|
參 考 文 獻 1. Anthony, K.H.T., et al., 2001, “Constraint-Based Clustering in Large Databases”, ICDT ‘01 Proceedings of the 8th International Conference on Database Theory, vol.1973, pp.405-419, London. 2. Baoqing, Jiang, Chong, Han, & Ling-Sheng Li, 2009, “Mining opened frequent itemsets to generate maximal Boolean association rules”, IEEE International Conference on Granular Computing, pp.274-277, Nanchang. 3. Chin-Chen, Chang, Yu-Chiang, Li, & Jung-San, Lee, 2005, “ An Efficient Algorithm for Incremental Mining of Association Rules”, RIDE ‘05 Proceedings of the 15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications, pp.3-10, Washington DC. 4. Clifford, Lynch, 2008, “Big data: How do your data grow?”, Nature, vol.455, pp. 28-29, September. 5. Dongwon, Lee, Sung-Hyuk, Park, & Songchun, Moon, 2011, “High-Utility Rule Mining for Cross-Selling”, HICSS ‘11 Proceedings of the 2011 44th Hawaii International Conference on System Sciences, pp.1-10, Washington DC. 6. Doug, H., et al., 2008, “Big data: The future of biocuration”, Nature, vol.455, pp. 47-50, September. 7. Gilbert, T.L., 1955, “A Lagrangian Formulation of The Gyromagnetic Equation of The Magnetic Field”, Phys., Rev., vol.100, pp.1243. 8. Gregory, Piatetsky-Shapiro, 1991, “Discovery, Analysis, and Presentation of Strong Rules”, Knowledge Discovery in Databases, pp.229-248. 9. Gregory, Piateski, & William, Frawley, 1991, Knowledge Discovery in Databases, MIT Press, Cambridge. 10. Hand, D., Mannila, H., & Smyth, P., 2001, Principles of Data Mining, MIT Press, Cambridge. 11. Hui, S. C., & Jha, G.., 2000, “Data mining for customer service support”, Information & Management, vol.38, pp.1-13, October. 12. Jia-Wei, Han, & Yong-Jian, Fu, 1995, “Discovery of Multiple-Level Association Rules from Large Databases”, VLDB ‘95 Proceedings of the 21th International Conference on Very Large Data Bases, pp.420-431, San Francisco. 13. Jia-Wei, Han, & Kamber, M., 2001, Data Mining: Concepts and Techniques, Third Edition, Morgan-Kaufmann Academic Press, San Francisco. 14. Jian, Pei, & Jia-Wei, Han, 2000, “Can We Push More Constraints into Frequent Pattern Mining?”, KDD ‘00 Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, pp.350-354, Boston. 15. Jian, Pei, Jia-Wei, Han, & Laks, V.S.L., 2001, “Mining frequent itemsets with convertible constraints”, ICDE ‘01 Proceedings of the 17th International Conference on Data Engineering, pp.433-442, Washington DC. 16. Jian, Pei, et al., 2001, “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth”, ICDE ‘01 Proceedings of the 17th International Conference on Data Engineering, pp.215-224, Washington DC. 17. Jong, S.P., Ming-Syan, Chen, & Philip, S.Y., 1995, “An effective hash-based algorithm for mining association rules”, SIGMOD ‘95 Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, vol.24, pp.175-186, New York. 18. Jong, S.P., Ming-Syan, Chen, & Philip, S.Y., 1998, “Efficient Data Mining for Path Traversal Patterns”, IEEE Transactions on Knowledge and Data Engineering, vol.10, pp.209-220, March. 19. Kadel, P., & Ho-Jin, Choi, 2006, “Incremental algorithm for Distributed Data Mining”, CIT ‘06 Proceedings of the Sixth IEEE International Conference on Computer and Information Technology, pp.72, Washington DC. 20. Ke, Wang, Yu, He, & Jia-Wei, Han, 2000, “Mining Frequent Itemsets Using Support Constraints”, VLDB ‘00 Proceedings of the 26th International Conference on Very Large Data Bases, pp.43-52, Cairo. 21. Khare, Neelu, Adlakha, Neeru, & Pardasani, K.R., 2010, “An Algorithm for Mining Multidimensional Association Rules Using Boolean Matrix”, ITC ‘10 Proceedings of the 2010 International Conference on Recent Trends in Information: Telecommunication and Computing, pp.95-99, Washington DC. 22. Landau, L.D., & Lifshitz, E.M., 1935, “Theory of The Dispersion of Magnetic Permeability in Ferromagnetic Bodies”, Phys., Z., Sowietunion, vol.8, pp.153-169. 23. Liqiang, Geng, & Howard, J.H., 2006, “Interestingness Measures for Data Mining: A Survey”, Computing Machinery, vol.38, pp.9-40, September. 24. Mary, M.W., & S.Prasad, Kantamneni, 2002, “POS and EDI in Retailing: An Examination of Underlying Benefits and Barriers”, Supply Chain Management: An International Journal, vol.7, pp.311-317. 25. Ming-Syan, Chen, Jong, S.P., & Philip, S.Y., 1996, “Data Mining for Path Traversal Patterns in A Web Environment”, ICDCS ‘96 Proceedings of the 16th International Conference on Distributed Computing Systems, pp.385-392, Washington DC. 26. Rakesh, Agrawal, & Ramakrishnan, Srikant, 1994, “Fast Algorithms for Mining Association Rules in Large Databases”, VLDB ‘94 Proceedings of the 20th International Conference on Very Large Data Bases, pp.487-499, San Francisco. 27. Rakesh, Agrawal, Tomasz, Imieliński, & Arun, Swami, 1993, “Mining association rules between sets of items in large databases”, SIGMOD ‘93 Proceedings of the 1993 ACM SIGMOD international conference on Management of data, vol.22, pp.207-216, New York. 28. Ramakrishnan, Srikant, & Rakesh, Agrawal, 1996, “Mining quantitative association rules in large relational tables”, SIGMOD ‘96 Proceedings of the 1996 ACM SIGMOD international conference on Management of data, vol.25, pp.1-12, New York. 29. Richard, Roiger, & Michael, Geatz, 2002, Data Mining: A Tutorial Based Primer, Addison-Wesley, Boston. 30. Shi-Jie, Chang, Peng-Rui, Shao, & Peng, Li, 2007, “Basic Problems and Development on Dynamics of Magnetization Reversal Process of Nano-Material”, Equipment Manufacturing Technology, vol.5, pp.18-20. 31. Sotiris, Kotsiantis, & Dimitris, Kanellopoulos, 2006, “Association Rules Mining: A Recent Overview”, GESTS International Transactions on Computer Science and Engineering, vol.32, pp.71-82. 32. Stoner, E.C., & Wohlfarth, E.P., 1948, “A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys”, Philosophical Transactions of the Royal Society A, vol.240, pp.599-642. 33. Tang, Hewen, et al., 2008, “Using Data Mining to Accelerate Cross-Selling”, ISBIM ‘08 Proceedings of the 2008 International Seminar on Business and Information Management, vol.1, pp.283-286, Washington DC. 34. Theresia, W.A., & Beta, Noranita, 2012, “Apriori Application To Pattern Profile Creditor Relationships With Credit Ceiling In Rural Bank”, ICISBC ‘11 Proceedings of the 1st International Conference on Information Systems for Business Competitiveness, pp.75-80, Semarang. 35. Tom, Brijs, et al., 1999, “Using association rules for product assortment decisions: a case study”, KDD ‘99 Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.254-260, New York. 36. Toon, Calders, & Jef, Wijsen, 2001, “On Monotone Data Mining Languages”, DBPL ''01 Revised Papers from the 8th International Workshop on Database Programming Languages, pp.119-132, London. 37. Usama, M. F., et al., 1996, Advances in Knowledge Discovery and Data Mining, American Association for Artificial Intelligence Menlo Park, California. 38. Wan-Zhong, Yang, et al., 2006, “Rough Set Model for Constraint-based Multi-dimensional Association Rule Mining”, Proceedings of the 2006 Conference on Advances in Intelligent IT: Active Media Technology 2006, pp.99-105, Amsterdam. 39. Wen-Juan, Li, & Shi-Min Wang, 2013, “Research on Assessment Method for Credit Risk in Commercial Banks of China Based on Data Mining”, Applied Mechanics and Materials, vol.303-306, pp.1361-1364, February. 40. Wenke, Lee, & Salvatore, J.S., 1998, “Data mining approaches for intrusion detection”, USENIXSS ‘98 Proceedings of the 7th Conference on USENIX Security Symposium, vol.7, pp.6, San Antonio. 41. Wenke, Lee, Salvatore, J.S., & Kui, W.M., 2002, “Algorithms for Mining System Audit Data”, Data Mining, Rough Sets and Granular Computing, vol.1, pp.166-189. 42. William, Frawley, Gregory, Piateski, & Matheus, C., 1992, “Knowledge Discovery in Databases: An Overview”, AI Magazine, vol.13, pp.57-70. 43. Xiu-Li, Yao, & Hua-Ying, Shu, 2009, “Study on Value-Added Service in Mobile Telecom Based on Association Rules”, SNPD ‘09 Proceedings of the 10th International Conference on Software Engineering: Artificial Intelligences, Networking and Parallel/Distributed Computing, pp.116-119, Daegu. 44. Xu, Liang, Cai-Xia, Xue, & Ming, Huang, 2010, “Improved Apriori Algorithm for Mining Association Rules of Many Diseases”, Communications in Computer and Information Science, vol.107, pp.272-279, January.
|