1.于鎮煥 (1996),「輔助生殖醫學科技」,行政院衛生署國民健康局人口與健康調查研究中心,7卷,134期。
2.王懷麟 (2004),人工生殖中之醫病關係初探,私立長庚大學醫務管理學研究所碩士論文。3.江宏志 (2003),運用基因演算法建構疾病預測模型之研究-以尿路結石疾病預測為例,國立台灣大學商學研究所,博士論文。4.李博智 (2002),資料探勘在慢性病預測模式之建構,私立元智大學資訊管理學系,碩士論文。5.李文瑞 (2004),運用基因演算法建構疾病早期診斷模型之研究-以糖尿病前期之診斷為例,私立輔仁大學資訊管理學系,碩士論文。6.李從業、張昇平、陳嘉琦 (1997),不孕夫婦的困擾程度、壓力感受及因應策略的比較,護理研究,5 (5),425–437。7.李茂盛 (1997),「囊胚期胚胎植入術與植入前胚胎診斷」,行政院衛生署國民健康局人口與健康調查研究中心,8卷,154期。
8.江漢聲 (1997),「男性不孕治療的最新發展」,行政院衛生署國民健康局人口與健康調查研究中心,8卷,153期。
9.徐怡伶 (2000),接受生殖科技治療不孕夫妻情緒反應及因應行為與其相關因素之探討,中山醫學院醫學研究所,碩士論文。10.張秀玉、郭碧照 (2000),初次與重覆接受試管嬰兒治療不孕夫婦之心理社會反應,護理研究,8 (3),190–201。11.陳順宇 (2004),統計學(四版),華泰書局,台南。
12.陳順宇 (2002),迴歸分析(三版),華泰書局,台南。
13.陳順宇 (2002),實驗設計,華泰書局,台南。
14.陳啟元 (2003),資料探勘技術於健保資料之應用-以醫院門診服務點數預測為例,國立中正大學資訊管理研究所,碩士論文。15.陳章友 (2000),類神經網路在醫學檢驗的應用-以肝病為例,國立交通大學工業工程與管理系,碩士論文。16.陳清清 (1996),「不孕症育性接觸傳染疾病」,行政院衛生署國民健康局人口與健康調查研究中心,4卷,75期。
17.姚志成 (2005),運用資料探勘技術建構脂肪肝預測模式,私立中原大學資訊管理研究所,碩士論文。18.黃上益 (2007),運用資料探勘技術於動脈粥狀硬化預測模式之研究,國立雲林科技大學工業工程與管理研究所,碩士論文。19.蔡益堅 (1997),民國八十五年台灣地區婦女生育狀況調查,台灣省家庭計畫研究所。
20.蔡榮福 (1997),「不孕」,行政院衛生署國民健康局人口與健康調查研究中心,6卷,109期。
21.廖介銘 (2003),決策樹應用於糖尿病之探勘,私立華梵大學資訊管理系,碩士論文。22.趙民德、謝邦昌 (2000),迴歸分析,曉園出版社。
23.趙民德、謝邦昌 (2000),多變量分析,曉園出版社。
24.謝邦昌 (2005) ,資料採礦與商業智慧―SQL Server 2005,鼎茂圖書出版社。
25.Bustillo, M., Stern, J.J., King, D., and Coulam, C.B., (1993). “Serum Progesterone and estradiol concentrations in the early diagnosis of ectopic pregnancy after in vitro fertilization-embryo transfer,” Fertility and Sterility, Vol. 59, pp.668-670.
26.Demyttenaere, K., Bonte, L., and Gheldof, M., (1998). “Coping style and depression level influence outcome of in vitro fertilization.” Fertility and Sterility , Vol. 69, pp.1026-1033.
27.Dursun, D.*, Glenn, W., and Kadam, A., (2004). “Predicting breast cancer survivability: a comparison of three data mining methods,” Artificial intelligence in Medicine 34, 113-127。
28.Fayyad, U.M., (1996). “Data Mining and Knowledge Discovery:Making Sense Out of Data” IEEE Expert, (11:10), pp.20-25
29.Hoover, L., Baker, A., Check, J.H., Lurie, D., and Oshaughnessy, A., (1995) “Evaluation of a new embryo grading system to predict pregnancy rates following in-vitro fertilization,” Gynecologic and Obstetric Investigation, Vol. 40, pp.151-157.
30.Hotelling, H., (1993). “Analysis of a complex of statistical variables into principal components”, J. Educ. Psycho l, pp.417-441.
31.Holland, J.H., (1975). “Adaptation in Natural and Artificial Systems”, The University of Michigan Press, Ann Arbor.
32.Hair, J.F., Aderson R.E., Tatham R.L., and Black, W.C., (1998). Multivariate Data Analysis(4 Ed.), New Jersey:Prentice Hall.
33.Jurisica, I., Mylopoulos, J., Glasgow, J., Shapiro H., and Casper, R.F., (1998). “Case-based reasoning in IVF: prediction and knowledge mining,” Artificial Intelligence in Medicine, Vol. 12, pp 1-24.
34.Johnson, D.R., (1998). Applied Multivariate models for Data Analysis. Duxbury Press.
35.Kunej, T., and Peterlin, B., (2000). “A data mining approach to the development of a diagnostic test for male infertility,” Studies in Health Technology and Informatics, Vol. 77, pp.779-783.
36.Kim, I.C., and Jung, Y.G., (2003). “Using Bayesian Networks to Analyze Medical Data,” Lecture Notes in Computer Science, Vol. 2734, pp.317-327.
37.Mikos, T.K., Pantazis, G.D. Goulis, N. Maglaveras, N.J. Bontis and Papadimas, J., (2005). “The use of Data Mining in the categorization of patients with Azpospermia,” Hormones, Vol. 4, pp 221-225.
38.Papageorgiou, E., Kotsioni, I., and Linos, A., (2005). “Data Mining: A New Technique In Medical Research,” Hormones, Vol. 4, pp 210-212.
39.Quinlan, J.R., (1996). “Improved Use of Continuous Attributes iv C 4.5. ”, Journal of Artificial Intelligence Approach, Vol. 4, pp. 77-90, 1996.
40.Quinlan, J.R., (1986). “Induction of Decision Trees,” Machine Learning 1, pp. 81-106.
41.Quinlan, J.R., (1993). “C4.5:Programs for Machine Learning.”, San Mateo, CA:Morgan Kaufmann.
42.Quinlan, J.R., (1990). “Learning Logical Definitions from Relation,” Machine Learning 5, pp.239-266.
43.Quinlan, J.R., (1995). 「MDL and Categorical Theories(continued).」 In Twelfth International Conference on Machine Learning, ed. A. Prieditis and S. J. Russell, 467-470. San Mateo, CA:Morgan Kaufmann.
44.Sebzalli, Y.M., and Wang, X.Z., (2001). “Knowledge discovery from process operational data using PCA and fuzzy clustering,” Engineering Applications of Artificial Intelligence, Vol. 14, pp.607-616.
45.Sun, W., Chen, J., and Li, J., (2007). “Decision tree and PCA-based fault diagnosis of rotating machinery,” Mechanical Systems And Signal Processing, Vol. 21, pp. 1300-1317.
46.Sung, H.H., and Sang, C.P., (1998). “Application of Data Mining Tools to Hotel Data Mart on the Internet for Database Marking,” Expert Systems with Application, (15), pp.1-31.
47.Sharma, S. (1996). Applied Multivariate Techniques, New York:Wiley.
48.Stamatis, P.E., Aphrodute, G.T., Dimitrios, I.T., Ioannis, D.Z., Athanasios, G.M., Stylianos, E.M., Themistoklis, N.P., and Theodore, D.M., (2002) “A mortality prediction model in diabetic ketoacidosis,” Clinical Endocrinology, 57, pp.595-601.
49.Young M.C.a,*, Seung H.H.a, Kyoung W.C.a, Dong H.L.b and Sun H.J.a, (2001). “Data mining approach to policy analysis in a health insurance domain,” International Journal of Medical Informatics 62, pp.103–111.