跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 19:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江弦旃
研究生(外文):Hsuan-Chan Chiang
論文名稱:軍規電腦散熱裝置改良及效益研究
論文名稱(外文):The Improvement and Efficiency Study of Cooling Devices for Military Computer
指導教授:陳清祺陳清祺引用關係李達生李達生引用關係
指導教授(外文):Chin-Chi ChengDa-Sun Lee
口試委員:曾妍潔苗志銘
口試日期:2018-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:106
中文關鍵詞:熱傳導效率SWaP2-C2軍規電腦
外文關鍵詞:Conduction EfficiencySWaP2-C2Military Computer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
堅固的軍規電腦中,以防塵阻水之封閉盒式電腦系統,為當今軍事嵌入型計算市場的主流;對於其無法於內部設置強制冷卻的規格限制,使得具備讓元件產生之熱能得以快速擴散、傳遞至外部環境進行熱交換之良好熱傳導機制,更顯得格外重要。
本研究針對一無法達到操作環境溫度需求之軍規電腦,在不變動其外部形態尺寸、運算性能、能源功耗等SWaP2-C2因子條件,以及內部既有的零組件配置下,分別應用熱管、均溫板與天然石墨等材料,搭配不同的機械結構進行設計改良;以圖在自然及強制對流等不同環境變異中,均有效提高整體之散熱效益,達成所需之規格要求。
依據制定的實驗方法進行測試,結果發現,各改良之散熱基座在自然對流環境中,分別可提升5 ~ 11 °C的操作環溫;對於兩處理器核心至操作環境之間的熱阻降低率,分別達到6.58 ~ 17.97 %與1.66 ~ 6.77 %。
而為了避免強制對流時的預測操作環溫被過於優化,本研究係利用固定風速,先求出各散熱基座對於溫度變化的熱阻係數關係式,再將不同風速所致之熱阻,相乘上對應的溫度變化之係數,以更加正確求得系統容許的操作環溫。由實驗結果顯示,改良之散熱基座僅需被施以1.38 m/s之空氣流速,即可使系統達成操作環溫71 °C之要求;對於預測操作環溫方面,最高達到減少20.84 %的熱阻差異,以及6.3 °C的操作環溫誤差。
最終,各改良之的散熱基座,除了可提升整體之散熱效益之外,重量增加率最高為2.78 %,以完整系統來總觀,僅僅只增加1.05 %,影響非常些微。
For the military-grade rugged computer market, the current mainstream of embedded computing is closed-box computing system with waterproof and dustproof requirement. Since the spec make the setting of inner forced cooling system impossible, it is particularly important to design an efficient heat conduct mechanism that allows the heat generated by the components to be rapidly spread out and exchange with the external environment.
Instead of changing the SWaP2-C2 condition such as size, computing performance and energy consumption, these researches aims at the various mechanical structures improvement by using heat pipes, vapor chambers and graphite and also reallocate the existing components for those military grade computer that cannot meet the temperature requirements when operating. These solutions can thus achieve the required specifications by improve the overall dissipation efficiency in both natural and forced convection environment.
The test result based on above experimental method is 5 ~ 11 °C operating temperature improvement in the natural environment for the entire redesigned cooling devices. As for the thermal resistance reduction rate between the two processor cores and the operating environment, 6.58 ~ 17.97 % and 1.66 ~ 6.77 % is achieved respectively.
To avoid the over-optimized forecast of the operating environment temperature of forced convection, these researches apply below steps. Firstly, we use the fixed wind speed to get the thermal resistance coefficient formula of temperature changes for all the cooling devices. Then multiplies the corresponding temperature change coefficient of various wind velocity to get a more relatively correct operating environment temperature.
The experiment showed that only 1.38 m/s wind velocity on the improved cooling devices may achieve 71 °C operating environment temperature requirement. It also increases 20.84 % thermal resistance and 6.3 °C over-optimized forecast on the operating environment temperature.
Moreover, the efficient improvement of the overall heat dissipation for the redesigned cooling devices only cause very minor impact for the whole system on the weight increase. The rate is lower that 2.78 % for the heating mechanism and 1.05 % for the system.
摘 要 I
ABSTRACT III
誌 謝 V
目 錄 VI
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 4
1.3文獻回顧 5
1.4論文架構 8
第二章 軍規電腦構造解析與改良提案 9
2.1 軍規電腦系統主機架構 11
2.2 基本熱-能傳遞理論 21
2.3 散熱基座的設計改善 29
第三章 實驗設備及方法 44
3.1實驗儀器與設備 44
3.2測試軟體與監測程式 53
3.3實驗方法 60
3.4實驗步驟 75
第四章 結果與討論 80
4.1 水平擺放自然對流 80
4.2 垂直擺放自然對流 83
4.3固定風速強制對流 85
4.4 固定環溫強制對流 90
4.5 重量比較 97
第五章 結論與建議 100
5.1結論 100
5.2建議與未來展望 101
參考文獻 102
[1] 翟大銓,工業電腦產業之資源能力與國際化動機,對其國際化策略影響之研究,碩士論文,淡江大學管理科學研究所,2004。
[2] 卓永進,OEM/ODM/OBM模式在台灣工業電腦的適用性,碩士論文,國立政治大學企業管理研究所,2006。
[3] 工業電腦產業淺談,2010/5/26。
http://www.moneydj.com/KMDJ/Report/ReportViewer.aspx?a=1b12d907-56e4-4fba-afda-47d374a81ded#ixzz42tzBWoCd, 2018/6/19
[4] 徐千祐,淺談PC電腦的等級劃分,資訊論壇,2002/9/1。
http://www.fhl.net/main/mike/mike2.html, 2018/6/19
[5] K. Thomposn, Department of Defense Test Method Standard, MIL-STD-810G Committee Chairman, 2008/10/31.
http://everyspec.com/MIL-STD/MIL-STD-0800-0899/MIL-STD-810G_CHG-1_50560/, 2018/6/19
[6] 王明德,軍用電腦設計 強固+穩定成第一標準,CTIMES,2014/8/4。
https://www.ctimes.com.tw/DispArt/tw/軍用電腦/工業電腦/1408041125C6.shtml, 2018/6/19
[7] 軍規與商規電腦,2015/8/8。
http://www.mdc.idv.tw/mdc/navy/usanavy/E-Aegis-cots.htm, 2018/6/19
[8] M. Southworth, Case study: EFV Keeps Pace with Ethernet to Actualize Net-Centric Warfare, Military Embedded System, 2009/8/14.
http://mil-embedded.com/articles/case-pace-ethernet-actualize-net-centric-warfare/, 2018/6/19
[9] C. Howard, Warfighters on the Digital Battlefield Require Robust Information Technology for Secure, Reliable, Real-Time Access to Mission-Critical Information, "Military & Aerospace, 2010/6/16.
http://www.militaryaerospace.com/articles/2010/06/warfighters-on-the.html, 2018/6/19
[10] M. Southworth, Rugged Networking Systems Provide Backbone for Defense Communications, Government Security News, 2012/3/30.
http://gsnmagazine.com/article/26005/rugged_networking_systems_provide_backbone_defense, 2018/6/19
[11] M. Jones, Getting the Heat Out of Ever Smaller Systems, RTC magazine, 2013/8.
http://rtcmagazine.com/articles/view/103197, 2016/4/7
[12] VMEbus International Trade Association, VITA 75 Rugged Small Form Factor - Base Standard, VITA, 2012/7/5.
http://www.vita.com, 2016/4/7
[13] A. T. Morrison, Optimization of Heat Sink Fin Geometries for Heat Sink in Natural Convection, Thermal Phenomena in Electronic Systems, 1992. I-THERM III, InterSociety Conference on, pp.145-148, 1992.
[14] S. Lee, Calculating Spreading Resistance in Heat Sinks, 1998/1/1.
http://www.electronics-cooling.com/1998/01/calculating-spreading-resistance-in-heat-sinks/, 2018/6/19
[15] I. Stotani, M. Mochizuki, K. Mashiko, Y.Saito, The Design and Testing of the Super Fiber Heat Pipes for Electronics Cooling Applications, Sixteen IEEE SEMI-THERM Symposium, pp. 27 – 32, 2000.
[16] R. Ponnappan, A Novel Micro-Capillary Groove-Wick Miniature Heat Pipe, Energy Conversion Engineering Conference and Exhibit, (IECEC) 35th InterSociety, Vol. 2, pp. 818-826, 2000.
[17] S. H. Moon, H. G. Yun, Gunn Hwang, T. G. Choy, Experimental Study on the Performance of Miniature Heat Pipes with Woven-Wire Wick, IEEE Transactions on Components and Packaging Technologies, Vol. 24, Issue.4, pp. 591 – 595, 2001.
[18] 王暉雄,熱管散熱模組效能之探討,碩士論文,成功大學工程科學系,2002/6。
[19] G. Chen, J. Capp, G. Getz, D. Flaherty and J. Norley, Optimum Design of Heat Sinks Using Non-Isotropic Graphite Composites, ASME Summer Heat Transfer Conference, Las Vegas, Nevada, USA, 2003/7/21.
[20] 陳賢仁,散熱鰭片使用於自然對流、強制氣冷與水冷之散熱效能比較,碩士論文,成功大學工程科學系,2006/7。
[21] R. Boukhanouf, A. Haddad, M.T. North, C. Buffone, Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera, Applied Thermal Engineering, Volume 26, Issues 17–18, Pages 2148-2156, 2006/12.
[22] 丁瑞顯,手持式工業電腦之散熱設計最佳化,碩士論文,大同大學機械工程研究所,2010/7。
[23] R. Boukhanouf, A. Haddad, A CFD analysis of an electronics cooling enclosure for application in telecommunication systems, Applied Thermal Engineering, Volume 30, Issue 16, Pages 2426-2434, 2010/11.
[24] CONGATEC AG, Wärmeverteiler mit flexibel gelagertem Wärmerohr, DE202010014106 (U1), 2010/12/16.
[25] P. Naphon, Somchai Wongwises, Gunn Hwang, Songkran Wiriyasart, On the thermal cooling of central processing unit of the PCs with vapor chamber, International Communications in Heat and Mass Transfer, Vol. 39, Issue.8, pp. 1165 – 1168, 2012.
[26] 游立傑,崁入式系統低熱阻導熱結構,中華明國專利公告號碼M451797,2013/4/21。
[27] 黃聖翔,使用石墨薄片提升熱沉之散熱性能,碩士論文,虎尾科技大學機械設計工程系,2014/7。
[28] 游繡綾、江弦旃,具彈性浮動及滑動之熱傳導結構,中華明國專利公告號碼M500441,2015/5/1。
[29] 游繡綾,工業電腦用具多自由度熱傳導結構之研究,中國機械工程學會第三十三屆全國學術研討會,臺北科技大學製造科技研究所,2016/12/4。
[30] ADLINKTECH , HPERC-IBR-HH Datasheet, 2016/6/30.
https://emb.adlinktech.com/Products/Rugged_COTS_computer_systems/VITA-75MilitaryComputer_HPERC/HPERC-IBR-HH?lang=en, 2018/6/19
[31] 維基百科編者, 國際防護等級認證, 維基百科, 自由的百科全書, 2016/6/1。
https://zh.wikipedia.org/wiki/%E5%9B%BD%E9%99%85%E9%98%B2%E6%8A%A4%E7%AD%89%E7%BA%A7%E8%AE%A4%E8%AF%81, 2018/6/19
[32] CEI/IEC 60529 Edition 2.1, Degrees of protection provided by enclosures (IP Code), IEC, 2001/2.
[33] ISO 20653 First edition, Road vehicles-Degrees of protection (IP Code)- Protection of electrical equipment against foreign objects, water and access, ISO, 2006/8/15.
https://www.iso.org/standard/58048.html, 2018/6/19
[34] Wikipedia contributors, FR-4, Wikipedia, The Free Encyclopedia, 2017/1/10.
https://en.wikipedia.org/w/index.php?title=FR-4&oldid=759325345, 2018/6/19
[35] Intel, Chief River Thermal Mechanical Design Guide, Document Number: 467118, Rev1.0, 2012/1.
[36] Nvidia, N14P-LP/-GE/-GS/-GT Electrical & Thermal Design Guidelines, Document Number: DA-06417-001, Rev1.1, 2013/2.
[37] G. N. Ellison, Thermal computations for electronic equipment, Krieger Publishing Company, 1984.
[38] GRAFTech, SPREADERSHIELDTM Heat Spreaders Technical Data Sheet 321, 2017/12/19.
http://neograf.com/wp-content/uploads/NGS_TDS321-SpreadershieldHeatSpreaders.pdf, 2018/6/19
[39] GRAFTech, HITHERMTM Thermal Interface Materials Technical Data Sheet 318, 2017/12/19.
http://neograf.com/wp-content/uploads/NGS_TDS318-HITHERM.pdf, 2018/6/19
[40] GRAFTech, SPREADERSHIELDTM Design Options Technical Data Sheet 322, 2017/11/30.
http://neograf.com/wp-content/uploads/NGS_TDS322-SpreadershieldDesignOptions.pdf, 2018/6/19
[41] 廖建能,熱電效應之原理與應用介紹,電子月刊,第九卷,第四期,2003,160-167。
[42] D. Potter, Measuring Temperature with Thermocouples-a Tutorial, National Instruments Corporation, Application Note 043, 1996/11.
[43] YOKOGAWA, DR130 Data Sheet.
https://web-material3.yokogawa.com/IMDR231-01E_090.pdf, 2018/6/19
[44] Degree Controls Inc, UAS2000 Data Sheet.
https://www.degreec.com/en/download-center/item/uas2000-data-sheet.html, 2018/6/19
[45] Long Win Science and Technology Corporation, LW-9022 Series-Natural Convection Chamber Data Sheet, No.048, 2016/2.
http://www.longwin.com/download/catalogue-eng/Natural_Convection_ENG_201602.pdf, 2018/6/19
[46] Long Win Science and Technology Corporation, AMCA 210 Wind Tunnel Data Sheet
http://www.longwin.com/download/catalogue-eng/AMCA_EDM_ENG_2014.pdf, 2018/6/19
[47] KSON Instrument Technology Corporation, Programmable Temperature & Humidity Chamber Data Sheet, 2014/10.
http://www.kson.com.tw/pdf/THS.pdf, 2018/6/19
[48] Intel® Thermal Analysis Tool (TAT) User Guide
https://designintools.intel.com/product_p/iot11.htm, 2018/6/19
[49] ADDA Corp., Ltd, AS12038 Series Data Sheet
http://www.adda.com.tw/data/file/AS12038.pdf, 2018/6/19
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top