跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施姵妤
研究生(外文):Pei-Yu Shih
論文名稱:抑制大腸直腸癌細胞株SW620增生之植化素對丙酮酸激酶M2之調控
論文名稱(外文):Influence of anti-colorectal cancer phytochemicals on Pyruvate Kinase M2 in SW620 cell line
指導教授:蔣丙煌蔣丙煌引用關係
口試委員:何其儻鍾景光郭明良
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:147
中文關鍵詞:大腸直腸癌丙酮酸激酶M2植化素
外文關鍵詞:Colorectal cancerpyruvate kinase M2phytochemicalsCurcuminQuercetinResveratrolPterostilbene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸直腸癌(Colorectal cancer;CRC)位居國人罹患惡性腫瘤之冠,且為發生率上升速度最快的癌症。近年研究顯示,丙酮酸激酶M2 (Pyruvate kinase M2;PKM2)為腫瘤中的主要PK形式,對癌症進程有莫大的貢獻。在細胞質中,PKM2利用調節PK活性影響代謝反應,高活性PKM2可滿足細胞對能量的需求,低活性PKM2可協助累積生合成所需的原料並避免氧化壓力造成的傷害,使癌細胞獲得良好的生存優勢;在細胞核中,PKM2亦可參與多個訊息傳遞路徑,調控致癌基因的表現。因此,PKM2可促進癌細胞的增生及惡化能力,甚至對CRC病患的預後及存活率皆有負面的影響。本研究以CRC細胞株SW620為研究平台,選取四種具抑制CRC潛力的植化素,包含薑黃素(Curcumin;C)、槲黃素(Quercetin;Q)、白藜蘆醇(Resveratrol;RV)及紫檀芪(Pterostilbene;P),觀察植化素對PKM2的影響。研究結果顯示,四種植化素皆可有效抑制PKM2的總表現量,並對細胞內PKM2的分布情形有所影響。在PKM2總量方面,以Quercetin的抑制效果最好,達66%抑制率;其次是Resveratrol,達44%抑制率;Curcumin位居第三,抑制率達24%;Pterostilbene殿後,雖有抑制趨勢但未達顯著性差異。進一步分析上述植化素對PKM2上下游相關蛋白質之影響,推測四種植化素主要是經由調節c-Myc與 HIF-1α達到抑制PKM2的效果。另外,四種植化素還可有效降低細胞核內的PKM2量,進而減少下游目標蛋白MEK5的表現,影響細胞增生能力。綜合上述所示,植化素可以經由調節PKM2,在總量及細胞內的分布情形,達到抑制CRC細胞株增生的目的,對延緩癌症的進程應當有所幫助。

Colorectal cancer (CRC) is the most common cancer in Taiwan and the incidence of CRC was dramatically raised during the past few decades. Recent studies demonstrated that pyruvate kinase M2 (PKM2) is the predominant PK isoform in tumor and supports growth advantage in tumorigenesis. In the cytoplasm, high activity PKM2 helps to generate enough energy and low activity PKM2 satisfies the anabolic demands of macromolecular biosynthesis. In addition to well-established role in the metabolic reprogramming in the cytoplasm, PKM2 is also shown to participate in regulation of oncogene transcription in the nucleus. Furthermore, PKM2 would promote high proliferation rate and malignant grade in CRC development. Clinical studies also showed that the increased PKM2 expression is highly associated with poor prognosis and high risk death in CRC patient. Since there are many phytochemicals have been reported with anti-CRC properties, but their bioactivities on regulating PKM2 have not been sufficiently investigated. Thus, the objective of this study was to investigate the effects of four potential anti-CRC phytochemicals, including Curcumin, Quercetin, Resveratrol and Pterostilbene on PKM2 in human CRC cell SW620. The results showed that all of the four phytochemicals could effectively suppress the total PKM2 expression and regulate the distribution of intracellular PKM2. Quercetin is the most effective phytochemical, resulting in a 66% inhibition of the total PKM2 protein level, followed by Resveratrol which has 44% inhibition ability. The third place is Curcumin, it reduces 24% expression of PKM2. The last one is Pterostilbene which tends to down-regulate expression of PKM2 but without significant difference statistically. Moreover, the decrease of PKM2 protein expression due to the four phytochemicals treatments may via inhibition of the expression of c-Myc and HIF-1α. Our results also showed that the four phytochemicals have abilities to reduce the nuclear PKM2 level and thereby inhibit the expression of nuclear PKM2 downstream target protein MEK5. Consequently, phytochemicals may suppress the total PKM2 expression and regulate the distribution of intracellular PKM2 to inhibit CRC cell proliferation. It seems that the PKM2-mediated effect of phytochemicals on cancer progression can provide a new dimension to cancer treatment.

口試委員會審定書 i
誌謝 ii
中文摘要 v
ABSTRACT vi
目錄 vi
圖目錄 ixii
表目錄 xii

第一章、 文獻整理.........................................1
第一節、 大腸直腸癌 (Colorectal cancer, CRC)..............1
第1項 大腸直腸癌癌症進程與分期............................4
第2項 大腸直腸癌癌症基因致癌機轉...........................8
第二節、 腫瘤細胞中的代謝改變...............................14
第1項 丙酮酸激酶M2 (Pyruvate Kinase M2, PKM2) 簡介......17
第2項 丙酮酸激酶M2的生合成...............................19
第3項 丙酮酸激酶M2之細胞代謝優勢與癌症的關係................23
第4項 丙酮酸激酶M2在細胞核中的功能與癌症的關係..............30
第5項 丙酮酸激酶M2與大腸直腸癌的關係......................37
第三節、 植化素..........................................41
第1項 薑黃素(Curcumin)................................41
第2項 槲皮素(Quercetin)...............................42
第3項 白藜蘆醇(Resveratrol)...........................42
第4項 紫檀茋(Pterostilbene)...........................43

第二章、 研究目的與實驗架構................................44
第一節、 研究目的........................................44
第二節、 實驗架構........................................45
第三章、 實驗材料與方法...................................48
第一節、 實驗材料與儀器設備................................48
第1項 細胞株來源......................................48
第2項 藥品試劑........................................48
第3項 儀器設備........................................51
第二節、 實驗方法........................................52
第1項 細胞培養........................................52
第2項 樣品配製........................................53
第3項 細胞存活率分析...................................54
第4項 細胞質與細胞核之蛋白質萃取方法......................56
第5項 蛋白質萃取與定量..................................57
第6項 SDS-PAGE 電泳分析...............................59
第7項 西方點墨法 (Western blotting)....................62
第8項 統計分析 (Statistics analysis)..................63

第四章、 結果與討論.......................................64
第一節、 植化素C、Q、RV與P對人類大腸直腸癌SW620細胞株之存活率影響 .......................................................64
第1項 植化素處理SW620細胞株達48小時之MTT實驗結果...........65
第2項 以MTT與Trypan blue染色計數實驗探討IC20與IC50濃度的植化素處理SW620細胞達24及48小時之細胞存活率影響......................69
第二節、 利用西方點墨法探討植化素對CRC細胞株中PKM2、HIF-1α及c-Myc總表現量之影響..............................................74
第1項 Curcumin對PKM2、HIF-1α及c-Myc總蛋白質表現量之影響....75
第2項 Quercetin對PKM2、HIF-1α及c-Myc總蛋白質表現量之影響...79
第3項 Resveratrol對PKM2、HIF-1α及c-Myc總蛋白質表現量之影響..84
第4項 Pterostilbene對PKM2、HIF-1α及c-Myc總蛋白質表現量之影響. .........................................................88
第三節、 利用西方點墨法探討植化素對CRC細胞株中PKM2於細胞核和細胞質中蛋白質的含量變化,以及MEK5總蛋白質表現量之影響....................91
第1項 Curcumin對PKM2於細胞核和細胞質的蛋白量含量變化,以及MEK5總蛋白質表現量之影響............................................92
第2項 Quercetin對PKM2於細胞核和細胞質的蛋白量含量變化,以及MEK5總蛋白質表現量之影響...........................................96
第3項 Resveratrol對PKM2於細胞核和細胞質的蛋白量含量變化,以及MEK5總蛋白質表現量之影響........................................100
第4項 Pterostilbene對PKM2於細胞核和細胞質的蛋白量含量變化,以及MEK 5總蛋白質表現量之影響..................................105
第四節、 綜合討論.........................................108
第1項 植化素對PKM2總量的影響.............................108
第2項 植化素對細胞內PKM2分布情形的影響.....................110

第五章、 結論.............................................111

第六章、 參考文獻..........................................112

附錄(一) 相關研究..........................................128
第一節、 利用免疫螢光染色法證實EGF可誘導大腸直腸癌SW620細胞株之PKM2進入細胞核中................................................128
第1項 研究動機與目的.....................................128
第2項 材料與方法........................................128
第3項 結果與討論........................................130
附錄(二) 期刊格式..........................................132


民國101年國人主要死因分析。取自:行政院衛生署衛生統計資訊網。
民國99年癌症登記報告。取自:行政院衛生署國民健康局網站
林鵬展; 李政昌 大腸直腸癌的分子生物學及訊息傳遞路徑. 中華民國癌症醫學會雜誌 2008, 24, 157-166.
郭宇薇 黃豆皂素粗萃取物對於 1, 2-dimethylhydrazine 誘導 F344 大鼠結腸癌前期病變異常腺窩灶的影響及機制之探討. 2007.
Abdullah, M.; Rani, A. A.; Simadibrata, M.; Fauzi, A.; Syam, A. F. The Value of Fecal Tumor M2 Pyruvate Kinase as a Diagnostic Tool for Colorectal Cancer Screening. Acta med. Indones. 2012, 44, 94-99.
Aggarwal, B. B.; Kumar, A.; Bharti, A. C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003, 23, 363-398.
Ahmed, F. E. Effect of diet, life style, and other environmental/chemopreventive factors on colorectal cancer development, and assessment of the risks. J. Environ. Sci. Health C 2004, 22, 91-148.
Anastasiou, D.; Poulogiannis, G.; Asara, J. M.; Boxer, M. B.; Jiang, J. k.; Shen, M.; Bellinger, G.; Sasaki, A. T.; Locasale, J. W.; Auld, D. S. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011, 334, 1278-1283.
Araujo, J. R.; Goncalves, P.; Martel, F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr. Res. 2011, 31, 77-87.
Ashizawa, K.; Willingham, M.; Liang, C.; Cheng, S.Y. In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1, 6-bisphosphate. J. Biol. Chem. 1991, 266, 16842-16846.
Bailey, E.; Stirpe, F.; Taylor, C. Regulation of rat liver pyruvate kinase. The effect of preincubation, pH, copper ions, fructose 1, 6-diphosphate and dietary changes on enzyme activity. Biochem. J. 1968, 108, 427-436.
Beevers, C. S.; Li, F.; Liu, L.; Huang, S. Curcumin inhibits the mammalian target of rapamycin‐mediated signaling pathways in cancer cells. Int. J. Cancer 2006, 119, 757-764.
Bennett, M.; Timperley, W.; Taylor, C.; HILL, A. S. Fetal forms of pyruvate kinase isoenzymes in tumours of the human nervous system. Neuropath. Appl. Neuro. 1975, 1, 347-356.
Bhardwaj, A.; Sethi, G.; Vadhan-Raj, S.; Bueso-Ramos, C.; Takada, Y.; Gaur, U.; Nair, A. S.; Shishodia, S.; Aggarwal, B. B. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-κB–regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 2007, 109, 2293-2302.
Bharti, A. C.; Donato, N.; Aggarwal, B. B. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J. Immunol. 2003, 171, 3863-3871.
Bluemlein, K.; Gruning, N. M.; Feichtinger, R. G.; Lehrach, H.; Kofler, B.; Ralser, M. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2011, 2, 393-400.
Boxer, M. B.; Jiang, J. k.; Vander Heiden, M. G.; Shen, M.; Skoumbourdis, A. P.; Southall, N.; Veith, H.; Leister, W.; Austin, C. P.; Park, H. W. Evaluation of substituted N, N’-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem. 2009, 53, 1048-1055.
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
Chaneton, B.; Gottlieb, E. Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem. Sci. 2012, 37, 309-316.
Chen, A.; Xu, J. Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am. J. Physiol. Gastrointest. Liver Physiol. 2005a, 288, 447-456.
Chen, A.; Xu, J.; Johnson, A. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 2005b, 25, 278-287.
Chen, H. J.; Hsu, L. S.; Shia, Y. T.; Lin, M. W.; Lin, C. M. The β-catenin/TCF complex as a novel target of resveratrol in the Wnt/β-catenin signaling pathway. Biochem. Pharmacol. 2012a, 84, 1143-1153.
Chen, J.; Xie, J.; Jiang, Z.; Wang, B.; Wang, Y.; Hu, X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 2011, 30, 4297-4306.
Chen, M.; Zhang, J.; Manley, J. L. Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res. 2010a, 70, 8977-8980.
Chen, M.; David, C. J.; Manley, J. L. Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins. Nat. Struct. Mol. Biol. 2012b, 19, 346-354.
Chen, R. J.; Ho, C. T.; Wang, Y. J. Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells. Mol. Nutr. Food Res. 2010b, 54, 1819-1832.
Chiou, Y. S.; Tsai, M. L.; Wang, Y. J.; Cheng, A. C.; Lai, W. M.; Badmaev, V.; Ho, C. T.; Pan, M. H. Pterostilbene inhibits colorectal aberrant crypt foci (ACF) and colon carcinogenesis via suppression of multiple signal transduction pathways in azoxymethane-treated mice. J. Agric. Food Chem. 2010, 58, 8833-8841.
Christofk, H. R.; Vander Heiden, M. G.; Harris, M. H.; Ramanathan, A.; Gerszten, R. E.; Wei, R.; Fleming, M. D.; Schreiber, S. L.; Cantley, L. C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008a, 452, 230-233.
Christofk, H. R.; Vander Heiden, M. G.; Wu, N.; Asara, J. M.; Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008b, 452, 181-186.
Clower, C. V.; Chatterjee, D.; Wang, Z.; Cantley, L. C.; Vander Heiden, M. G.; Krainer, A. R. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl. Acad. Sci. 2010, 107, 1894-1899.
David, C. J.; Chen, M.; Assanah, M.; Canoll, P.; Manley, J. L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2009, 463, 364-368.
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271-277.
Diaz-Ruiz, R.; Uribe-Carvajal, S.; Devin, A.; Rigoulet, M. Tumor cell energy metabolism and its common features with yeast metabolism. Biochim. Biophys. Acta. Rev. Cancer 2009, 1796, 252-265.
Discher, D. J.; Bishopric, N. H.; Wu, X.; Peterson, C. A.; Webster, K. A. Hypoxia regulates β-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element. J. Biol. Chem. 1998, 273, 26087-26093.
Dombrauckas, J. D.; Santarsiero, B. D.; Mesecar, A. D. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry (Mosc) 2005, 44, 9417-9429.
Drew, B. A.; Burow, M. E.; Beckman, B. S. MEK5/ERK5 pathway: the first fifteen years. Biochim. Biophys. Acta. Rev. Cancer 2012, 1825, 37-48.
Eigenbrodt, E.; Basenau, D.; Holthusen, S.; Mazurek, S.; Fischer, G. Quantification of tumor type M2 pyruvate kinase (Tu M2-PK) in human carcinomas. Anticancer Res. 1997, 17, 3153-3156.
Elzagheid, A.; Buhmeida, A.; Korkeila, E.; Collan, Y.; Syrjanen, K.; Pyrhonen, S. Nuclear β-catenin expression as a prognostic factor in advanced colorectal carcinoma. World j. gastroenterol. 2008, 14, 3866-3871.
Fatela-Cantillo, D.; Fernandez-Suarez, A.; Moreno, M. A. M.; Gutierrez, J. J. P.; Iglesias, J. M. D. Prognostic value of plasmatic tumor M2 pyruvate kinase and carcinoembryonic antigen in the survival of colorectal cancer patients. Tumor Biol. 2012, 33, 825-832.
Fridrich, D.; Teller, N.; Esselen, M.; Pahlke, G.; Marko, D. Comparison of delphinidin, quercetin and (–)‐epigallocatechin‐3‐gallate as inhibitors of the EGFR and the ErbB2 receptor phosphorylation. Mol. Nutr. Food Res. 2008, 52, 815-822.
Gao, X.; Wang, H.; Yang, J. J.; Liu, X.; Liu, Z. R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 2012, 45, 598-609.
Gao, X.; Wang, H.; Yang, J. J.; Chen, J.; Jie, J.; Li, L.; Zhang, Y.; Liu, Z. R. Reciprocal Regulation of Protein Kinase and Pyruvate Kinase Activities of Pyruvate Kinase M2 by Growth Signals. J. Biol. Chem. 2013, 288, 15971-15979.
Garcia-Cao, I.; Song, M. S.; Hobbs, R. M.; Laurent, G.; Giorgi, C.; de Boer, V. C.; Anastasiou, D.; Ito, K.; Sasaki, A. T.; Rameh, L. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 2012, 149, 49-62.
Gibbons, J. J.; Abraham, R. T.; Yu, K. In mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin. Oncol. 2009, 36, 3-17.
Goldberg, M. S.; Sharp, P. A. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J. exp. Med. 2012, 209, 217-224.
Goonetilleke, K. S.; Mason, J. M.; Siriwardana, P.; King, N. K.; France, M. W.; Siriwardena, A. K. Diagnostic and prognostic value of plasma tumor M2 pyruvate kinase in periampullary cancer: evidence for a novel biological marker of adverse prognosis. Pancreas 2007, 34, 318-324.
Gruning, N. M.; Rinnerthaler, M.; Bluemlein, K.; Mulleder, M.; Wamelink, M.; Lehrach, H.; Jakobs, C.; Breitenbach, M.; Ralser, M. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell metab. 2011, 14, 415-427.
Gross, M.; Zorbas, M.; Danels, Y.; Garcia, R.; Gallick, G.; Olive, M.; Brattain, M.; Boman, B.; Yeoman, L. Cellular growth response to epidermal growth factor in colon carcinoma cells with an amplified epidermal growth factor receptor derived from a familial adenomatous polyposis patient. Cancer Res. 1991, 51, 1452-1459.
Guertin, D. A.; Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell 2007, 12, 9-22.
Gulati, N.; Laudet, B.; Zohrabian, V. M.; Murali, R.; Jhanwar-Uniyal, M. The antiproliferative effect of quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res. 2006, 26, 1177-1181.
Gullick, W. Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br. Med. Bull. 1991, 47, 87-98.
Guo, C.; Linton, A.; Jalaie, M.; Kephart, S.; Ornelas, M.; Pairish, M.; Greasley, S.; Richardson, P.; Maegley, K.; Hickey, M. Discovery of 2-((1H-benzo [d] imidazol-1-yl) methyl)-4H-pyrido [1, 2-a] pyrimidin-4-ones as novel PKM2 activators. Bioorg. Med. Chem. Lett. 2013, 23, 3358-3363.
Hamanaka, R. B.; Chandel, N. S. Targeting glucose metabolism for cancer therapy. The J. exp. Med. 2012, 209, 211-215.
Harada, K.; Saheki, S.; Wada, K.; Tanaka, T. Purification of four pyruvate kinase isozymes of rats by affinity elution chromatography. Biochim. Biophys. Acta. Enzymol. 1978, 524, 327-339.
Hardt, P.; Toepler, M.; Ngoumou, B.; Rupp, J.; Kloer, H. Measurement of fecal pyruvate kinase type M2 (tumor M2-PK) concentrations in patients with gastric cancer, colorectal cancer, colorectal adenomas and controls. Anticancer Res. 2002, 23, 851-853.
Harris, R.; Chung, E.; Coffey, R. EGF receptor ligands. In The EGF Receptor Family: Biologic Mechanisms and Role in Cancer , 1st edition; Carpenter, G. Eds; Elsevier: Nashville, U.S.A. 2003; 3-8pp.
Hathurusinghe, H. R.; Goonetilleke, K. S. Current status of tumor M2 pyruvate kinase (tumor M2-PK) as a biomarker of gastrointestinal malignancy. Ann. Surg. Oncol. 2007, 14, 2714-2720.
Hitosugi, T.; Kang, S.; Vander Heiden, M. G.; Chung, T. W.; Elf, S.; Lythgoe, K.; Dong, S.; Lonial, S.; Wang, X.; Chen, G. Z. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Science''s STKE 2009, 2, 1-8.
Hoshino, A.; Hirst, J. A.; Fujii, H. Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase. J. Biol. Chem. 2007, 282, 17706-17711.
Hu, T.; Li, C. Convergence between Wnt-β-catenin and EGFR signaling in cancer. Mol. Cancer 2010, 9, 236.
Hwang, J.-T.; Kwon, D. Y.; Yoon, S. H. AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. New biotechnol. 2009, 26, 17-22.
Iqbal, M. A.; Bamezai, R. N. Resveratrol inhibits cancer cell metabolism by down regulating pyruvate kinase M2 via inhibition of mammalian target of rapamycin. PLoS ONE 2012, 7, 1-8.
Janne, P. A.; Mayer, R. J. Chemoprevention of colorectal cancer. New Engl. J. Med. 2000, 342, 1960-1968.
Jaakkola, P.; Mole, D. R.; Tian, Y.-M.; Wilson, M. I.; Gielbert, J.; Gaskell, S. J.; von Kriegsheim, A.; Hebestreit, H. F.; Mukherji, M.; Schofield, C. J. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001, 292, 468-472.
Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W.; Fong, H. H.; Farnsworth, N. R.; Kinghorn, A. D.; Mehta, R. G. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997, 275, 218-220.
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M. J. Cancer statistics, 2008. CA. Cancer J. Clin. 2008, 58, 71-96.
Jiang, J. k.; Boxer, M. B.; Vander Heiden, M. G.; Shen, M.; Skoumbourdis, A. P.; Southall, N.; Veith, H.; Leister, W.; Austin, C. P.; Park, H. W. Evaluation of thieno [3, 2- b] pyrrole [3, 2- d] pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg. Med. Chem. Lett. 2010, 20, 3387-3393.
Joe, A. K.; Liu, H.; Suzui, M.; Vural, M. E.; Xiao, D.; Weinstein, I. B. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin. Cancer Res. 2002, 8, 893-903.
Johnson, S. M.; Gulhati, P.; Arrieta, I.; Wang, X.; Uchida, T.; Gao, T.; Evers, B. M. Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res. 2009, 29, 3185-3190.
Juan, M. E. l.; Wenzel, U.; Daniel, H.; Planas, J. M. Resveratrol induces apoptosis through ROS-dependent mitochondria pathway in HT-29 human colorectal carcinoma cells. J. Agric. Food Chem. 2008, 56, 4813-4818.
Kaelin Jr, W. G.; Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 2008, 30, 393-402.
Kefas, B.; Comeau, L.; Erdle, N.; Montgomery, E.; Amos, S.; Purow, B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro-oncology 2010, 12, 1102-1112.
Kim, H. J.; Kim, S. K.; Kim, B. S.; Lee, S. H.; Park, Y. S.; Park, B. K.; Kim, S. J.; Kim, J.; Choi, C.; Kim, J. S. Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J. Agric. Food Chem. 2010, 58, 8643-8650.
Kim, H. S.; Wannatung, T.; Lee, S.; Yang, W. K.; Chung, S. H.; Lim, J. S.; Choe, W.; Kang, I.; Kim, S.-S.; Ha, J. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis 2012, 17, 938-949.
Kim, J. W.; Zeller, K. I.; Wang, Y.; Jegga, A. G.; Aronow, B. J.; O''Donnell, K. A.; Dang, C. V. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol. Cell. Biol. 2004, 24, 5923-5936.
Kinzler, K. W.; Vogelstein, B. Lessons from Hereditary Review Colorectal Cancer. Cell 1996, 87, 159-170.
Korutla, L.; Kumar, R. Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim. Biophys. Acta. Mol. Cell Res. 1994, 1224, 597-600.
Korutla, L.; Cheung, J. Y.; Medelsohn, J.; Kumar, R. Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin. Carcinogenesis 1995, 16, 1741-1745.
Kung, C.; Hixon, J.; Choe, S.; Marks, K.; Gross, S.; Murphy, E.; DeLaBarre, B.; Cianchetta, G.; Sethumadhavan, S.; Wang, X. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 2012, 19, 1187-1198.
Kunnumakkara, A. B.; Anand, P.; Aggarwal, B. B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008, 269, 199-225.
Kwon, O. H.; Kang, T. W.; Kim, J. H.; Kim, M.; Noh, S. M.; Song, K. S.; Yoo, H. S.; Kim, W. H.; Xie, Z.; Pocalyko, D. Pyruvate kinase M2 promotes the growth of gastric cancer cells via regulation of Bcl-xL expression at transcriptional level. Biochem. Biophys. Res. Commun. 2012, 423, 38-44.
Lu, L.; Wang, L.; Jiang, G.; Zhang, C.; Zeng, F. Silencing pyruvate kinase M2 sensitizes human prostate cancer PC3 cells to gambogic acid-induced apoptosis. Natl. j. androl.2013, 19, 102-106.
Luftner, D.; Mesterharm, J.; Akrivakis, C.; Geppert, R.; Petrides, P.; Wernecke, K. D.; Possinger, K. Tumor type M2 pyruvate kinase expression in advanced breast cancer. Anticancer Res. 2000, 20, 5077-5082.
Lee, J.; Kim, H. K.; Han, Y. M.; Kim, J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int. J. biochem. cell biol. 2008, 40, 1043-1054.
Lee, Y. K.; Park, S. Y.; Kim, Y. M.; Lee, W. S.; Park, O. J. AMP kinase/ cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp. Mol. Med. 2009, 41, 201-207.
Li, R.; Liu, J.; Xue, H.; Huang, G. Diagnostic value of fecal tumor M2‐pyruvate kinase for CRC screening: A systematic review and meta‐analysis. Int. J. Cancer 2012, 131, 1837-1845.
Lim, J. Y.; Yoon, S. O.; Seol, S. Y.; Hong, S. W.; Kim, J. W.; Choi, S. H.; Cho, J. Y. Overexpression of the M2 isoform of pyruvate kinase is an adverse prognostic factor for signet ring cell gastric cancer. World j. gastroenterol. 2012, 18, 4037.
Liu, Y.; Wang, L.; Wu, Y.; Lv, C.; Li, X.; Cao, X.; Yang, M.; Feng, D.; Luo, Z. Pterostilbene exerts antitumor activity against human osteosarcoma cells by inhibiting the JAK2/STAT3 signaling pathway. Toxicology 2013, 304, 120-131.
Luo, W.; Hu, H.; Chang, R.; Zhong, J.; Knabel, M.; O''Meally, R.; Cole, R. N.; Pandey, A.; Semenza, G. L. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011, 145, 732-744.
Luo, W.; Semenza, G. L. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol. Metab. 2012, 23, 560-566.
Lv, L.; Li, D.; Zhao, D.; Lin, R.; Chu, Y.; Zhang, H.; Zha, Z.; Liu, Y.; Li, Z.; Xu, Y. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 2011, 42, 719-730.
Martensson, A.; Jung, A.; Cederquist, K.; Stenling, R.; Palmqvist, R. β-catenin expression in relation to genetic instability and prognosis in colorectal cancer. Oncol. Reports 2007, 17, 447-452.
Mackenzie, G. G.; Queisser, N.; Wolfson, M. L.; Fraga, C. G.; Adamo, A. M.; Oteiza, P. I. Curcumin induces cell‐arrest and apoptosis in association with the inhibition of constitutively active NF‐κB and STAT3 pathways in Hodgkin''s lymphoma cells. Int. J. Cancer 2008, 123, 56-65.
Markowitz, S. D.; Bertagnolli, M. M. Molecular basis of colorectal cancer. New Engl. J. Med. 2009, 361, 2449-2460.
Marshall, S.; Bacote, V.; Traxinger, R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 1991, 266, 4706-4712.
Mazurek, S.; Boschek, C. B.; Hugo, F.; Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol. 2005, 15, 300-308.
Mazurek, S.; Drexler, H. C.; Troppmair, J.; Eigenbrodt, E.; Rapp, U. R. Regulation of pyruvate kinase type M2 by A-Raf: a possible glycolytic stop or go mechanism. Anticancer Res. 2007, 27, 3963-3971.
Mazurek, S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. j. biochem. cell biol. 2011, 43, 969-980.
McCormack, D.; Schneider, J.; McDonald, D.; McFadden, D. The antiproliferative effects of pterostilbene on breast cancer in vitro are via inhibition of constitutive and leptin-induced Janus kinase/signal transducer and activator of transcription activation. Am. J. Surg. 2011, 202, 541-544.
McCormack, D.; McFadden, D. Pterostilbene and cancer: current review. J. Surg. Res. 2012, 173, e53-e61.
Meijer, T. W.; Kaanders, J. H.; Span, P. N.; Bussink, J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin. Cancer Res. 2012, 18, 5585-5594.
Meng, W.; Zhu, H.-H.; Xu, Z.-F.; Cai, S.-R.; Dong, Q.; Pan, Q.-R.; Zheng, S.; Zhang, S.-Z. Serum M2-pyruvate kinase: A promising non-invasive biomarker for colorectal cancer mass screening. World J. gastrointest. Oncol. 2012, 4, 145-151.
Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. of Oncol. 2012, 40, 1020-1028.
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55-63.
Narayan, S. Curcumin, a multi-functional chemopreventive agent, blocks growth of colon cancer cells by targeting β-catenin-mediated transactivation and cell–cell adhesion pathways. J. mol. Histol. 2004, 35, 301-307.
Netzker, R.; Weigert, C.; Brand, K. Role of the stimulatory proteins Sp1 and Sp3 in the regulation of transcription of the rat pyruvate kinase M gene. Eur. J. Biochem. 1997, 245, 174-181.
Noguchi, T.; Yamada, K.; Inoue, H.; Matsuda, T.; Tanaka, T. The L-and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J. Biol. Chem. 1987, 262, 14366-14371.
Normanno, N.; Bianco, C.; De Luca, A.; Maiello, M.; Salomon, D. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr. Relat. Cancer 2003, 10, 1-21.
Novak Kujundžić, R.; Grbeša, I.; Ivkić, M.; Katdare, M.; Gall‐Trošelj, K. Curcumin downregulates H19 gene transcription in tumor cells. J. Cell. Biochem. 2008, 104, 1781-1792.
Nutakul, W.; Sobers, H. S.; Qiu, P.; Dong, P.; Decker, E. A.; McClements, D. J.; Xiao, H. Inhibitory effects of resveratrol and pterostilbene on human colon cancer cells: a side-by-side comparison. J. Agric. Food Chem. 2011, 59, 10964-10970.
Ochoa-Ruiz, E.; Diaz-Ruiz, R. Anaplerosis in cancer: Another step beyond the warburg effect. Am. J. Mol. Biol. 2012, 2, 291-303.
Oremek, G.; Teigelkamp, S.; Kramer, W.; Eigenbrodt, E.; Usadel, K. The pyruvate kinase isoenzyme tumor M2 (Tu M2-PK) as a tumor marker for renal carcinoma. Anticancer Res. 1998, 19, 2599-2601.
Pahlke, G.; Ngiewih, Y.; Kern, M.; Jakobs, S.; Marko, D.; Eisenbrand, G. Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. J. Agric. Food Chem. 2006, 54, 7075-7082.
Pan, M. H.; Ho, C. T. Chemopreventive effects of natural dietary compounds on cancer development. Chem. Soc. Rev. 2008, 37, 2558-2574.
Pan, M. H.; Lai, C. S.; Wu, J. C.; Ho, C. T. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol. Nutr. Food Res. 2011, 55, 32-45.
Panasyuk, G.; Espeillac, C.; Chauvin, C.; Pradelli, L. A.; Horie, Y.; Suzuki, A.; Annicotte, J.-S.; Fajas, L.; Foretz, M.; Verdeguer, F. PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nat. Commun. 2012, 3, 672.
Park, C. H.; Chang, J. Y.; Hahm, E. R.; Park, S.; Kim, H.-K.; Yang, C. H. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun. 2005a, 328, 227-234.
Park, C. H.; Hahm, E. R.; Park, S.; Kim, H.-K.; Yang, C. H. The inhibitory mechanism of curcumin and its derivative against β-catenin/Tcf signaling. FEBS Lett. 2005b, 579, 2965-2971.
Paul, S.; Rimando, A. M.; Lee, H. J.; Ji, Y.; Reddy, B. S.; Suh, N. Anti-inflammatory action of pterostilbene is mediated through the p38 mitogen-activated protein kinase pathway in colon cancer cells. Cancer Prevention Res. 2009, 2, 650-657.
Paul, S.; DeCastro, A. J.; Lee, H. J.; Smolarek, A. K.; So, J. Y.; Simi, B.; Wang, C. X.; Zhou, R.; Rimando, A. M.; Suh, N. Dietary intake of pterostilbene, a constituent of blueberries, inhibits the β-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 2010, 31, 1272-1278.
Philp, A. J.; Campbell, I. G.; Leet, C.; Vincan, E.; Rockman, S. P.; Whitehead, R. H.; Thomas, R. J.; Phillips, W. A. The phosphatidylinositol 3’-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res. 2001, 61, 7426-7429.
Pottek, T.; Muller, M.; Blum, T.; Hartmann, M. Tu-M2-PK in the blood of testicular and cubital veins in men with testicular cancer. Anticancer Res. 2000, 20, 5029.
Pratheeshkumar, P.; Budhraja, A.; Son, Y.-O.; Wang, X.; Zhang, Z.; Ding, S.; Wang, L.; Hitron, A.; Lee, J.-C.; Xu, M. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS ONE 2012, 7, 1-10.
Radinsky, R.; Risin, S.; Fan, D.; Dong, Z.; Bielenberg, D.; Bucana, C. D.; Fidler, I. J. Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin. Cancer Res. 1995, 1, 19-31.
Ravindran, J.; Prasad, S.; Aggarwal, B. B. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS. J. 2009, 11, 495-510.
Rizk, P.; Barker, N. Gut stem cells in tissue renewal and disease: methods, markers, and myths. WIREs Syst. Biol. Med. 2012, 4, 475-496.
Roberts, R. B.; Min, L.; Washington, M. K.; Olsen, S. J.; Settle, S. H.; Coffey, R. J.; Threadgill, D. W. Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc. Natl. Acad. Sci. 2002, 99, 1521-1526.
Roigas, J.; Schulze, G.; Raytarowski, S.; Jung, K.; Schnorr, D.; Loening, S. A. Tumor M2 pyruvate kinase in plasma of patients with urological tumors. Tumor Biol. 2001, 22, 282-285.
Ross, J. A.; Kasum, C. M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19-34.
Roy, H. K.; Olusola, B. F.; Clemens, D. L.; Karolski, W. J.; Ratashak, A.; Lynch, H. T.; Smyrk, T. C. AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis 2002, 23, 201-205.
Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G. L. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol. 2012, 83, 6-15.
Segditsas, S.; Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 2006, 25, 7531-7537.
Semenza, G. L. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr. Opin. Genet. Dev. 1998, 8, 588-594.
Semenza, G. L. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 2010, 20, 51-56.
Shan, B. E.; Wang, M. X.; Li, R. Q. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer Invest. 2009, 27, 604-612.
Shapiro, A. L.; Vinuela, E. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun. 1967, 28, 815-820.
Shashni, B.; Sakharkar, K. R.; Nagasaki, Y.; Sakharkar, M. K. Glycolytic enzymes PGK1 and PKM2 as novel transcriptional targets of PPARγ in breast cancer pathophysiology. J. Drug Target. 2013, 21, 161-174.
Shehzad, A.; Wahid, F.; Lee, Y. S. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm. 2010, 343, 489-499.
Shi, H. s.; Li, D.; Zhang, J.; Wang, Y. s.; Yang, L.; Zhang, H. l.; Wang, X. h.; Mu, B.; Wang, W.; Ma, Y. Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci. 2010, 101, 1447-1453.
Signorelli, P.; Ghidoni, R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J. Nutr. Biochem. 2005, 16, 449-466.
Singh, S. From exotic spice to modern drug? Cell 2007, 130, 765-768.
Spoden, G. A.; Morandell, D.; Ehehalt, D.; Fiedler, M.; Jansen‐Durr, P.; Hermann, M.; Zwerschke, W. The SUMO‐E3 ligase PIAS3 targets pyruvate kinase M2. J. Cell. Biochem. 2009, 107, 293-302.
Stetak, A.; Veress, R.; Ovadi, J.; Csermely, P.; Keri, G.; Ullrich, A. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res. 2007, 67, 1602-1608.
Suh, N.; Paul, S.; Hao, X.; Simi, B.; Xiao, H.; Rimando, A. M.; Reddy, B. S. Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats. Clin. Cancer Res. 2007, 13, 350-355.
Sun, Q.; Chen, X.; Ma, J.; Peng, H.; Wang, F.; Zha, X.; Wang, Y.; Jing, Y.; Yang, H.; Chen, R. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl. Acad. Sci. 2011, 108, 4129-4134.
Surh, Y.J.; Chun, K.S., Cancer chemopreventive effects of curcumin. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, 1st; Aggarwal, B.B.; Surh, Y.J.; Shishodia, S. Eds; Springer: Houston, U.S.A. 2007; 149-172 pp.
Szende, B.; Tyihak, E.; Kiraly-Veghely, Z. Dose-dependent effect of resveratrol on proliferation and apoptosis in endothelial and tumor cell cultures. Exp. Mol. Med. 2000, 32, 88-92.
Thangaraju, M.; Carswell, K.; Prasad, P.; Ganapathy, V. Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3. Biochem. J. 2009, 417, 379-389.
Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. 1979, 76, 4350-4354.
Vanamala, J.; Radhakrishnan, S.; Reddivari, L.; Bhat, V. B.; Ptitsyn, A. Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways-A proteomic approach. Proteome Sci. 2011, 9, 49-60.
Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Sci. Signalling 2009, 324, 1029-1033.
Vander Heiden, M. G.; Christofk, H. R.; Schuman, E.; Subtelny, A. O.; Sharfi, H.; Harlow, E. E.; Xian, J.; Cantley, L. C. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem. Pharmacol. 2010, 79, 1118-1124.
Wang, G. L.; Jiang, B.-H.; Rue, E. A.; Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. 1995, 92, 5510-5514.
Wang, Q.; Zhang, Y.; Yang, C.; Xiong, H.; Lin, Y.; Yao, J.; Li, H.; Xie, L.; Zhao, W.; Yao, Y. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010a, 327, 1004-1007.
Wang, Y.; Romigh, T.; He, X.; Orloff, M. S.; Silverman, R. H.; Heston, W. D.; Eng, C. Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and-independent mechanisms in prostate cancer cell lines. Human Mol. Genet. 2010b, 19, 4319-4329.
Wang, Z.; Chatterjee, D.; Jeon, H. Y.; Akerman, M.; Vander Heiden, M. G.; Cantley, L. C.; Krainer, A. R. Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons. J. Mol. Cell Biol. 2012, 4, 79-87.
Wanitsuwan, W.; Kanngurn, S.; Boonpipattanapong, T.; Sangthong, R.; Sangkhathat, S. Overall expression of beta-catenin outperforms its nuclear accumulation in predicting outcomes of colorectal cancers. World J. Gastroenterol. 2008, 14, 6052-6059.
Warburg, O. On the origin of cancer cells. Science 1956, 123, 309-314.
Wechsel, H.; Petri, E.; Bichler, K.-H.; Feil, G. Marker for renal cell carcinoma (RCC): the dimeric form of pyruvate kinase type M2 (Tu M2-PK). Anticancer Res. 1999, 19, 2583-2590.
White, B. D.; Chien, A. J.; Dawson, D. W. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology 2011.
Wong, N.; De Melo, J.; Tang, D. PKM2, a central point of regulation in cancer metabolism. Int. J. Cell Biol. 2013, 2013, 1-12.
Wu, H.; Liang, X.; Fang, Y.; Qin, X.; Zhang, Y.; Liu, J. Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1α expression in colon carcinoma cells. Biomed. Pharmacother. 2008, 62, 613-621.
Yang, W.; Xia, Y.; Ji, H.; Zheng, Y.; Liang, J.; Huang, W.; Gao, X.; Aldape, K.; Lu, Z. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 2011, 480, 118-122.
Yang, W.; Xia, Y.; Cao, Y.; Zheng, Y.; Bu, W.; Zhang, L.; You, M. J.; Koh, M. Y.; Cote, G.; Aldape, K.; Li, Y.; Verma, I. M.; Chiao, P. J.; Lu, Z. EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis. Mol. Cell 2012a, 48, 771-784.
Yang, W.; Xia, Y.; Hawke, D.; Li, X.; Liang, J.; Xing, D.; Aldape, K.; Hunter, T.; Alfred Yung, W. K.; Lu, Z. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012b, 150, 685-696.
Yang, W.; Zheng, Y.; Xia, Y.; Ji, H.; Chen, X.; Guo, F.; Lyssiotis, C. A.; Aldape, K.; Cantley, L. C.; Lu, Z. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 2012c, 14, 1295-1304.
Yang, W.; Lu, Z. Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett. 2013, 1-6.
Ye, J.; Mancuso, A.; Tong, X.; Ward, P. S.; Fan, J.; Rabinowitz, J. D.; Thompson, C. B. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl. Acad. Sci. 2012, 109, 6904-6909.
Yeo, S. C. M.; Ho, P. C.; Lin, H. S. Pharmacokinetics of pterostilbene in Sprague‐Dawley rats: The impacts of aqueous solubility, fasting, dose escalation, and dosing route on bioavailability. Mol. Nutr. Food Res. 2013, 57, 1015-1025.
Yu, S.; Shen, G.; Khor, T. O.; Kim, J. H.; Kong, A. N. T. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol. Cancer Ther. 2008, 7, 2609-2620.
Zhou, C. F.; Li, X. B.; Sun, H.; Zhang, B.; Han, Y. S.; Jiang, Y.; Zhuang, Q. L.; Fang, J.; Wu, G. H. Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells. IUBMB Life 2012, 64, 775-782.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top