(7), 1612-1622.
Monaco, C. J., Wethey, D. S., & Helmuth, B. (2014). A dynamic energy budget (DEB) model for the keystone predator Pisaster ochraceus. PLoS One, 9(8), e104658.
Montalto, V., Sarà, G., Ruti, P. M., Dell’Aquila, A., & Helmuth, B. (2014). Testing the effects of temporal data resolution on predictions of the effects of climate change on bivalves. Ecological Modelling, 278, 1-8.
Moreno-Rueda, G., Pleguezuelos, J. M., & Alaminos, E. (2009). Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus. Climatic Change, 92(1), 235-242.
Moreno-Rueda, G., Pleguezuelos, J. M., Pizarro, M., & Montori, A. (2012). Northward shifts of the distributions of Spanish reptiles in association with climate change. Conservation Biology, 26(2), 278-283.
Navarro, E., Iglesias, J. I. P., Ortega, M. M., & Larretxea, X. (1994). The basis for a functional response to variable food quantity and quality in cockles Cerastoderma edule (Bivalvia, Cardiidae). Physiological Zoology, 67(2), 468-496.
Packard, G. C. (1999). Water relations of chelonian eggs and embryos: is wetter better? American Zoologist, 39(2), 289-303.
Porter, W. P., Mitchell, J. W., Beckman, W. A., & DeWitt, C. B. (1973). Behavioral implications of mechanistic ecology: thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia, 13(1), 1-54.
Pörtner, H. O., Storch, D., & Heilmayer, O. (2005). Constraints and trade-offs in climate-dependent adaptation: energy budgets and growth in a latitudinal cline. Scientia marina, 69(S2), 271-285.
Rasband, W. S. (1997). ImageJ.
Roe, R. M., Clifford, C. W., & Woodring, J. P. (1980). The effect of temperature on feeding, growth, and metabolism during the last larval stadium of the female house cricket, Acheta domesticus. Journal of Insect Physiology, 26(9), 639-644.
Rugiero, L., Milana, G., Petrozzi, F., Capula, M., & Luiselli, L. (2013). Climate-change-related shifts in annual phenology of a temperate snake during the last 20 years. Acta oecologica, 51, 42-48.
Sarà, G., Reid, G. K., Rinaldi, A., Palmeri, V., Troell, M. A. L. M., & Kooijman, S. A. L. M. (2012). Growth and reproductive simulation of candidate shellfish species at fish cages in the Southern Mediterranean: Dynamic Energy Budget (DEB) modelling for integrated multi-trophic aquaculture. Aquaculture, 324, 259-266.
Sears, M. W., Angilletta, M. J., Schuler, M. S., Borchert, J., Dilliplane, K. F., Stegman, M., ... & Mitchell, W. A. (2016). Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proceedings of the National Academy of Sciences, 113(38), 10595-10600.
Sharpe, P. J., & DeMichele, D. W. (1977). Reaction kinetics of poikilotherm development. Journal of theoretical biology, 64(4), 649-670.
Sinervo, B., Mendez-De-La-Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., ... & Sites, J. W. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328(5980), 894-899.
Stavrakidis-Zachou, O., Papandroulakis, N., & Lika, K. (2019). A DEB model for European sea bass (Dicentrarchus labrax): Parameterisation and application in aquaculture. Journal of Sea Research, 143, 262-271.
Stevenson, R. D. (1985). The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. The American Naturalist, 126(3), 362-386.
Stubbs, J. L., Mitchell, N. J., Marn, N., Vanderklift, M. A., Pillans, R. D., & Augustine, S. (2019). A full life cycle Dynamic Energy Budget (DEB) model for the green sea turtle (Chelonia mydas) fitted to data on embryonic development. Journal of sea research, 143, 78-88.
Stubbs, J. L., Marn, N., Vanderklift, M. A., Fossette, S., & Mitchell, N. J. (2020). Simulated growth and reproduction of green turtles (Chelonia mydas) under climate change and marine heatwave scenarios. Ecological Modelling, 431, 109185.
Tomlinson, S., Arnall, S. G., Munn, A., Bradshaw, S. D., Maloney, S. K., Dixon, K. W., & Didham, R. K. (2014). Applications and implications of ecological energetics. Trends in ecology & evolution, 29(5), 280-290.
van der Meer, J. (2006). An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation. Journal of Sea Research, 56(2), 85-102.
van der Meer, J., van der Veer, H. W., & Witte, J. I. (2011). The disappearance of the European eel from the western Wadden Sea. Journal of Sea Research, 66(4), 434-439.
Vitt, L. J., Avila‐Pires, T. C., Caldwell, J. P., & Oliveira, V. R. (1998). The impact of individual tree harvesting on thermal environments of lizards in Amazonian rain forest. Conservation Biology, 12(3), 654-664.
Wikelski, M., & Romero, L. M. (2003). Body size, performance and fitness in Galapagos marine iguanas. Integrative and comparative biology, 43(3), 376-386.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊