跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 19:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎虹宛
研究生(外文):Hong-wan Li
論文名稱:水綿去除廢水中甲基藍及色度研究
論文名稱(外文):Removal of Methylene Blue and Colour from Wastewater by Spirogyra
指導教授:翁誌煌翁誌煌引用關係
指導教授(外文):Chin-Huang Weng
學位類別:碩士
校院名稱:義守大學
系所名稱:土木與生態工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:115
中文關鍵詞:吸附水綿染整廢水真色色度
外文關鍵詞:dyeing waste wateradsorptionADMISpirogyra
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1219
  • 評分評分:
  • 下載下載:123
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究目的為探討使用水綿粉末(Spirogyra, Sp.)吸附去除水溶液中甲基藍(Methylene Blue, MB)及染整廠廢水中真色色度之可行性。動力吸附試驗結果顯示,Sp.對於MB之吸附量均隨MB濃度或pH值增加而增加;吸附量隨著離子強度增加而減少。當溫度由4oC上升至40oC時,其吸附量可由6.63x10-5 mol/g增加至9.89x10-5 mol/g。動力吸附數據可以Pseudo-second-order (PSO) 模式分析。透過熱力學計算可知其 Go < 0且 Ho > 0,因此Sp.吸附MB為一自發性吸熱反應。利用Sp.去除染整廢水真色色度之實驗中發現,Sp.對廢水真色色度去除效能隨著pH降低及溫度上升而增加。實驗結果可以Modified Freundlich equation (MFE)模式分析。經實驗結果發現,透過熱力學計算可知Sp.對染整廢水之 Ho及 So為正值,故吸附過程為一吸熱反應。本研究結果顯示水綿粉末可以有效吸附溶液中MB染料及去除染整廢水中色度。
The purpose of this study is to investigate the adsorption of Methylene Blue (MB) and ADMI (American Dye Manufacturers Institute) from wastewater using Spirogyra (Sp.). Results of kinetic adsorption experiments indicated that the rate of adsorption increased with increasing the concentration of MB and pH; the adsorptive capacity increases with decresing ionic strength. The maximum adsorption capacity of MB increased with increasing temperature, whereupon the adsorption capacity of MB ranged from 6.63×10-5 mol/g to 9.89×10-5 mol/g was determined. Pseudo-second-order (PSO) can be used to describe the kinetic data. The adsorption process was found to be spontaneous and endothermic. The results reveal that the removal efficiency of ADMI is the best with lower pH and higher temperature. In dyes in the entire waste water experiment result to discover, effect of ADMI elimination, has the good result production under the acidic environment. Modified Freundlich equation (MFE) can be used to describe the kinetic data.
摘要I
AbstractII
致謝III
總目錄IV
表目錄VII
圖目錄IX
第一章 緒論1
1.1 前言1
1.2 研究動機1
1.3 研究目的3
第二章 文獻回顧4
2.1 水綿之簡介4
2.1.1 水綿吸附文獻5
2.1.2 藻類及植物葉粉吸附文獻7
2.2 染整業介紹9
2.2.1 染整廢水特性11
2.3 染料分類13
2.3.1 染料來源分類14
2.3.2 染料性質分類14
2.3.3 應用於物質分類16
2.4 吸附17
2.4.1 吸附原理17
2.4.2 吸附種類18
2.5 動力吸附反應模式20
2.6 甲基藍(Methylene Blue, MB)21
2.7 水中真色色度之去除22
2.7.1 化學法23
2.7.2 物理法24
2.7.3 生物處理法24
第三章 材料與方法26
3.1 研究儀器、設備及藥品26
3.2 實驗架構29
3.3 研究材料與方法30
3.3.1 吸附劑之製備30
3.3.2 水綿粉末(Sp.)之特性分析30
3.3.3 工業區染整廢水32
3.4 水綿粉末對MB之動力吸附實驗33
3.5 水綿粉末對工業區染整廢水之吸附實驗34
第四章 特性分析36
4.1 表面結構觀察36
4.2 元素成份分析37
4.3 傅利葉轉換紅外線光譜儀之官能基分析(FTIR)39
4.4 比表面積分析43
4.5 粒徑分佈分析44
4.6 界達電位分析44
第五章 甲基藍(MB)之吸附特性研究46
5.1 不同MB濃度之影響46
5.2 不同離子強度之影響49
5.3 不同pH值之影響53
5.4 不同溫度之影響56
5.5 水綿粉末表面結構對吸附MB之影響62
5.6 各種吸附劑對MB去除之比較63
第六章 工業區染整廢水之吸附特性研究64
6.1 工業區染整廢水64
6.2 工業區染整廢水吸附試驗─pH值影響66
6.2.1 不同pH之平衡吸附試驗66
6.2.2 不同pH值之染整廢水水樣一吸附試驗68
6.2.3 不同pH值之染整廢水水樣二吸附試驗70
6.3 工業區染整廢水吸附試驗─溫度之影響72
6.3.1 不同溫度之染整廢水水樣一吸附試驗72
6.3.2 不同溫度之染整廢水水樣二吸附試驗77
6.4 水綿粉末表面結構對染整廢水色度去除之影響81
6.5 水綿粉末對染整廢水之再生效能82
第七章 結論與建議84
7-1 結論84
參考文獻85
附錄一-染整廠常用染料94
附錄二-口試委員意見回覆102
表2-1 植物葉粉吸附相關文獻7
表2-2 藻類吸附文獻8
表2-3 各染整製程目的及廢水特性10
表2-4 染整廢污水的放流水標準12
表2-5 物理吸附及化學吸附基本特性差異19
表2-6 生物處理法常見的微生物之特性25
表4-1 水綿粉末(Sp.)吸附前後之EDS分析表39
表4-2 水綿粉末(Sp.)吸附前後FTIR之變化41
表4-3 與Spirogyra sp.-IO2官能基之比較42
表4-4 水綿粉末吸附MB前後之FTIR分析表42
表4-5 水綿粉末吸附染整廢水前後之FTIR分析表43
表4-6 水綿粉末(Sp.)之特性分析總表45
表5-1 以不同動力模式模擬分析不同MB濃度所得之參數48
表5-2 以不同動力模式模擬分析不同離子強度所得之參數52
表5-3 電雙層公式計算所得之參數52
表5-4 以不同動力模式模擬分析不同pH值所得之參數55
表5-5 以不同動力模式模擬分析不同溫度所得之參數60
表5-6 水綿粉末(Sp.)吸附MB之熱力學參數61
表5-7 不同吸附劑對MB之比較63
表6-1 染整廢水樣品之原水特性65
表6-2 染整廢水水樣基本檢測65
表6-3 水樣二吸附前後ICP-MS及BOD之檢測66
表6-4 以不同動力模式模擬分析水樣一不同pH值所得之參數69
表6-5 以不同動力模式模擬分析水樣二不同pH值所得之參數71
表6-6 以不同動力模式模擬分析水樣一不同溫度所得之參數75
表6-7 水綿粉末吸附水樣一之熱力學常數77
表6-8 以不同動力模式模擬分析水樣二不同溫度所得之參數79
表6-9 水綿粉末(Sp.)吸附廢水水樣二之熱力學常數80
圖2-1 水綿的細胞構造4
圖2-2 Methylene Blue(MB)分子結構圖22
圖2-3 化學混凝法處理染整廢污水流程圖24
圖3-1 研究架構圖29
圖4-1 水綿粉末(Sp.)吸附前後之SEM圖37
圖4-2 水綿粉末(Sp.)吸附前後之EDS圖38
圖4-3 水綿粉末(Sp.)之FTIR圖41
圖4-4 水綿粉末之界達電位圖45
圖5-1 不同MB濃度之動力吸附結果47
圖5-2 與PSO反應速率常數k2關係圖49
圖5-3 不同離子強度對MB之動力吸附結果51
圖5-4 不同pH值對MB之動力吸附結果54
圖5-5 不同pH值與平衡吸附量及反應速率常數k3之線性關係圖56
圖5-6 不同溫度對MB之動力吸附結果59
圖5-7 MB之ln k3及ln kc與1/T關係圖61
圖5-8 水綿粉末(Sp.)吸附MB前後之FTIR比較圖62
圖6-1 染整廠廢水處理流程圖64
圖6-2 溶液pH值對染整廢水真色色度去除率之影響67
圖6-3 溶液pH值對不同水樣真色色度去除率之比較圖67
圖6-4 不同pH值對水樣一真色色度去除之結果69
圖6-5 不同pH值對水樣二真色色度去除之結果71
圖6-6 不同溫度對水樣一真色色度去除之結果74
圖6-7 mole數與ADMI之關係圖76
圖6-8 水樣一ln k3及ln kc與1/T之關係圖76
圖6-9 不同溫度對水樣二真色色度去除之結果78
圖6-10 水樣二之ln k3及ln kc與1/T之關係圖80
圖6-11 水綿粉末(Sp.)吸附廢水水樣一前後之FTIR比較圖81
圖6-12 水綿粉末(Sp.)吸附廢水水樣二前後之FTIR比較圖82
圖6-13 水綿粉末對染整廢水水樣一及水樣二之再生效能試驗結果83
中文部份
[1]甘佳欣,以次氯酸去除染整廢水色度之反應動力學研究,國立中山大學環境工程研究所碩士論文(2000)。
[2]白曛綾、盧重興、張國財、曾映棠、黃欣惠,「活性碳吸附塔」,操作績效自我評估管理制度手冊(2003)。
[3]何瑾馨,「染料化學」,中國紡織出版社,北京,第3-4頁(2004)。
[4]易希道、周惠慈、李春序 ,「普通植物學」,國立編譯館(1971)。
[5]張有諒,利用費頓試劑來氧化 Reactive Black 5 染料的可行性及動力學之研究,國立高雄師範大學化學系碩士論文(2005)。
[6]張漢昌,「廢水污染與防治」,新文京開發出版股份有限公司,台北縣,第393-394頁(2005)。
[7]章裕民,環境工程化學,吸附作用,文京,台北,第135-140頁(1998)。
[8]楊惠嘉,利用幾丁聚糖吸附卡馬西藍染料之研究,國立成功大學化學研究所碩士論文(2003)。
[9]趙雯蕙、劉曉蘭,「染整業環保技術整合應用介紹」,台灣環保產業雙月刊,第11期(2002)。
[10]蕭蘊華、傅崇德,「環境工程化學」,滄海書局,台北市(1995)。
英文部份
[1]Abuzer, Ç., Mehmet, Y., and Hüseyin, B., “Kinetic and equilibrium studies on the adsorption of reactive red 120 from aqueous solution on Spirogyra majuscule,” Chemical Engineering Journal, Vol. 152, p. 139-145 (2009).
[2]Alkan, M., S. Celikcapa, O. D., and Dogan, M., “Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite,” Dyes and Pigments, Vol. 65, p. 251-259 (2005).
[3]Amarasinghe, B.M.W.P.K., and Williams, R. A., “Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater,” Chemical Engineering Journal, Vol. 132, p. 299-309 (2007).
[4]Annadurai, G., Juang, R. S., and Lee, D. J.,“Use of cellulose-based wastes for adsorption of dyes from aqueous solutions,”Journal of Hazardous Materials, Vol. 92, p. 263-274 (2002).
[5]Azza, K., Ahmed, E.N., Amany, E.S., and Ola, A., “Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies,” Journal of Hazardous Materials, Vol. 165, p. 100-110 (2009).
[6]Balasubramanian, R., Vijayaraghavan, K., Mahadevan, A., and Umid Man Joshi, “An examination of the uptake of lanthanum from aqueous solution by crab shell particles,” Chemical Engineering Journal, Vol. 152, p. 116-121 (2009).
[7]Bhattacharyya, K. G., and Sarma, A., “Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder,” Dyes and Pigments, Vol. 65, p. 51-59 (2005).
[8]Bhattacharyya, K. G., and Sarma, A., “Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder,” Dyes and Pigments, Vol. 57, p. 211-222 (2003).
[9]Bishnoi, N. R., Kumar, R., Kumar S., and Rani, S., “Biosorption of Cr(III) from aqueous solution using algal biomass spirogyra spp.,” Journal of Hazardous Materials, Vol. 145, p. 142-147 (2007).
[10]Blázquez, M.L., Mata, Y.N., Ballester, A., González, F., and Muñoz J.A., “Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus,” Journal of Hazardous Materials, Vol. 166, p. 612-618 (2009).
[11]Bulut, Y., and Aydin, H., “A kinetics and thermodynamics study of methylene blue adsorption on wheat shells,” Desalination, Vol. 194, No. 1-3, p. 259-267 (2006).
[12]Chu, W., “Dye removal from textile dye wastewater using recycled alum sludge,” Water Research, Vol. 35, Iss. 13, p. 3147-3152 (2001).
[13]Crini, G., Peindy, H. N., Gimbert, F., and Robert, C., “Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies,” Separation and Purification Technology, Vol. 53, p. 97-110 (2006).
[14]Davis, R. J., Gainer, J. L., O’Neal, G., and Wu, I.-W., “Photocatalytic decolorization of wastewater dyes,”Water Environment Research, Vol. 66, p. 50-53 (1994).
[15]Deng L. P., Su, Y. Y., Su, H., Wang, X. T., and Zhu, X. B., “Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis,” Journal of Hazardous Materials, Vol. 143, p. 220-225 (2007).
[16]Deng, N. S., Deng, L., and Wang, H. L., “Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris,” Journal of Hazardous Materials, Vol. 138, p. 288-292 (2006).
[17]Donmez, G., and Aksu, Z., “Removal of chromium (VI) from saline wastewaters by dunaliella species,” Process Biochemistry, Vol. 38, p. 751-762 (2002).
[18]Elliott, D. W., and Zhang, W-X.,“Field assessment of nanoscale bimetallic particles for groundwater treatment,” Environmental Science Technology, Vol. 35, p. 4922-4926 (2001).
[19]Furusawa, T., and Smith, J. M., “Intraparticle mass transport in slurries by dynamic adsorption studies,” AIChE Journal, Vol. 20, p. 88-93 (1974).
[20]Gupta, J. S., “Textbook of Algae,” Oxford & IBN Pub., New Delhi. p. 106-170 (1981).
[21]Gupta, V.K., and Rastogi, A., “Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies,” Journal of Hazardous Materials, Vol. 152, p. 407-414 (2008).
[22]Gupta, V.K., Rastogi, A., Saini, V. K., and Jain, N., “Biosorption of copper(II) from aqueous solutions by Spirogyra species,” Journal of Colloid and Interface Science, Vol. 296, p. 59-63 (2006).
[23]Glasstone, S., Laidler, K. J., and Eyring, H., “The theory of rat-process,” McGraw-Hill, New York, p.133-139 (1941).
[24]Han, R., Zou, W., Yu, W., Chwng, S., Wang, Y., and Shi, j., “Biosorption of methylene blue from aqueous solution by fallen phoenix tree’s leaves,” Journal of Hazardous Materials, Vol. 141, p. 156-162 (2007).
[25]Heiss, G. S., Gowan, B and Dabbs, E. R., “Cloning of DNA froma Rhodococcus strain conferring the ability to decolorize sulfonated,” FEMS Microbiol, Vol. 99, p. 221-226 (1992).
[26]Hessel, C., Allegre, C., Maisseu, M., Charbit, F., and Moulin, P., “Guidelines and egislation for dye house effluents,” Journal of Environmental Management, Vol. 83, Iss. 2, p. 171-180 (2007).
[27]Ho, Y. S., “Removal of copper ions from aqueous solution by tree fern,” Process Biochem., Vol. 34, p. 2323-2330 (2003).
[28]Ho, Y. S., and McKay, G.,“Pseudo-second-order model for sorption processes,”Process Biochem., Vol. 34, p. 451-465 (1999).
[29]Iqbal, M. J., and M. N. Ashiq, “Adsorption of dyes from aqueous solutions on activated charcoal,” Journal of Hazardous Materials, Vol. 139, p. 57-66 (2007).
[30]Jamode, A. V., Sapkal, V. S., and Jamode V. S., “Uptake of fluoride ions using leaf powder of Ficus Religlisa,” Journal of Indian Water Works Association, Vol. 36, p. 52-61 (2004).
[31]Jia, J., Yang, J., Liao, J., Wang, W., and Wang, Z.,“Treatment of dyeing wastewater with ACF electrodes,” Wat. Res., Vol. 22, p. 881-884 (1999).
[32]Jaycok, M. J., and Parfitt, E. G., “Chemistry of Interfaces,”Ellis, Horwood, New York, p. 265-269 (1981).
[33]Karthikeyan, S., Balasubramanian, R., and Iyer, C.S.P., “Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions,” Bioresource Technology, Vol. 98, p. 452-455 (2007).
[34]Katarzyna Chojnacka, Andrzej Chojnacki, and Helena Górecka, “Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue - green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process,” Chemosphere, Vol. 59, p. 75-84 (2005).
[35]Kumar, Y. P., King, P., and Prasad, V.S.R.K., “Adsorption of zinc from aqueous solution using marine green algae—Ulva fasciata sp.,” Chemical Engineering Journal, Vol. 129, p. 161-166 (2007).
[36]Kuo, S., and Lotse, E. G., “Kinetics of phosphate adsorption and desorption by hematite and gibbsite,” Soil Science Society of America Journal, Vol. 116, p. 400-406 (1973).
[37]Kuo, W. S., and Ho, P. H., “Solar photocatalytic decolorization of dyes in solution with TiO2 film,” Dyes and Pigments, Vol. 71, No. 3, p. 212-217 (2006).
[38]Lagergren, S., “Zur theorie der sogenannten adsorption geloster stoffe,” Kungliga Svenska Vetenkapsakademiens, Handlingar., Vol. 24, p. 1-39 (1998).
[39]Mall, I. D., and Upadhyay, S. N., “Removal of basic dyes bearing wastewater using boiler bottom ash,” Interface J. Environmental Health, Vol. 37, p. 1-10 (1995).
[40]Mall, I. D., Srivastava, V. C., Agarwal, N. K., and Mishra, I. M., “Removal of congored from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses,” Chemosphere, Vol. 61, p. 492-501 (2005).
[41]McKay, G., Porter, J. F., and Prasad, G. R., “The Removal of Dye Colours from Aqueous Solutions by Adsorption on Low-cost Materials,” Water Air Soil Pollut., Vol. 114, p. 423-438 (1999).
[42]Mohan, S. V., Ramanaiah, S. V., Rajkumar, B., and Sarma, P.N., “Biosorption of fluoride from aqueous phase onto algal Spirogyra IO1 and evaluation of adsorption kinetics,” Bioresource Technology, Vol. 98, p. 1006-1011 (2007).
[43]Mohan, S. V., Ramanaiah, S. V., Rajkumar, B., and Sarma, P. N., “Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: Sorption mechanism elucidation,” Journal of Hazardous Materials, Vol. 141, p. 465-474 (2007).
[44]Mustafa Tuzena, Ahmet Sar, Durali Mendil, Ozgur Dogan Uluozlua, Mustafa Soylak, and Mehmet Dogan, “Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum,” Journal of Hazardous Materials, Vol. 165, p. 566-572 (2009).
[45]Namasivayam, C., Kumar, M. D., Selvi, K., Begum, A., Vanathi, T., and Yamuna, R. T., “Waste coir pith-a potential biomass for the treatment of dyeing wastewaters,” Biomass and Bioenergy, Vol. 21, p. 477-483 (2001).
[46]Özer, A., Gönül, A., and Turabik, M., “Biosorption of Acid Blue 290 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra rhizopus,” Journal of Hazardous Materials, Vol. 135, p. 355-364 (2006).
[47]Ozacar, M.,“Contact time optimization of two-stage batch adsorber design using second-order kinetic model for the adsorption of phosphate onto alunite,”Journal Hazardous Materials, Vol. 137, p. 218-225 (2006).
[48]Ozer, D., Dursun G., and Ozer, A., “Methylene blue adsorption from aqueous solution by dehydrated peanut hull,” Journal of Hazardous Materials, Vol. 144, p. 171-179 (2007).
[49]Ponnusami, V., Vikram, S., and Srivastava, S.N., “Guava (Psidium guajva) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions,” Journal of Hazardous Materials, Vol. 152, p. 276-286 (2008.)
[50]Pagga, U. and Taeger, K., “Development of a method for adsorption of dyestuffs on actived sludge,” Wat. Res, Vol. 28, No. 5, p. 1051 (1994).
[51]Sharma, J., Sarma, A., and Bhattacharyya, K. G., “Biosorption of commercial dyes on Azadirachta indica leaf powder: A case study with a basic dye rhodamine B,” Industrial and Engineering Chemistry Research, Vol. 47, p. 5433-5440 (2008).
[52]Sheng, H., and Peng, C. F., “Treatment of textile wastewater by electrochemical method,” Wat. Res. Vol. 28, p. 277-282 (1994).
[53]Slokar, Y. M., and Marechal, A. M. L.,“Methods of decolorization of textile wastewater,”Dyes and Pigments, Vol. 37, No. 4, p. 335-356 (1998).
[54]Strickland, A. F., and Perkins, W. S.,“Decolorization of continuous dyeing wastewater by ozanation,” Textile Chemist and Colorist, Vol. 27, No. 5, p. 11 (1995).
[55]Velan, M., Padmesh, T. V. N., Vijayaraghavan, K., and Sekaran, G., “Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions,” Chemical Engineering Journal, Vol. 122, p. 55-63 (2006).
[56]Velan, M., Padmesh, T. V. N., Vijayaraghavan, K., and Sekaran, G., “Biosorption of Acid Blue 15 using fresh water macroalga Azolla filiculoides: Batch and column studies,” Dyes and Pigments, Vol. 71, p. 77-82 (2006).
[57]Vilar, Vítor J.P., Botelho, Cidália M.S., and Boaventura, Rui A.R.,“Methylene blue adsorption by algal biomass based materials:Biosorbents characterization and process behaviour,” Journal of Hazardous Materials, Vol. 147, p. 120-132 (2007).
[58]Wang, S., Zhu, Z. H., Coomes, A., Haghseresht, F., and Lu, G. Q., “The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater,” J. Colloid Interface Sci., Vol. 284, p. 440-446 (2005).
[59]Weng, C. H., and Pan, Y. F,“Adsorption characteristics of methylene blue from aqueous solution by sludge ash,”Colloids and Surfaces A: Physicochem. Eng. Aspects., Vol. 274, p. 154-162 (2006).
[60]Weng, C. H., Chang, E. E., and Chiang, P. C.,“Characteristics of new coccine dye adsorption onto digested sludge particulates,”Water Science and Technology, Vol. 44, p. 279-284 (2001).
[61]Weng, C. H., and Pan, Y. F,“Adsorption of a cationic dye (methylene blue) onto spent activated clay,” Journal of Hazardous Materials, Vol. 144, p. 355-362 (2007).
[62]Weng, C. H., Lin, Y. T., and Tzeng, T. W., “Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder,” Journal of Hazardous Materials, Vol. 170, p.417-424 (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊