跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡承叡
研究生(外文):Cheng-Juei Tsai
論文名稱:探討乳酸脫氫酶在非小細胞肺腫瘤病程演進所扮演的角色
論文名稱(外文):The role of Lactate dehydrogenase (LDHA) in progression of Non-small cell lung cancer
指導教授:孫光蕙
指導教授(外文):Kuang-Hui Sun
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:107
中文關鍵詞:乳酸脫氫酶
外文關鍵詞:LDHA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肺癌在全世界的流行病學中罹患率及致死率皆位居前兩名,高致死率可能與癌症幹細胞 (Cancer stem cells, CSCs) 相關。這群細胞具有較強的抗藥性和自我更新的能力、移動、穿透和分化能力,導致癌症容易遠端轉移,易造成癌症復發,因此癌症幹細胞是研究上很重要的一個議題。在正常細胞醣類的代謝主要經由代謝效率較佳的有氧代謝,相反的癌細胞卻傾向大量、快速的無氧代謝,這種癌細胞代謝方式的特性稱為瓦氏效應 (Warburg effect),癌症幹細胞則更傾向無氧代謝的情況。乳酸脫氫酶 (Lactate dehydrogenase A, LDHA)在醣解進到無氧代謝的路徑中扮演關鍵角色。先前研究中發現頭頸癌及肝癌中乳酸脫氫酶的高表現和癌細胞生長有正相關,並且初步看到抑制LDHA無氧代謝能使得癌症幹細胞的形成減少。但目前為止尚未在肺癌的模式中探討代謝和癌症幹細胞的關聯,因此本研究目的是探討乳酸脫氫酶在癌症的進程以及癌症幹細胞中所扮演的角色。
首先透過免疫組織化學染色分析肺癌病人組織微陣列切片,發現在進程較後期的病人中乳酸脫氫酶的表現有上升的趨勢,並且和癌症幹細胞的標誌 (Oct4)表現量具正相關性,另外透過Suverexpress生物資訊資料庫分析,發現在兩個不同的資料庫中,乳酸脫氫酶及Oct4高表現的肺癌病人有較差的預後,以上結果顯示,乳酸脫氫酶的表現和疾病的進程成相關。接著利用兩株惡行度不同的肺腺癌細胞透過慢病毒短髮夾核糖核酸系統(Lentivirus shRNA system)來抑制乳酸脫氫酶表現(shLDHA),結果發現癌細胞的移動及生長能力會受到抑制。進一步將癌細胞養成腫瘤微球體 (Sphere),分析其癌症幹細胞相關特性是否受到影響,結果發現在抑制乳酸脫氫酶後其癌症幹細胞相關標誌 (Oct4, Nanog) 表現受到抑制,而腫瘤微球體形成能力也降低,並且細胞侵襲和化學治療藥物抗藥性的能力亦下降。
綜合以上結果顯示,乳酸脫氫酶可促進肺癌的發展及癌症幹細胞的生成和功能,因此在癌症的治療上可能可以透過抑制其代謝來達到抑制癌症進展的功效。
Lung cancer is the most common cause of cancer deaths globally, and several new cases are estimated to occur worldwide. The survival rate of patients with lung cancer is poor because of a small population of cells called cancer stem cells (CSCs). Certain characteristics of CSCs, including chemodrug resistance and self-renewing capacity, cause relapse. Moreover, the higher migration, invasion, and differentiation abilities of CSCs cause tumor metastasis. The Warburg effect is a phenomenon in which malignant cancer cells exhibit abnormal metabolic phenotypes. Normally, cells derive energy from aerobic metabolism because of its efficient ATP production, which requires oxygen. In contrast to malignant cells, cancer cells derive energy from enhanced aerobic glycolysis. The enzyme lactate dehydrogenase A (LDHA) catalyzes the interconversion of pyruvate and lactate. Thus, it is a key enzyme in glycolysis and anaerobic metabolism. A previous study showed that higher LDHA expression is correlated with poorer survival, higher tumor growth, and induction of CSC properties. However, the role of LDHA in nonsmall cell lung cancer (NSCLC) has not been reported, and the association between LDHA and CSC properties remains unclear. Thus, this study determined the role of LDHA in NSCLC progression.
First, through immunohistochemical staining, we observed higher LDHA expression in patients with late-stage NSCLC. We also found that LDHA expression was significantly increased in patients with lymph node metastasis. Furthermore, patients with higher Oct4 expression had higher LDHA expression, indicating the correlation between Oct4, a CSC marker, and LDHA expression. Moreover, based on the analysis of two databases, higher LDHA expression was associated with poorer survival and higher Oct4 expression. The aforementioned results indicated that high LDHA and Oct4 expression is associated with poor survival and late staging. Second, we investigated the role of LDHA in the NSCLC cell lines H1299 and A549 by using the lentivirus shRNA system to inhibit LDHA expression. The result revealed that LDHA inhibition reduced the proliferation and migration of H1299 and A549 cells. Furthermore, analyses of H1299-driven tumor spheroids showed that the downregulation of LDHA decreased the expression of CSC-associated markers, such as Oct4, Sox2, and Nanog, even at RNA and protein levels. Thus, LDHA inhibition reduced the sphere formation, migration, and invasion of CSCs.
Altogether, these findings indicated that LDHA can promote NSCLC progression and CSC properties. Thus, targeting the metabolism of CSCs may provide a novel therapeutic strategy for lung cancer. However, the metabolic mechanisms underlying the modulation of CSCs and their microenvironment, including chemokines and receptors, remain unknown.
目錄
誌謝 i
摘要 iii
Abstract v
目錄 vii
導論 Introduction 1
實驗目的Aim 14
材料與方法 Materials and methods 15
實驗方法 Experiment Methods 28
實驗結果 Results 44
討論 Discussion 53
參考文獻 Reference 56
實驗圖表 60
附錄 75
1. Siegel RL, Miller KD, Jemal A. CA Cancer J Clin 2015;65:5-29.Cancer statistics, 2015.
2. Roy S. Herbst MD, Ph.D., John V. . The new england journal of medicine 2008.Lung Cancer.
3. Arrieta O, Villarreal-Garza C, Zamora J, Blake-Cerda M, de la Mata MD, et al. Radiat Oncol 2011;6:166.Long-term survival in patients with non-small cell lung cancer and synchronous brain metastasis treated with whole-brain radiotherapy and thoracic chemoradiation.
4. Blanco R, Iwakawa R, Tang M, Kohno T, Angulo B, et al. Hum Mutat 2009;30:1199-206.A gene-alteration profile of human lung cancer cell lines.
5. Fang B, Mehran RJ, Heymach JV, Swisher SG. Chinese Journal of Cancer 2015;34.Predictive biomarkers in precision medicine and drug development against lung cancer.
6. Perlikos F, Harrington KJ, Syrigos KN. Crit Rev Oncol Hematol 2013;87:1-11.Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review.
7. Travis WD, Brambilla E, Riely GJ. J Clin Oncol 2013;31:992-1001.New pathologic classification of lung cancer: relevance for clinical practice and clinical trials.
8. Kellar A, Egan C, Morris D. Biomed Res Int 2015;2015:621324.Preclinical Murine Models for Lung Cancer: Clinical Trial Applications.
9. Chan BA, Hughes BG. Transl Lung Cancer Res 2015;4:36-54.Targeted therapy for non-small cell lung cancer: current standards and the promise of the future.
10. Cheng L, Alexander RE, Maclennan GT, Cummings OW, Montironi R, et al. Mod Pathol 2012;25:347-69.Molecular pathology of lung cancer: key to personalized medicine.
11. Stacy J. UyBico MCCW, MD • Robert D. Suh, MD • Nanette H. Le, DO • Kathleen Brown, MD • Mayil S. Krishnam. 2010.Lung Cancer Staging Essentials: The New TNM Staging System and Potential Imaging Pitfalls1.
12. Mirsadraee S, Oswal D, Alizadeh Y, Caulo A, van Beek E, Jr. World J Radiol 2012;4:128-34.The 7th lung cancer TNM classification and staging system: Review of the changes and implications.
13. Lung Cancer: Targets and Therapy 2010.Drug resistance in lung cancer.
14. Sculier JP, Moro-Sibilot D. Eur Respir J 2009;33:915-30.First- and second-line therapy for advanced nonsmall cell lung cancer.
15. Park K, Tan E-H, O'Byrne K, Zhang L, Boyer M, et al. The Lancet Oncology 2016;17:577-89.Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial.
16. Zarogoulidis K, Zarogoulidis P, Darwiche K, Boutsikou E, Machairiotis N, et al. J Thorac Dis 2013;5 Suppl 4:S389-96.Treatment of non-small cell lung cancer (NSCLC).
17. Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, et al. J Thorac Oncol 2015;10:S1-63.Molecularly targeted therapies in non-small-cell lung cancer annual update 2014.
18. Teixido C, Karachaliou N, Gonzalez-Cao M, Morales-Espinosa D, Rosell R. Cancer Biol Med 2015;12:87-95.Assays for predicting and monitoring responses to lung cancer immunotherapy.
19. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, et al. Br J Cancer 2010;102:789-95.Hypoxia inducible factors in cancer stem cells.
20. Medema JP. Nat Cell Biol 2013;15:338-44.Cancer stem cells: the challenges ahead.
21. Long V. Nguyen RV, Peter Dirks and Connie J. Eaves. NATURE REVIEWS 2012.Cancer stem cells: an evolving concept.
22. Salama R. Journal of Stem Cell Research & Therapy 2013;01.Lung Cancer Stem Cells: Current Progress and Future Perspectives.
23. Templeton AK, Miyamoto S, Babu A, Munshi A, Ramesh R. Stem Cell Investig 2014;1:9.Cancer stem cells: progress and challenges in lung cancer.
24. Beck B, Blanpain C. Nat Rev Cancer 2013;13:727-38.Unravelling cancer stem cell potential.
25. Knoblich JA. Nat Rev Mol Cell Biol 2010;11:849-60.Asymmetric cell division: recent developments and their implications for tumour biology.
26. Csermely P, Hodsagi J, Korcsmaros T, Modos D, Perez-Lopez AR, et al. Semin Cancer Biol 2015;30:42-51.Cancer stem cells display extremely large evolvability: alternating plastic and rigid networks as a potential Mechanism: network models, novel therapeutic target strategies, and the contributions of hypoxia, inflammation and cellular senescence.
27. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, et al. Nat Rev Drug Discov 2009;8:806-23.Tumour-initiating cells: challenges and opportunities for anticancer drug discovery.
28. Kise K, Kinugasa-Katayama Y, Takakura N. Adv Drug Deliv Rev 2016;99:197-205.Tumor microenvironment for cancer stem cells.
29. Quail DF, Joyce JA. Nat Med 2013;19:1423-37.Microenvironmental regulation of tumor progression and metastasis.
30. Fan YL, Zheng M, Tang YL, Liang XH. Oncol Lett 2013;6:1174-80.A new perspective of vasculogenic mimicry: EMT and cancer stem cells (Review).
31. Vinogradov S, Wei X. Nanomedicine (Lond) 2012;7:597-615.Cancer stem cells and drug resistance: the potential of nanomedicine.
32. Vander Heiden MG, Cantley LC, Thompson CB. SCIENCE 2009;324:1029-33.Understanding the Warburg effect: the metabolic requirements of cell proliferation.
33. Coady MJ, Wallendorff B, Bourgeois F, Lapointe JY. Am J Physiol Cell Physiol 2010;298:C124-31.Anionic leak currents through the Na+/monocarboxylate cotransporter SMCT1.
34. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, et al. Cancer Res 2004;64:3892-9.Akt stimulates aerobic glycolysis in cancer cells.
35. Sven Gottschalk CH, 1, Nora Anderson SGE, 3, and, Natalie J. Serkova1. Clinical Cancer Research 2004.Imatinib (STI571)-Mediated Changes in Glucose Metabolism in Human Leukemia BCR-ABL–Positive Cells.
36. Nolop KB, Rhodes CG, Brudin LH, Beaney RP, Krausz T, et al. Cancer 1987;60:2682-9.Glucose utilization in vivo by human pulmonary neoplasms.
37. Feng W, Gentles A, Nair RV, Huang M, Lin Y, et al. Stem Cells 2014;32:1734-45.Targeting unique metabolic properties of breast tumor initiating cells.
38. Liu PP, Liao J, Tang ZJ, Wu WJ, Yang J, et al. Cell Death Differ 2014;21:124-35.Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway.
39. Song K, Kwon H, Han C, Zhang J, Dash S, et al. Oncotarget 2015;6:40822-35.Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by MIR-122.
40. Yuen1 CA, SAAJT, 2,3 , Maheedhara R Guda1 & Kiran K Velpula*,1,2. CNS Oncol 2016.Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept.
41. Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, et al. Proc Natl Acad Sci U S A 2014;111:3110-5.Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology.
42. Zhou Y, Zhou Y, Shingu T, Feng L, Chen Z, et al. J Biol Chem 2011;286:32843-53.Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis.
43. Menendez JA, Joven J, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, et al. Cell Cycle 2013;12:1166-79.The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells.
44. Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ. Brain Pathol 2016;26:3-17.The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor.
45. Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, Ameneiros-Rodriguez E, Donapetry-Garcia C, et al. Mitochondrion 2014;17:76-100.Comprehensive review on lactate metabolism in human health.
46. Crane CA, Austgen K, Haberthur K, Hofmann C, Moyes KW, et al. Proc Natl Acad Sci U S A 2014;111:12823-8.Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients.
47. Jiang F, Ma S, Xue Y, Hou J, Zhang Y. Biochem Biophys Res Commun 2016;469:985-92.LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer.
48. Daniele S, Giacomelli C, Zappelli E, Granchi C, Trincavelli ML, et al. Sci Rep 2015;5:15556.Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death.
49. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, et al. J Clin Invest 2008;118:3930-42.Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice.
50. Jin L, Chun J, Pan C, Alesi GN, Li D, et al. Oncogene 2017;36:3797-806.Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis.
51. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, et al. Cell Metab 2016;24:657-71.LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top