跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀翔和
研究生(外文):Shyang-her Chi
論文名稱:功能梯度材料之力學分析
論文名稱(外文):Mechanics Analysis of Functionally Graded Materials
指導教授:張燕玲張燕玲引用關係
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:220
中文關鍵詞:功能梯度材料複合材料破壞力學板殼力學多層材料濺鍍層應力強度因子有限元素法s型功能梯度材料濺鍍層
外文關鍵詞:Functionally graded materialscompositesfrecture mechanicsplate mechanicsmulti-layered coatingstress intensity factorfinite element methodSigmoid FGM (S-FGM) coating
相關次數:
  • 被引用被引用:13
  • 點閱點閱:901
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以彈性力學的觀念探討功能梯度材料(FGM)之力學行為。研究中分為兩大部分:第一部分是以有限元素之數值方法探討FGM濺鍍層與多層梯度濺鍍層之破壞特性,第二部分則推導FGM板分別在受到橫向載重以及純彎矩載重下之理論解,並以有限元素法驗證。在兩部分之分析當中,所用之材料為冪次函數、S型函數及指數函數之FGM。
在第一部分之FGM破壞研究中,考慮濺鍍層-基材之複合材料,基材為均質材料,但濺鍍層則使用FGM材料或多層梯度材料。分析裂縫由濺鍍層表面產生後,以垂直界面的方向延伸時之破壞行為。研究發現濺鍍層使用FGM可降低複合材料自由邊界上,由材料互相約束所產生之內應力。對於濺鍍層勁度高於基材勁度之複合材料,若濺鍍層使用FGM,則材料之分佈消除了兩材料界面上之應力強度異點之現象,當裂縫尖端接近兩材料之界面時,應力強度因子快速下降,因此阻抗裂縫之延伸。對於濺鍍層勁度低於基材勁度之複合材料而言,FGM濺鍍層則像一座橋樑將濺鍍層與基材之材料差異連接起來,幫助裂縫往基材內部延伸。
第二部分FGM板之研究,主要推導簡支矩形FGM板受到橫向載重以及純彎矩載重下之級數解,假設板為中等厚度,且厚度為均勻之板。藉著將外力化為Fourier級數,FGM板之全解則以三角函數表之。此級數解並以有限元素法之數值解比較之。結果顯示:FGM板中性面之位置隨著修正Dunders參數之增加而向受壓側移動。另外,由FGM板之應力分佈曲線顯示,FGM可將板邊緣上所產生之最大撓曲張應力轉移至板內部,部分由內部材料承受,此結果表示FGM相對提高材料之抗拉性,而三種不同FGM中又以S型FGM有最佳之效果。
The object of this thesis mainly investigates the mechanics behaviors of the functionally graded materials (FGM) based on the elastic concept. There are two parts in this thesis. Part one is to study the fracture behaviors of cracked coating-substrate composite with FGM and multi-layered coatings by the finite element method. Part two is to derive the analytical solutions for FGM plates subjected to transverse loads and the pure bending. The analytical solutions are proved by the numerical solutions obtained by finite element method. In both part one and part two, the variation of the material properties in FGMs is defined by the volume fraction of constitute material based on power-law function, sigmoid function, or exponential function.
In part one, cracking in a caoting-substrate composite is considered. The material of the substrate of the composite is assumed to be homogeneous, while the coating uses the FGMs or multi-layered materials. The fracture behaviors of a crack appearing at the surface of the coating and propagating with the direction perpendicular to the interface between the coating and substrate are analyzed. Results showed that the use of FGMs coating can reduce the stresses due to the material mismatch on the free edge of the composite. For the case that the coating is stiffer than the substrate, if the coating uses FGMs, the continuous material on the interface eliminates the stress singularity and hence the stress intensity factors rapidly decrease when the crack tip arrives at the interface of the coating and substrate. Consequently, the crack propagation is arrested. However, for the case that the coating is softer than the substrate, the FGM coating behaves like a bridge to connect the mismatch of the coating and substrate and helps the crack further propagating into the substrate.
In the analysis of FGM plates, the complete solutions of rectangular, simple-supported, FGM plates under transverse loads and pure bending are derived. The FGM plates are assumed to have middle thickness and uniform thickness. By expressing the external load into Fourier series, the complete solutions of the FGM plates are found in terms of trigonometric functions. The complete solutions are compared with the numerical results of finite element method. Results revealed that the location of the neutral surface of the FGM plate moves to the compressive part of the plate as the modified Dundurs’ parameters increase. Moreover, the maximum bending stresses are inside the FGM plates, instead of in the upper or lower edges of the homogeneous isotropic plates. This phenomenon indicated that the maximum tensile stresses can be born impartially by the material inside the FGM plates and hence the bending resistance is increased. Among the P-, S-, and E-FGM plates, the S-FGM performs better than the other two FGMs.
第一章 緒論 ………………………………………………………………………1
1.1 研究目的 ……………………………………………………………………...2
1.2 研究內容 ……………………………………………………………………...3
第二章 功能梯度複合材料 ……………………………………………………5
2.1 功能梯度材料設計基礎理論 ………………………………………………...6
2.1.1 混合法則(Rule of Mixture Theories) …………….……………………….7
2.1.2 平均場理論(Mean Field Theories) ……………….………………………7
2.2 功能梯度材料之熱機械力學及基礎破裂理論 …………………………….10
2.2.1梯度材料製備所引入之應力 …………………………………………10
2.2.2邊界效應與應力之奇異場 ……………………………………………...13
2.2.3非均質固體破壞力學 …………………………………………………...16
2.2.4 梯度材料中裂縫成長之驅動力 ………………………………………..18
2.3 功能梯度材料之製備 ……………………………………………………….21
2.3.1 功能梯度材料之構造法製備 …………………………………………..23
2.3.1.1 固態粉末致密化製備 ……………………………………………...23
(A) 傳統粉末固結 ………………………………………………………23
(i) 粉末預製塊之製備 ………………………………………………..25
(ii) 粉末預製塊之致密化 …………………………………………….27
(B) 自蔓延高溫燃燒合成法(Self-propagating Hhigh-temperature Synthesis, SHS)(粉末反應法) ……………………………………….27
2.3.1.2 塗層法 ……………………………………………………………...28
(A) 等離子噴塗成型(Plasma Spray Forming) …………………………..28
(B) 雷射熔覆法(Laser Cladding) ………………………………………..30
(C) 薄膜沉積法(Film Deposition Processes) ……………………………30
(i) 物理氣相沉積(PVD法) ……………………………………………31
(ii) 化學氣相沉積(CVD法) …………………………………………..32
2.3.2 功能梯度材料之傳輸製備方法 ………………………………………..33
2.3.2.1 物質傳輸製備(Mass Transport Processes) …………………………34
2.3.2.2離心分離法和沉降法(Centrifugal Separation and Settling) ………..34
2.3.2.3宏觀偏析原理(Macrosegregation Processes) ……………………….35
2.3.3 小結 ……………………………………………………………………..36
2.4 FGM之力學相關研究文獻 ……………………………………………….36
2.5 結語 …………………………………………………………………………39
第三章 功能梯度材料板承受橫向載重之力學分析 …………………...43
3.1 FGM板之基本理論 ………………………………………………………….43
3.1.1平衡方程式 ………………………………………………………….......45
3.1.2 FGM板之應變-位移關係方程式 …………………………………….46
3.1.3 FGM板之應力-應變方程式及協和方程式 …………………………47
3.2 簡支矩形FGM板之理論解 ……………………………………………….51
3.3 冪次方函數型FGM板 …………………………………………………….56
3.3.1冪次方函數型FGM板之理論解 ………………………………………56
3.3.2 冪次函數型FGM板之數值分析 ………………………………………60
3.3.2.1 收斂測試 …………………………………………………………….62
3.3.2.2 修正Dundurs’參數 >0, =0 之問題 ………………………65
(A) 均佈載重 ……………………………………………………………65
(B) 線載重 ………………………………………………………………..67
(C) 點載重 ………………………………………………………………..71
3.3.2.3 修正Dundurs’參數 >0, 之問題 …………………..74
(A) 均佈載重 …………………………………………………………….74
(B) 線載重 ……………………………………………………………….76
(C) 點載重 ………………………………………………………………..79
3.4 S型函數FGM板 ……………………………………………………………83
3.4.1 S型函數FGM板之理論解 …………………………………………….83
3.4.2 S-FGM板之數值分析 …………………………………………………86
4.4.2.1 修正Dundurs’參數 >0, =0之問題 ………………………..87
(A) 均佈載重 …………………………………………………………..87
(B) 線載重 ……………………………………………………………..90
(C) 點載重 ……………………………………………………………..93
3.4.2.2 修正Dundurs’參數 >0, 之問題 ……………………95
(A) 均佈載重 …………………………………………………………..95
(B) 線載重 ……………………………………………………………..97
(C) 點載重 ……………………………………………………………...100
3.5指數函數型FGM板(E-FGM) ……………………………………………..103
3.5.1 E-FGM板之理論推導 …………………………………………………103
3.5.2 E-FGM板之數值分析 …………………………………………………107
3.5.2.1 修正Dundurs’參數 >0, =0之問題 ………………………...107
(A) 均佈載重 …………………………………………………………..108
(B) 線載重 ……………………………………………………………...110
(C) 點載重 ……………………………………………………………..114
3.5.2.2 修正Dundurs’參數 >0, 之問題 …………………..115
(A) 均佈載重 …………………………………………………………..115
(B) 線載重 ……………………………………………………………..117
(C) 點載重 ……………………………………………………………..120
3.6 S-FGM、S-FGM與S-FGM之力學行為比較 ……………………………123
(A) 均佈載重 …………………………………………………………..123
(B) 線載重 ……………………………………………………………..124
(C) 點載重 ………………………………………………………….…..127
第四章 功能梯度材料板於純彎矩作用之力學分析 ……………….....129
4.1 FGM板受純彎矩作用之理論解 …………………………………………..129
4.1.1 基本解 …………………………………………………………………132
4.1.2 一般彎矩載重之解 ……………………………………………………136
4.2 FGM板受純彎矩作用之數值分析 ………………………………………137
4.2.1 修正Dundurs參數 , 之問題 …………………………..137
4.2.2 修正Dundurs參數 , 之問題 ……………………..148
4.3 綜合討論 …………………………………………………………………...159
第五章 功能梯度材料及多層材料之破壞分析 ………………………161
5.1 理論基礎 …………………………………………………………………162
5.1.1 相異材料界面之應力異點現象 ………………………………………164
5.1.2 多層材料含裂縫之應力強度因子及能量釋放率 ……………………169
5.1.3 功能梯度材料之基本理論 ……………………………………………..71
(A) S-FGM …………………………………………………………………172
(B) P-FGM …………………………………………………………………173
(C) E-FGM …………………………………………………………………175
5.1.4 功能梯度材料含裂縫之應力強度因子及能量釋放率 ………………176
5.1.5 修正Dundurs參數 ……………………………………………..177
5.2 數值分析 …………………………………………………………………180
5.2.1 問題描述 ………………………………………………………………180
5.2.2 收斂測試及使用公式之測試 …………………………………………181
(A) 收斂測試 ……………………………………………………………181
(B) 使用公式之測試 ……………………………………………………182
5.2.2 濺鍍層使用多層材料之裂縫問題分析 ………………………………183
(A) 單層濺鍍層含垂直裂縫之問題 ……………………………………184
(B) 多層濺鍍層含垂直裂縫之問題 ……………………………………186
(C) 單層材料濺鍍層及多層材料濺鍍層之SIF行為比較 ………………189
5.2.3 S-FGM含裂縫問題之分析 ………………………………………….191
5.2.3.1 裂縫尖端位在濺鍍層內 ………………………………………….192
(A) 修正Dundurs參數 >0, =0 ……………………………………192
(B) 修正Dundurs參數 <0, =0 ……………………………………194
5.2.3.2 裂縫貫穿濺鍍層,並延伸入基材內,且外力均佈作用在裂縫表面………………………………………………………………….195
(A) 修正Dundurs參數 >0, =0 ……………………………………196
(B) 修正Dundurs參數 <0, =0 ………………………………….196
5.2.4 裂縫尖端位於基材內,外力只均佈作用在濺鍍層之裂縫表面 ……197
(A) 修正Dundurs參數 >0, =0 ………………………………….197
(B) 修正Dundurs參數 <0, =0 …………………………………..200
5.2.5 P-FGM含裂縫問題之分析 ………………………………………….200
(A) 修正Dundurs參數 >0, =0 ………………………………….201
(B) 修正Dundurs參數 <0, =0 ………………………………….203
5.2.5 E-FGM含裂縫問題之分析 ………………………………………….205
(A) 修正Dundurs參數 >0, =0 ………………………………….206
(B) 修正Dundurs參數 <0, =0 ………………………………….207
5.3 討論與比較 ………………………………………………………………209
第六章 結論與建議 …………………………………………………………..213
6.1 結論 ………………………………………………………………………...213
6.2 建議 ………………………………………………………………………...214
參考文獻 ………………………………………………………………………...215
1. D. Hull and T. W. Clyne, An Introduction to Composite Materials, 2nd Edition, Cambridge University Press (1996).
2. T. W. Clyne and P. J. Withers An Introduction to Metal-Matrix Composites, Cambridge University Press (1993).
3. S. Suresh and A. Mortensen, Fundamentals of Functionally Graded Materials, Cambridge University Press (1998).
4. V. L. Hein and F. Erdogan, “Stress Singularities in a Two-Material Wedge”, International Journal Fracture Mechanics, Vol.7, pp. 317-330 (1971).
5. 張燕玲 與 紀翔和,「函數梯度材料之殘留應力分析」,中國土木水利工程學刊, 第十三卷, 第一期,pp. 1-10 (2001).
6. Y. D. Lee and F. Erdogan, “Residual / Thermal Stresses in FGM and Laminated Thermal Barrier Coatings”, International Journal of Fracture, Vol. 69, pp. 145-165 (1995).
7. M. F. Kanninen and C. H. Popelar, Advanced Fracture Mechanics, Oxford University Press (1985).
8. N. Konda and F. Erdogan, “The Mixed Mode Crack Problem in a Non-homogeneous Elastic Medium”, Engineering Fracture Mechanics, Vol. 47, pp. 533-545 (1994).
9. Z. H. Jin and N. Noda, “Crack Tip Singular Fields in Non-homogeneous Materials”, ASME Jounral of Applied Mechanics, Vol. 61, pp. 738-740 (1994).
10. Zhi-He Jin and Naotake Noda, “Transient Thermal Stress Intensity Factors for A Crack in a Semi-infinite Plate of Functionally Gradient Material”, International Journal Solids and Structures, Vol. 31, No. 2, pp. 203-218 (1994).
11. Z. H. Jin and R. C. Batra “Some Basic Fracture Mechanics Concepts in Functionally Graded Materials”, Journal of Mechanic Physics Solids, Vol. 44, No. 8, pp. 1221-1235 (1996).
12. S. H. Chi and Y. L. Chung, “Cracking Coating-Substrate Composites with Multi-layered and FGM Coatings”, Engineering Fracture Mechanics (in press) (2002).
13. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, Second Edition, McGraw-Hill, New York, (1959).
14. Pei Gu and R. J. Asaro, “Cracks in Functionally Graded Materials”, International Journal of Solids and Structure. Vol. 34, pp.1-17 (1997).
15. Pei Gu and R. J. Asaro: “Crack Deflection in functionally graded material” International Journal Solids Structure, Vol.34, pp. 2085-3098 (1997).
16. O. Kolednik and S. Suresh, “ Porc, 4th. International Conference on Functionally Graded Materials, to be held at Dresden”, Germany, October (1998).
17. F. Erdogan and B. H. Wu, “Crack Problems in FGM Layers under Thermal Stress” , Journal of Thermal Stress, Vol. 19, pp. 237-265 (1996).
18. Z. H. Jin and Glaucio H. Paulino, “Transient Thermal Stress Analysis of an Edge Crack in a Functionally Graded Material”, International Journal of Fracture, Vol.107, pp. 73-98 (2001).
19. J. Woo and S. A. Meguid, “Nonlinear Analysis of Functionally Graded Plates and Shallow Shells”, International Journal of Solids and Structures, Vol. 38, pp. 7409-7421 (2001).
20. X. Q. He, T. Y. Ng, S. Sivashanker and K. M. Liew, “Active Control of FGM Plates with Integrated Piezoelectric Sensors and Actuators”, International Journal of Solids and Structures, Vol. 38, pp. 1641-1655 (2001).
21. G.. BAO and L. Wang, “Multiple Cracking in Functionally Graded Ceramic/ Metal Coatings”, International Journal Solids and Structures, Vol. 32, No. 19, pp. 2853-2871 (1995).
22. Naotake Noda and Zhi He Jin, “Thermal Stress Intensity Factors for a Crack in a Strip of a Functionally Gradient Material”, International Journal Solids and Structures, Vol. 30, No. 8, pp.1039-1056 (1993).
23. G. H. Paulino, A. C. Fannjiang and Y. S. Chan, “Gradient Elasticity Theory for a Mode III Crack in a Functionally Graded Material”, Materials Science Forum Vol. 308-311, pp.971-976 (1999).
24. G H. Paulino and Z. H. Jin, “A Crack in a Viscoelastic Functionally Graded Material Layer Embedded Between Two Dissimilar Homogeneous Viscoelastic Layers-Antiplane Shear Analysis”, International Journal of Fracture, Vol. 111, pp. 283-303 (2001).
25. 紀翔和與張燕玲「濺鍍層使用S型功能梯度材料之龜裂研究」,中華民國力學期刊, 第十八卷, 第一期, pp.41-53 (2002).
26. 徐千軍與余壽文 「梯度功能圖層的剝落現象分析與梯度分佈的優化」,複合材料學報,第十五卷,第四期 (1998).
27. J. F. Bartolome, J. S. Moya, and J. Requena, “Fatigue Crack Growth Behavior in Mullite/Alumina Functionally Graded Ceramics”, Journal of American Ceramic Socie, Vol. 81, No. 6, pp.1502-1508 (1998).
28. 楊久俊, 賈曉林, 譚傳, 管宗甫, 海然, 吳科如,「水泥基梯度複合材料物理力學性能的初步研究」,新型建築材料 (2001).
29. 儲成林, 尹鍾大, 朱景川, 王世棟,「HA-Ti生物功能梯度材料微觀組織及熱應力複合特性」, 無機材料學報,Vol. 14, No. 5 (1999).
30. M. R. Gecit, “Fracture of a Surface Layer Bonded to a Half Space,” International Journal of Engineering Science, Vol. 17, pp. 287-295 (1979).
31. M. C. Lu, and F. Erdogan, “Stress Intensity Factors in Two Bonded Elastic Layers Containing Cracks Perpendicular to and on the Interface-I. Analysis”, Engineering Fracture Mechanics, Vol. 18, No. 3, pp. 491-506 (1983).
32. T. Ye, Z. Suo, and A. G. Evans, “Thin Film Cracking and the Roles of Substrate and Interface”, International Journal of Solids and Structures, Vol. 29, No. 21, pp. 2639-2648 (1992).
33. J. L. Beuth, “Cracking of Thin Bonded Films in Residual Tension”, International Journal of Solids and Structures, Vol. 29, No. 13, pp. 1657-1675 (1992).
34. C. Atkinson, and R. D. List, “Steady State Crack Propagation into Media with Spatially Varying Elastic Properties”, International Journal of Engineering Science, Vol. 10, pp. 717-730 (1978).
35. R. S. Dhaliwal, and B. M. Singh, “On the Theory of Elasticity of a Non-homogeneous Medium”, Journal of Elasticity, Vol. 8, pp.211-219 (1978).
36. F. Delale, and F. Erdogan, “The Crack Problem for a Non-homogeneous Plane”, ASME, Journal of Applied Mechanics, Vol. 50, pp. 609 -614 (1983).
37. O. Jorgensen, A. Horsewell, B. F. Sorensen, and P. Leisenser, “The Multilayered Chromium Coatings”, Acta metal. Materialia, Vol. 43, No. 11, pp. 3991-4000 (1995).
38. P. Gu, and R. J. Asaro, “Crack Deflection in Functionally Graded Materials”, International Journal of Solids and Structures, Vol. 34, pp. 3085-3098 (1997).
39. H. Cai, and G., Bao, “Crack Bridging in Functionally Graded Coatings”, International Journal of Solids and Structures, Vol. 35, pp. 701-717 (1998).
40. T. S. Cook, F. Erdogan, “Stresses in Bonded Materials with a Crack Perpendicular to the Interface”. International Journal of Engineering Science vol. 10, pp. 677-697 (1972).
41. J. Dundurs, “Effect of Elastic Constants on Stress in a Composite under Plane Deformation”, Journal of composite material, 1:310 (1967).
42. M. Niino, and S. Maeda, “Recent Development Status of Functionally Gradient Materials,” I.S.I.J. International, Vol. 30, pp. 699-703 (1990).
43. F. Nogata, “Learning about Design Concepts from Natural Functionally Graded Materials”, Composites and Functionally Graded Materials, T. S. Srivatsan et al. (ed.), MD-Vol. 80, ASME 1997, pp. 11-18 (1997).
44. P. Kwon, and M. Crimp, “Automating the Design Process and Powder Processing of Functionally Gradient Materials”, Composites and Functionally Graded Materials, T. S. Srivatsan et al. (ed.), MD-Vol. 80, ASME 1997, pp. 73-88 (1997).
45. K. A. Khor, Y. W. Gu, and Z. L. Dong, “Plasma Spraying of Functionally Graded NiCoCrAlY/Yttria Stabilized ZrO2 Coating Using Composite Powders”, Composites and Functionally Graded Materials, T. S. Srivatsan et al. (ed.), MD-Vol. 80, ASME 1997, pp. 89-105 (1997).
46. L. Schovanec, and J. R. Walton, “On the Order of Stress Singularity for an Antiplane Shear Crack at the Interface of Two Bonded Inhomogeneous Elastic Materials”, ASME, Journal of Applied Mechanics, Vol. 55, pp. 234-236 (1988).
47. 郭嘉龍,「半導體封裝工程」,全華科技圖書股份有限公司,(2000)。
48. T. Suga, G. Elssner, and S. Schmauder, “Composite Parameters and Mechanical Compatibility of Material Joints”, Journal of Composite Materials, Vol. 22, pp. 917~934 (1988).
49.張永青,「功能梯度材料內裂縫延伸方向的研究」,國立台灣科技大學營建工程技術研究所碩士論文,(2002).
50. Y. L. Chung and C. F. Pon, “The boundary element analysis of the cracked film-substrate medium”, International Journal of Solids and Structures, vol. 38, pp. 75-90, (2001).
51. O. Kesler, M. Finot, S. Suresh and S. Sampath, “Determination of Processing — Induced Stresses and Properties of Layered and Graded Coatings: Experimental Method and Results for Plasma — Sprayed Ni-Al2O3”, Acta Materialia, Vol. 45, pp. 3123-3134 (1997).
52. E. D. Norman, Mechanical Behavior of Materials, Second Edition, Prentice Hall International, Inc, USA (1999).
53. Y. G. Jung, S. C. Choi, C. S. Oh and U. G. Paik, “Residual Stress and Thermal Properties of Zirconia/Metal (nickel, stainless stell 304) Functionally Graded Materials Fabricated by Hot Pressing”, Journal of Material Science, Vol. 32, pp. 3841-3850, (1997).
54. M. Finot, S. Suresh, S. Sampath and C. Bull, Material Science and Engineering, Vol. 205A, pp. 59-71, (1996).
55. 莊達人,「VLSI製造技術」,第三版,高立圖書有限公司,(1996)。
56. A. S. Kim, S. Suresh and C. F. Shin, “Plasticity Effects on Fracture Normal to Interfaces with Homogeneous and Graded Compositions”, International Journal of Solids and Structure, Vol. 34, pp. 3415-3432, (1997).
57. K. Dollmeier, B. Ilschner and W. Thiele, Third International Symposium on Structural and Functional Gradient Materials, Proc. Conf. Lausanne, Switzerland, (1994).
58. N. Cherradi, K. Dollmeier and B. Ilschner, Ceramic Transactions. Vol. 34, Functionally Graded Materials, Proc. Conf. San Francisco, (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top