跳到主要內容

臺灣博碩士論文加值系統

訪客IP:216.73.216.176
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林哲賢
研究生(外文):Che-hsien Lin
論文名稱:改質絲光沸石對線性烷基苯催化之研究
論文名稱(外文):Study on the Catalysis of Linear Alkylbenzene Over Modified Mordenite
指導教授:王振熙
指導教授(外文):Jenshi B. Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:觸媒穩定性去矽沸石改質絲光沸石烷化中孔沸石
外文關鍵詞:Zeolite modificationDesilicationMesoporous zeoliteMordeniteAlkylationCatalyst stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:626
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
線性烷基苯(LAB)在清潔劑工業生產上,經由苯與長鏈烯烴(e.g., 1-dodecene) 在HF 或AlCl3 催化劑作用下烷化反應生成,需發展對環境友善的製程來取代現行具有腐蝕性的液體酸觸媒,本論文研究中孔絲光沸石在合成LAB 的催化潛力。
中孔沸石的製備是由不同的絲光沸石經後處理而得,中孔絲光沸石孔洞結構的鑑定,係利用X-ray 繞射儀鑑定骨架結構、BET 表面分析儀測其中孔和微孔結構、己烷異構物程式升溫脫附法(TPD)測其12 員環沸石的微孔結構。
絲光沸石經酸和水蒸氣處理,可以部分地去除沸石骨架結構氧化鋁,稱之為脫鋁法,鹼溶液後處理法可以部分地溶解沸石骨架結構氧化矽,稱之為去矽法。鹼溶液處理去矽法的擴孔效果,比經酸或水蒸氣處理的脫鋁法更為有效。
絲光沸石在反應溫度160°C、壓力300psig之條件下,對1-dodecene轉化率和LAB 選擇率可達約98%。Zeolon 絲光沸石經酸和水蒸氣處理後的催化穩定性下降,經鹼處理去矽後則可改善其催化穩定性,此外絲光沸石具有大的中孔,例如:Zeolyst CBV20和CBV30,鹼處理後的絲光沸石樣品,以純的1-dodecene 進料合成LAB,具有出色的催化穩定性。另外絲光沸石經擴孔後,可以改善在含有辛二烯進料的催化穩定性,催化穩定性的改善歸因於擴孔所增加之擴散速率。比較含有不同金屬的絲光沸石,只有含有0.03 wt% Zn 的絲光沸石具有穩定性但較低的LAB 選擇性,含有Pt 和Pd 的絲光沸石並不適用,因為過度的氫化能力導致低的LAB 選擇性。中孔絲光沸石經去矽法處理,表現出對合成LAB 的催化潛力。
Linear alkylbenzene (LAB) is produced in detergent industry by benzene alkylation with long-chain alkene (e.g., 1-dodecene) in the presence of HF or AlCl3 catalyst. In an attempt to develop an environmental benign process in replacing the existing corrosive liquid catalysts, this study explored the catalytic potential of mesoporous mordenite in LAB synthesis.
Mesoporous mordenite samples were prepared from different parent mordenite samples with various post treatments. The effect of post treatment protocol on the catalytic property and also textural property of mordenite was studied by means of X-ray diffraction spectra for zeolite framework structure, BET adsorption isotherm for mesopore and micropore structure, temperature programmed desorption (TPD) of hexane isomers particularly for 12-membered oxygen ring (12MR) micropore.
While acid post treatment or steaming treatment on mordenite could partially break framework AlO4 sites, so-called“dealumination”, base post treatment by alkaline metal solution could partially dissolve framework SiO4 sites, so-called“desilication”. It was found that desilication method by base post treatment is more effective than dealumination either by acid post treatment or/and steaming treatment for enlarging mesopore.
Mordenite can effectively catalyze LAB synthesis giving 1-dodecene conversion and LAB selectivity up to around 98% at reaction temperature 160°C and pressure of 300 psig. It was found that with parent Zeolon mordenite sample, the catalytic stability is deteriorated after dealumination by acid/steam treatment and is improved after desilication by base post treatment. Furthermore, mordenite sample having large mesopores, such as parent mordenite sample Zeolyst CBV20 and CBV30, base treated mordenite samples, possesses excellent catalytic stability in LAB synthesis using pure 1-dodecene feed. In addition, enlarging mesopore can stabilize catalytic activity of mordenite in octadiene containing 1-dodecene feed. The improvement in catalytic stability is attributed to the increasing diffusivity resulting from the enlarged mesopores. In comparison, among various metal containing mordenite samples, only 0.03 wt% Zn incorporated mordenite showed stabilization effect with sacrificing LAB selectivity. Pt and Pd incorporated mordenite were not applicable due to excessive hydrogenation activity giving low LAB selectivity. The mesoporous mordenite prepared by desilication showed catalytic potential in LAB synthesis.
中文摘要I
英文摘要III
誌謝V
目錄VI
圖目錄VIII
表目錄XIII
第一章、前言1
1.1 線性烷基苯的生產與應用1
1.2 中孔洞沸石的應用5
1.3 中孔洞沸石的製備方法6
1.3.1 直接加熱法6
1.3.2 微波輻射合成法6
1.3.3 碳氣凝膠模板劑合成法6
1.3.4 碳黑模板劑合成法6
1.3.5 碳奈米管模板劑合成法7
第二章、文獻回顧8
2.1 苯與十二碳烯反應的 stoichiomertric考量8
2.2 線性烷基苯生產現況及進展9
2.2.1概述9
2.3 沸石15
2.3.1 簡介15
2.3.2 沸石及其孔道結構之簡介17
2.4 絲光(Mordenite)沸石概述20
2.4.1 Mordenite沸石的結構20
2.4.2 絲光沸石的合成22
2.4.3 沸石的改質23
第三章、研究內容27
第四章、實驗方法與步驟28
4.3 反應設備與操作條件28
4.3.1 反應設備28
4.3.2 反應條件28
4.3.3 沸石改質29
4.3.3.1 沸石脫鋁法29
4.3.3.2 沸石去矽法30
4.3.3.3 金屬修飾30
4.4 操作步驟30
4.5 產物分析31
第五章、結果與討論36
5.1 溫度、壓力與空間流速對觸媒活性之影響36
5.2 沸石改質對反應結果之影響42
5.2.1 沸石脫鋁42
5.2.2 沸石去矽48
5.3 雙烯烴對反應之影響54
5.4 金屬之修飾58
5.5 一段式與分段式鹼溶解法65
第六章、結論75
參考文獻76
圖目錄
圖1-1 台灣界面活性劑之產業結構2
圖1-2 沸石烷化觸媒催化反應機制4
圖2-1 合成界面活性劑產量成長圖9
圖2-2 烷基苯生產技術的發展里程碑10
圖2-3 矽氧與鋁氧四面體之結構16
圖2-4 構成沸石結構的二級單元及多面體結構19
圖2-5 sodalite cage的結構19
圖2-6 Mordenite沸石的三度空間孔道20
圖2-7 Mordenite沸石的孔洞大小示意圖21
圖2-8 Mordenite沸石的立體結構21
圖2-9 絲光沸石去鋁化的結構變化圖26
圖4-1 反應器裝置圖32
圖4-2 (a) CM10 (b) ZM7絲光沸石XRD圖譜33
圖4-3 GC分析圖33
圖4-4 CM10和ZM7 27Al MAS NMR光譜圖35
圖5-1 α-十二烯之轉化率與線性烷基苯選擇率隨時間變化圖,P=300 psig,Temp.=120℃,WHSV=4h-1 38
圖5-2 α-十二烯之轉化率與線性烷基苯選擇率隨時間變化圖,P=300 psig,Temp.=160℃,WHSV=4h-1 38
圖5-3 α-十二烯之轉化率與線性烷基苯選擇率隨時間變化圖,P=300 psig,Temp.=200℃,WHSV=4h-1 39
圖5-4 α-十二烯轉化率隨溫度之變化,P=300psig,Temp.=120~200 ℃,WHSV=4h-1 39
圖5-5 α-十二烯選擇率隨溫度之變化,P=300psig,Temp.=120~200 ℃,WHSV=4h-1 40
圖5-6 α-十二烯轉化率隨壓力之變化,P=300~14.7psig,Temp.=160 ℃,WHSV=1.5h-1 40
圖5-7 α-十二烯轉化率隨空間流速之變化,P=300psig,Temp.=160℃,WHSV=2〜8h-1 41
圖5-8 ZM7經脫鋁之XRD圖譜 44
圖5-9 ZM7經不同脫鋁法之XRD圖譜44
圖5-10 ZM7經高溫水蒸氣處理(540℃,100ml/min,3h)之影響,P=300 psig,Temp.=160℃, WHSV=4h-1 45
圖5-11 ZM7經酸處理(6N HCl,80℃,24h) 之影響,P=300psig, Temp.=160℃,WHSV=4h-1 45
圖5-12 ZM7經高溫水蒸氣處理加酸處理之影響,P=300psig, Temp.=160℃,WHSV=4h-1 46
圖5-13不同脫鋁法對α-十二烯之轉化率之影響,P=300psig, Temp.=160℃,WHSV=4h-1 46
圖5-14 ZM7經不同脫鋁法之恆溫吸附曲線圖47
圖5-15 α-十二烯之轉化率-時間圖與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 49
圖5-16 α-十二烯之轉化率-時間圖與線性烷基苯之選擇率-時間圖,( 0.2M) NaOH(aq)處理30分鐘,P=300 psig,Temp.=160℃,WHSV=4h-1 49
圖5-17 α-十二烯之轉化率-時間圖與線性烷基苯之選擇率-時間圖,(0.4 M) NaOH(aq)處理30分鐘,P=300 psig,Temp.=160℃,WHSV=4h-1 50
圖5-18 ZM7經不同濃度的NaOH(aq) 處理30分鐘,α-十二烯之轉化率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 50
圖5-19 ZM7分別經脫鋁與去矽改質,α-十二烯之轉化率-時間比較圖51
圖5-20 ZM7經鹼處理前後恆溫吸附曲線圖51
圖5-21 ZM7的BET孔徑分佈圖52
圖5-22 n-Hexane、3-MP及DMB在ZM7程溫脫附實驗結果53
圖5-23(R10DN),由CM10催化反應之α-十二烯之轉化率-時間圖與線性烷苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 55
圖5-24(R05DN),由CM10催化反應之α-十二烯之轉化率-時間圖與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 55
圖5-25 α-十二烯轉化率隨雙烯烴含量由CM10催化反應之變化,P=300psig,Temp.=160℃,WHSV=4h-1 56
圖5-26(R10DN),由ZM7催化反應之α-十二烯之轉化率-時間圖與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 56
圖5-27(R05DN),由 ZM7催化反應之α-十二烯之轉化率-時間圖與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 57
圖5-28 α-十二烯轉化率隨雙烯烴含量由 ZM7催化反應之變化,P=300 psig,Temp.=160℃,WHSV=4h-1 57
圖5-29(R05DN),由 Pt (IMP,0.03 wt%) / ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 60
圖5-30(R05DN),由 Pd (IMP,0.03 wt%)/ ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 60
圖5-31(R05DN),由Zn (IMP,0.03 wt%)/ ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 61
圖5-32(RO5DN),由不同金屬含浸之ZM7催化反應之α-十二烯轉化率比較圖61
圖5-33(R05DN),由不同金屬含浸之ZM7催化反應之線性烷基苯選擇率比較圖62
圖5-34 (R05DN),由 Pt(IE,0.03 wt%)/ ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 62
圖5-35(R05DN),經Pd(IE,0.03 wt%)/ ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 63
圖5-36(R05DN),由Zn(IE,0.03 wt%)/ ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 63
圖5-37(R05DN),由不同金屬離子交換之ZM7催化反應之α-十二烯轉化率比較圖64
圖5-38(R05DN),由不同金屬離子交換之ZM7催化反應之線性烷基苯選擇率比較圖64
圖5-39 ZM7經不同鹼處理法之XRD圖譜67
圖5-40 CM10經不同鹼處理法之XRD圖譜67
圖5-41(R05DN),經d30*1/CM10催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 68
圖5-42(R10DN,R005DN),由鹼處理之CM10催化反應之α-十二烯轉化率比較圖,P=300 psig,Temp.=160℃,WHSV=4h-1 68
圖5-43 CM10經鹼處理前後恆溫吸附曲線圖69
圖5-44 CM10的BET孔徑分佈圖69
圖5-45 n-Hexane、3-MP及DMB在CM10程溫脫附實驗結果70
圖5-46(R05DN),由02d30*1/ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 71
圖5-47(R05DN),由02d30*2/ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 71
圖5-48(R05DN),由02d15*1/ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 72
圖5-49(R05DN),由02d15*2/ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 72
圖5-50(R05DN),由02d15*3/ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 73
圖5-51(R05DN),由02d15*4/ZM7催化反應之α-十二烯之轉化率與線性烷基苯之選擇率-時間圖,P=300 psig,Temp.=160℃,WHSV=4h-1 73
圖5-52(R05DN),由不同鹼處理法之ZM7催化反應之α-十二烯轉化率比較圖,P=300 psig,Temp.=160℃,WHSV=4h-1 74
表目錄
表1-1 Comparison of HF and Detal linear alkylbenzene3
表2-1 線性烷基苯反應目前已研究觸媒催化性能比較表14
表2-2 沸石發展記事18
表4-1 沸石之實驗代號34
表4-2 反應物之實驗代號35
表5-1 ZM7經脫鋁前後BET分析結果47
表5-2 ZM7經不同濃度鹼處理前後 BET分析結果52
表5-3 ZM7 C6分子程溫脫附實驗結果53
表5-4 CM10經鹼處理前後 BET分析結果70
表5-5 CM10 C6分子程溫脫附實驗結果70
表5-6 ZM7經鹼處理前後 BET分析結果74
中文部份:
[1]申少華,方克明,張術根,“水熱法製備A 型沸石粉體中的聚合生長”,中國粉體技術, vol. 9, pp. 10-13, 2003.
[2]吳榮宗, “工業觸媒概論”,增訂版,國興出版社,1989.
[3]李淑茹,“以絲光沸石進行苯與α-十二烯烷化反應之研究”,國立清華大學化學工程學系碩士論文,(1998).
[4]馬廣偉,葛學貴,黃少雲,“中孔分子篩合成研究發展”,湖北化工,vol.5, pp.1-3, 2002.
[5]張曦,吳為中,溫東輝,李文奇,唐孝炎,“氨氮在天然沸石上的吸附及解吸”,環境化學,vol. 22,pp. 166-171, 2003.
英文部份
[1]A. A. Shaikh, P. N. Joshi, N. E. Jacob, and V. P. Shiralkar, “Direct Hydrothermal Crystallization of High-Silica Large-Port Mordenite”, Zeolites, vol.13, pp. 511-517, 1993.
[2]A. Corma, V. Fornes, M. T. Navarro, and J. Perezpariente,“Acidity and Stability of MCM-4 1 Crystalline Aluminosilicates”, J. Catal., vol. 148, pp. 569-574, 1994.
[3]A. H. Janssen, I. Schmidt, C. J. H. Jacobsen, A. J. Koster, K. P. de Jong“Exploratory study of mesopore templating with carbon during zeolite synthesis”, Microporous Mesoporous Mater., vol.65, pp.599-75, 2003.
[4]C. J. H. Jacobsen, C. Madsen, and J. Houzvicka, “Mesoporous Zeolite Single Crystals”, J. Am. Chem. Soc., vol.122, pp.7116-7117, 2000.
[5]C. Zhang, Q. Liu, Z. Xu, and K. Wan,“Synthesis and Characterization of Composite Molecular Sieves with mesoporous and Microporous Structure from ZSM-5 Zeolites by Heat Treatment”, Microporous Mesoporous Mater., vol.62, pp.157-163, 2003.
[6]D. W. Breck,“Zeolite Molecular Sieves”, Wiley: New York, 1974.
[7]F. Hamidi, A. Bengueddach, F. D. Renzo, and F. Fajula, “Control of Crytal Size and Morphology of Mordenite”, Catal. Lett., vol. 87, pp. 149-152, 2003.
[8]F. Lonyi, and J. Valyon ,“A TPD and IR Study of the Surface Species Formed from Ammonia on Zeolite H-ZSM-5, H-mordenite and H-beta”,Thermochim. Acta,vol.373, pp.53-57, 2001.
[9]He. M. Yuan, L. Zhonghui, and M. Enze,“Acidic and Hydrocarbon Catalytic Properties of Pillared Clay”,Catal. Today, vol.2, pp.321-338, 1988.
[10]I. Schmidt, A. Boisen, E. Gustavsson,“Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals”, Chem. Mater., vol.13, pp.4416-4418, 2001.
[11]IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., vol.31, pp.578, 1972.
[12]J. A. Kocal, B. V. Vora, and T. Imai,“Production of Linear Alkylbenzenes”, Appl. Catal. A, vol. 221, pp. 295-301, 2001.
[13]J. A. Kocal, B. V. Vora, T. Imai,“Production of Linear Alkylbenzenes”, Appl. Catal. A, vol.221, pp.295-301, 2001.
[14]J. C. Groen , J. A. Moulijn , and J. Perez-Ramirez, “Decoupling Mesoporosity Formation and Acidity Modification in ZSM-5 Zeolites by Sequential Desilication–dealumination ”,Microporous Mesoporous Mater., vol. 87, pp. 153-161, 2005.
[15]J. C. Groen , T. Sano, J. A. Moulijn, and J. P. Ramirez,“Alkaline- mediated Mesoporous Mordenite Zeolites for Acid-catalyzed Conversions” , J. Catal., vol. 251, pp. 21-27, 2007.
[16]J. C. Groen, J. C. Jansen, J. A. Moulijn, J. Perez-Ramirez,“Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication”, J. Phys. Chem. B, vol. 108, pp. 13062-13065, 2004.
[17]J. C. Groen, L. A. A. Peffer, J. A. Moulijn, and J. Perez-Ramirez, “Mesoporosity Development in ZSM-5 Zeolite upon Optimized Desilication Conditions in Alkaline Medium ”, Colloids and Surf. A, vol. 241, pp. 53-58, 2004.
[18]J. C. Groen, L. A. A. Peffer, J. A. Moulijn, J. Perez-Ramirez, “On the Introduction of Intracrystalline Mesoporosity in Zeolites upon Desilication in Alkaline Medium ”, Microporous Mesoporous Mater., vol. 69, pp. 29-34, 2004.
[19]J. Goncalves de Almeida, M. Dufaux, and Y. B. Taarit, C.Naccache,“Effect of Pore Size and Aluminium Content on the Production of Linear Alkylbenzenes over HY, H-ZSM-5 and H-ZSM-12 Zeolites: Alkylation ofBbenzene with 1-dodecene ”, Appl. Catal. A: Gen., vol.114, pp.141-159, 1994.
[20]J. Goncalves, D. Almeida, M. Dufaux, Y. B. Taarit, and C. Naccache, “Effect of Pore Size and Aluminium Content on the Production of Linear Alkylbenzenes over H Y, H -ZSM-5 and H- ZSM -12 Zeolites: Alkylation of Benzene with 1-dodecene”, Appl. Catal. A, vol. 114, pp.141- 159, 1994.
[21]J. S. Beck, J. C. Vartuli, and w. J. Roth,“A New Family of Mesoporous Molecular Sieves Prepared With Liquid Crystal Templates”, J. Chem. Soc., vol.114, pp.10834-10843, 1992.
[22]J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, Schmitt, C. T. W. Chu , D. H. Olson, and E. W . Sheppard,“A new Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates”, J. AM. Chem. Soc., vol. 114, pp. 10834-10843, 1992.
[23]J. W. Mcbain, “The Sorption of Gases and Vapors by solids”,Ruthedge and Sons, London, Chapter 5 1932.
[24]J. Warzywoda, A. G. Dixon, R. W. Thompson, A. Sacco, and S. L. Suib, “The Role of the Dissolution of Silicic Acid Powders in Aluminosilicate Synthesis Mixtures in the Crystallization of Large Mordenite Crystals”, Zeolites, vol. 16, pp. 125-137, 1996.
[25]K. A. Becker, H. G. Karge, W. D. Streubel,“Benzene Alkylation with Ethylene and Propylene over H-mordenite as Catalyst”, J. Catl., vol.28, pp.403-413, 1973.
[26]L. B. Sand, and G. W. Dodwell, “Process for Producing Fluidized Mordenite Particles”, U.S. Patent. No. 4081514, 1978.
[27]M. Boveri, C. Marquez-Alvarez, M. A. Laborde, and E. Sastre,“Steam and Acid Dealumination of Mordenite: Characterization and Influence on the Catalytic Performance in Linear Alkylbenzene Synthesis”, Catal. Today, vol.114, pp.217-225, 2006.
[28]M. Kruk, M. Jaroniec, R. Ryoo, and S. H. Joo,“Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates”, J. Phys. Chem. B, vol.104, pp.7960-7968, 2000.
[29]M. Singh, and S. Satish,“Primar y Biodegradation of Linear Alkyltoluene and Alkylbenzene Sulfonates”, Environ. Pollut., vol.58, pp.109-1 13, 1989.
[30]P. Meriaudeau, Y. Ben Taarit, A. Thangaraj, J. L. G. Almeida, and C. Naccache,“Zeolite Based Catalysts for Linear Alkylbenzene Production: Dehydrogenation of Long Chain Alkanes and Benzene Alkylation”, Catal. Today, vol.38, pp.243-247, 1997.
[31]P. Shing, and E. Dai,“ Zeolite Catalysis for a Better Environment”, Catal. Today, vol. 26, pp. 3-7, 1995.
[32]P.B. Venuto, L.A. Hamilton, P.S. Landis, and J. J. Wise,“Organic Reactions Catalyzed by Crystalline Aluminosilicates: I. Alkylation Reactions,”J. Catal., vol.5, pp.81-98, 1966.
[33]R. M. Barrer,“Preparation of Mordeinte Type Zeolite”, J. Chem. Soc., pp. 2158-2163, 1948.
[34]S. H. Joo, and R. Ryoo, “Synthesis of Ordered Mesoporous Carbon Molecular Sieves CMK-1”, Microporous Mesoporous Mater., vol.44-45, pp.153-158, 2001.
[35]S. Sivasanker, and A. Thangaraj,“Distribution of Isomers in the Alkylation of Benzene with Long-chain Olefins over Solid Acid Catalysts”, J. Catal., vol.138, pp.386-390, 1992.
[36]Simpon, D. R.,“Mordenite and Mordenite Aggregate Syntheses”, US. Patent. No. 4935217, 1990.
[37]T. C. Tsai, I. Wang, S. J. Li, J. Y. Liu,“Development of a Green LAB Process: Alkylation of Benzene with 1-dodecene over Mordenite” Green Chem., vol. 5, pp. 404-409, 2003.
[38]T. R. Brueva, I. V. Mishin, G. I. Kapustin, “Distribution of Acid-site Strengths in Hydrogen Zeolites and Relationship between Acidity and Catalytic Activity”, Thermochim. Acta, vol. 379, pp. 15-23, 2001.
[39]W. J. Meier, and D. Olson,“Altas of Zeolite Structure Types”, Butterworths, London, 1987 and 1992.
[40]W. M. Meier,“The Crystal Structure of Mordenite (ptilolite)”, Z. Kristallogr., vol. 115, pp. 439-450, 1961.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top