|
Agüera, A., Ahn, I. Y., Guillaumot, C., & Danis, B. (2017). A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism. PloS one, 12(8), e0183848. Amiel, J. J., & Shine, R. (2012). Hotter nests produce smarter young lizards. Biology Letters, 8(3), 372-374. Arnall, S. G., Mitchell, N. J., Kuchling, G., Durell, B., Kooijman, S. A. L. M., & Kearney, M. R. (2019). Life in the slow lane? A dynamic energy budget model for the western swamp turtle, Pseudemydura umbrina. Journal of sea research, 143, 89-99. Ballen, C. J., Shine, R., & Olsson, M. M. (2015). Developmental plasticity in an unusual animal: the effects of incubation temperature on behavior in chameleons. Behaviour, 152(10), 1307-1324. Bennett, A. F., & Dawson, W. R. (1972). Aerobic and anaerobic metabolism during activity in the lizard Dipsosaurus dorsalis. Journal of Comparative Physiology, 81(3), 289-299. Brandt, B. W., Kelpin, F. D., van Leeuwen, I. M., & Kooijman, S. A. (2004). Modelling microbial adaptation to changing availability of substrates. Water research, 38(4), 1003-1013. Brett, J. R. (1971). Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). American zoologist, 11(1), 99-113. Burger, J. (1989). Incubation temperature has long-term effects on behaviour of young pine snakes (Pituophis melanoleucus). Behavioral Ecology and Sociobiology, 24(4), 201-207. Carlo, M. A., Riddell, E. A., Levy, O., & Sears, M. W. (2018). Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change. Ecology letters, 21(1), 104-116. Chamaille-jammes, S. I. M. O. N., Massot, M., Aragon, P., & Clobert, J. (2006). Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Global Change Biology, 12(2), 392-402. Chen, T. Y., Richard, R., Lin, T. E., & Huang, S. P. (2021). Landscape forest impacts the potential activity time of an invasive lizard and its possibilities for range expansion in Taiwan under climate warming. Journal of Thermal Biology, 98, 102948. Clobert, J., Garland Jr, T., & Barbault, R. (1998). The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution. Journal of Evolutionary Biology, 11(3), 329-364. Congdon, J. D., Dunham, A. E., & Tinkle, D. W. (1982). Energy budgets and life histories of reptiles. Biology of the Reptilia, 13, 233-271. Dubey, S., & Shine, R. (2011). Predicting the effects of climate change on reproductive fitness of an endangered montane lizard, Eulamprus leuraensis (Scincidae). Climatic Change, 107(3), 531-547. Dunham, A. E. (1993). Population responses to environmental change. Biotic interactions and global change, 5-119. in P. M. Kareiva, J. G. Kingsolver, and R. B. Huey, eds. Biotic interactions and global change. Sinauer, Sunderland, MA. Elphick, M. J., & Shine, R. (1998). Longterm effects of incubation temperatures on the morphology and locomotor performance of hatchling lizards (Bassiana duperreyi, Scincidae). Biological Journal of the Linnean Society, 63(3), 429-447. Englund, G., Öhlund, G., Hein, C. L., & Diehl, S. (2011). Temperature dependence of the functional response. Ecology letters, 14(9), 914-921. Feldmeier, S., Schmidt, B. R., Zimmermann, N. E., Veith, M., Ficetola, G. F., & Lötters, S. (2020). Shifting aspect or elevation? The climate change response of ectotherms in a complex mountain topography. Diversity and Distributions, 26(11), 1483-1495. Fonds, M., Cronie, R., Vethaak, A. D., & Van der Puyl, P. (1992). Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Netherlands Journal of Sea Research, 29(1-3), 127-143. Freedberg, S., Greives, T. J., Ewert, M. A., Demas, G. E., Beecher, N., & Nelson, C. E. (2008). Incubation environment affects immune system development in a turtle with environmental sex determination. Journal of Herpetology, 42(3), 536. Gibbons, J. W., Scott, D. E., Ryan, T. J., Buhlmann, K. A., Tuberville, T. D., Metts, B. S., ... & Winne, C. T. (2000). The Global Decline of Reptiles, Déjà Vu Amphibians: Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience, 50(8), 653-666. Grossowicz, M., Marques, G. M., & van Voorn, G. A. (2017). A dynamic energy budget (DEB) model to describe population dynamics of the marine cyanobacterium Prochlorococcus marinus. Ecological Modelling, 359, 320-332. Gunderson, A. R., & Leal, M. (2012). Geographic variation in vulnerability to climate warming in a tropical Caribbean lizard. Functional Ecology, 26(4), 783-793. Hainsworth, F. R., & Wolf, L. L. (1978). The economics of temperature regulation and torpor in nonmammalian organisms. Strategies in cold, 147-184. Harlow, H. J., Hillman, S. S., & Hoffman, M. (1976). The effect of temperature on digestive efficiency in the herbivorous lizard, Dipsosaurus dorsalis. Journal of comparative physiology, 111(1), 1-6. Hayward, A., & Gillooly, J. F. (2011). The cost of sex: quantifying energetic investment in gamete production by males and females. PLoS One, 6(1), e16557. Hedley, J. (2012). Metabolic bone disease in reptiles: part 1. UK Vet Companion Animal, 17(6), 52-54. Heesen, M., Rogahn, S., Ostner, J., & Schülke, O. (2013). Food abundance affects energy intake and reproduction in frugivorous female Assamese macaques. Behavioral Ecology and Sociobiology, 67(7), 1053-1066. Huang, S. P., Hung, K. W., Fan, H. C., Lin, T. E., & Richard, R. (2020). Temperature rise curtails activity period predicted for a winter-active forest lizard, Scincella formosensis, from subtropical areas in Taiwan. Journal of thermal biology, 87, 102475. Huey, R. B., & Stevenson, R. D. (1979). Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist, 19(1), 357-366. Huey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Álvarez Pérez, H. J., & Garland Jr, T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 276(1664), 1939-1948. Huey, R. B., & Tewksbury, J. J. (2009). Can behavior douse the fire of climate warming?. Proceedings of the National Academy of Sciences, 106(10), 3647-3648. Huey, R. B., & Kingsolver, J. G. (2019). Climate warming, resource availability, and the metabolic meltdown of ectotherms. The American Naturalist, 194(6), E140-E150. Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Austral Ecology, 28(4), 423-443. James, C. D. (1991). Growth rates and ages at maturity of sympatric scincid lizards (Ctenotus) in central Australia. Journal of Herpetology, 284-295. Jobling, M. A. L. C. O. L. M. (1997, January). Temperature and growth: modulation of growth rate via temperature change. In Seminar series-society for experimental biology (Vol. 61, pp. 225-254). Cambridge University Press. Jusup, M., Klanjscek, T., Matsuda, H., & Kooijman, S. A. L. M. (2011). A full lifecycle bioenergetic model for bluefin tuna. PLoS One, 6(7), e21903. Kaufmann, J. S., & Bennett, A. F. (1989). The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiological Zoology, 62(5), 1047-1058. Kearney, M., & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology letters, 12(4), 334-350. Kearney, M., Shine, R., & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proceedings of the National Academy of Sciences, 106(10), 3835-3840. Kearney, M. R., Munns, S. L., Moore, D., Malishev, M., & Bull, C. M. (2018). Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecological Monographs, 88(4), 672-693. Klepsatel, P., Wildridge, D., & Gáliková, M. (2019). Temperature induces changes in Drosophila energy stores. Scientific reports, 9(1), 1-10. Kooijman, B., & Kooijman, S. A. L. M. (2010). Dynamic energy budget theory for metabolic organisation. Cambridge university press. Kooijman, S. A. L. M. (1986). Energy budgets can explain body size relations. Journal of Theoretical Biology, 121(3), 269-282. Kooijman, S. A. L. M. (2001). Quantitative aspects of metabolic organization: a discussion of concepts. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1407), 331-349. Le Galliard, J. F., Marquis, O., & Massot, M. (2010). Cohort variation, climate effects and population dynamics in a short‐lived lizard. Journal of Animal Ecology, 79(6), 1296-1307. Le Galliard, J. F., Massot, M., Baron, J. P., & Clobert, J. (2012). 9. Ecological effects of Climate Change on European Reptiles. In Wildlife conservation in a changing climate (pp. 179-203). University of Chicago Press. Leibold, M. A. (1995). The niche concept revisited: mechanistic models and community context. Ecology, 76(5), 1371-1382. Lemoine, N. P., & Burkepile, D. E. (2012). Temperature‐induced mismatches between consumption and metabolism reduce consumer fitness. Ecology, 93(11), 2483-2489. Les, H. L., Paitz, R. T., & Bowden, R. M. (2009). Living at extremes: development at the edges of viable temperature under constant and fluctuating conditions. Physiological and Biochemical Zoology, 82(2), 105-112. Lighton, J. R., & Turner, R. J. (2004). Thermolimit respirometry: an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus. Journal of Experimental Biology, 207(11), 1903-1913. Lika, K., Kearney, M. R., Freitas, V., van der Veer, H. W., van der Meer, J., Wijsman, J. W., ... & Kooijman, S. A. (2011). The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach. Journal of Sea Research, 66(4), 270-277. Llandres, A. L., Marques, G. M., Maino, J. L., Kooijman, S. A. L. M., Kearney, M. R., & Casas, J. (2015). A dynamic energy budget for the whole life‐cycle of holometabolous insects. Ecological Monographs, 85(3), 353-371. Lourdais, O., Shine, R., Bonnet, X., Guillon, M., & Naulleau, G. (2004). Climate affects embryonic development in a viviparous snake, Vipera aspis. Oikos, 104(3), 551-560. Maino, J. L., Kong, J. D., Hoffmann, A. A., Barton, M. G., & Kearney, M. R. (2016). Mechanistic models for predicting insect responses to climate change. Current opinion in insect science, 17, 81-86. Marn, N., Kooijman, S. A. L. M., Jusup, M., Legović, T., & Klanjšček, T. (2017). Inferring physiological energetics of loggerhead turtle (Caretta caretta) from existing data using a general metabolic theory. Marine environmental research, 126, 14-25. Marn, N., Jusup, M., Legović, T., Kooijman, S. A. L. M., & Klanjšček, T. (2017). Environmental effects on growth, reproduction, and life-history traits of loggerhead turtles. Ecological Modelling, 360, 163-178. Marn, N., Jusup, M., Catteau, S., Kooijman, S. A. L. M., & Klanjšček, T. (2019). Comparative physiological energetics of Mediterranean and North Atlantic loggerhead turtles. Journal of sea research, 143, 100-118. Marques, G. M., Lika, K., Augustine, S., Pecquerie, L., & Kooijman, S. A. (2019). Fitting multiple models to multiple data sets. Journal of sea research, 143, 48-56. Marshall, D. J., & McQuaid, C. D. (2011). Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proceedings of the Royal Society B: Biological Sciences, 278(1703), 281-288. Mawdsley, J. R., O’MALLEY, R. O. B. I. N., & Ojima, D. S. (2009). A review of climate‐change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology, 23(5), 1080-1089. McCarty, J. P. (2001). Ecological consequences of recent climate change. Conservation biology, 15(2), 320-331. Molnár, P. K., Derocher, A. E., Thiemann, G. W., & Lewis, M. A. (2010). Predicting survival, reproduction and abundance of polar bears under climate change. Biological Conservation, 143(7), 1612-1622. Monaco, C. J., Wethey, D. S., & Helmuth, B. (2014). A dynamic energy budget (DEB) model for the keystone predator Pisaster ochraceus. PLoS One, 9(8), e104658. Montalto, V., Sarà, G., Ruti, P. M., Dell’Aquila, A., & Helmuth, B. (2014). Testing the effects of temporal data resolution on predictions of the effects of climate change on bivalves. Ecological Modelling, 278, 1-8. Moreno-Rueda, G., Pleguezuelos, J. M., & Alaminos, E. (2009). Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus. Climatic Change, 92(1), 235-242. Moreno-Rueda, G., Pleguezuelos, J. M., Pizarro, M., & Montori, A. (2012). Northward shifts of the distributions of Spanish reptiles in association with climate change. Conservation Biology, 26(2), 278-283. Navarro, E., Iglesias, J. I. P., Ortega, M. M., & Larretxea, X. (1994). The basis for a functional response to variable food quantity and quality in cockles Cerastoderma edule (Bivalvia, Cardiidae). Physiological Zoology, 67(2), 468-496. Packard, G. C. (1999). Water relations of chelonian eggs and embryos: is wetter better? American Zoologist, 39(2), 289-303. Porter, W. P., Mitchell, J. W., Beckman, W. A., & DeWitt, C. B. (1973). Behavioral implications of mechanistic ecology: thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia, 13(1), 1-54. Pörtner, H. O., Storch, D., & Heilmayer, O. (2005). Constraints and trade-offs in climate-dependent adaptation: energy budgets and growth in a latitudinal cline. Scientia marina, 69(S2), 271-285. Rasband, W. S. (1997). ImageJ. Roe, R. M., Clifford, C. W., & Woodring, J. P. (1980). The effect of temperature on feeding, growth, and metabolism during the last larval stadium of the female house cricket, Acheta domesticus. Journal of Insect Physiology, 26(9), 639-644. Rugiero, L., Milana, G., Petrozzi, F., Capula, M., & Luiselli, L. (2013). Climate-change-related shifts in annual phenology of a temperate snake during the last 20 years. Acta oecologica, 51, 42-48. Sarà, G., Reid, G. K., Rinaldi, A., Palmeri, V., Troell, M. A. L. M., & Kooijman, S. A. L. M. (2012). Growth and reproductive simulation of candidate shellfish species at fish cages in the Southern Mediterranean: Dynamic Energy Budget (DEB) modelling for integrated multi-trophic aquaculture. Aquaculture, 324, 259-266. Sears, M. W., Angilletta, M. J., Schuler, M. S., Borchert, J., Dilliplane, K. F., Stegman, M., ... & Mitchell, W. A. (2016). Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proceedings of the National Academy of Sciences, 113(38), 10595-10600. Sharpe, P. J., & DeMichele, D. W. (1977). Reaction kinetics of poikilotherm development. Journal of theoretical biology, 64(4), 649-670. Sinervo, B., Mendez-De-La-Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., ... & Sites, J. W. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328(5980), 894-899. Stavrakidis-Zachou, O., Papandroulakis, N., & Lika, K. (2019). A DEB model for European sea bass (Dicentrarchus labrax): Parameterisation and application in aquaculture. Journal of Sea Research, 143, 262-271. Stevenson, R. D. (1985). The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. The American Naturalist, 126(3), 362-386. Stubbs, J. L., Mitchell, N. J., Marn, N., Vanderklift, M. A., Pillans, R. D., & Augustine, S. (2019). A full life cycle Dynamic Energy Budget (DEB) model for the green sea turtle (Chelonia mydas) fitted to data on embryonic development. Journal of sea research, 143, 78-88. Stubbs, J. L., Marn, N., Vanderklift, M. A., Fossette, S., & Mitchell, N. J. (2020). Simulated growth and reproduction of green turtles (Chelonia mydas) under climate change and marine heatwave scenarios. Ecological Modelling, 431, 109185. Tomlinson, S., Arnall, S. G., Munn, A., Bradshaw, S. D., Maloney, S. K., Dixon, K. W., & Didham, R. K. (2014). Applications and implications of ecological energetics. Trends in ecology & evolution, 29(5), 280-290. van der Meer, J. (2006). An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation. Journal of Sea Research, 56(2), 85-102. van der Meer, J., van der Veer, H. W., & Witte, J. I. (2011). The disappearance of the European eel from the western Wadden Sea. Journal of Sea Research, 66(4), 434-439. Vitt, L. J., Avila‐Pires, T. C., Caldwell, J. P., & Oliveira, V. R. (1998). The impact of individual tree harvesting on thermal environments of lizards in Amazonian rain forest. Conservation Biology, 12(3), 654-664. Wikelski, M., & Romero, L. M. (2003). Body size, performance and fitness in Galapagos marine iguanas. Integrative and comparative biology, 43(3), 376-386.
|