[1]Androutsopoulos, I., etc.: An experimental comparison of naive bayesian and keywordbased anit-spam ltering with personal email messages. In Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pages 160-167, 2000
[2]Andrew Troelsen: C# and the .Net Platform, 2nd.Appress Inc, 2003.
[3]Borenstein, N.,Freed,N.:RFC Standard 1341,MIME(Multipurpose Internet MailExtensions),1992, http://www.ietf.org/rfc/rfc1341.txt?number=1341
[4]Graham, P.: A Plan for Spam, August 2002. http://paulgraham.com/spam.html
[5]Graham, P.: Better Bayesian Filtering. Proceedings of the 2003 Spam Conference , January 2003
[6]Guido Schryen,An e-mail honeypot addressing spammers' behavior in collecting and applying addresses, In Proceedings of the 2005 IEEE Workshop on Information Assurance and Security , pages 37 – 41, June 2005
[7]Han, E.,H, Karmis, G.: Centroid-Based Document Classification: Analysis & Experimental Results, Computer Science Technical Report TR00-017,Departmetn of Computer Science, University of Minnesota, Minneapolis, Minnesota, 2000.
[8]Jonathan B. Postel:I RFC Standard 821(Simple Mail Transfer Protocol),1982, http://www.ietf.org/rfc/rfc821.txt
[9] J. Myers, Carnegie Mellon, M. Rose, Dover Beach Consulting,Inc.
: RFC Standard 1939,POP3(Post Office Protocol - Version 3),1996 http://www.ietf.org/rfc/rfc1939.txt
[10]Kaza, S., etc.: Identification of Deliberately Doctored Text Documents Using Frequent Keyword Chain (FKC) Model. Information Reuse and Integration, page(s):398-405, 2003. IRI 2003. IEEE International Conference, 27-29 Oct. 2003
[11]Kun-Lun L i, Kai Li , Hou-Kuan Huang and Sheng-Feng Tian , Active Learning with Simplified SVMs for Spam Categorization, Machine Learning and Cybernetics, 2002 Proceedings 2002 Interational Conference on, Volume:3,4-5 Nov.2002
[12]Lewis, D. Training Algorithms for Linear Text Classifiers. In Proceedings of the 19th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, pages298–306, Konstanz, Germany, 1996
[13]Ling-spam Corpus, with legitimate (linguist-list) email and spam http://www.iit.demokritos.gr/skel/i-config/downloads/
[14]Meyer, T.A, Whateley, B.: SpamBayes: Effective open-source, Bayesian based, email classification system., First Conference on Email and Anti-Spam (CEAS), 2004
[15]Mingjun Lan, Wanlei Zhou., Spam Filtering based on Preference Ranking, In Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05), pages 223 – 227, Sept. 2005
[16]Michelsoen : C# Primer Plus,Gotop Inc,2003
[17]Michelakis, E., etc.: Filtron: A Learning-Based Anti-Spam Filter, First Conference on Email and Anti-Spam (CEAS),2004.
[18]Pascal Soucy, Gy w. Mineau,A Simple KNN Algorithm for Text Categorization, In Proceedings IEEE International Conference on Data Mining, 2001. ICDM ,, pages 647 – 648, Dec. 2001
[19]Sahami, M, etc.: A Bayesian Approach to Filtering Junk E-Mail. Papers from the AAAI Workshop, pp. 55–62, MadisonWisconsin. AAAI Technical Report WS-98-05, 1998.
[20]Spam Recycling Center http://www.onlinepublishingnews.com/htm/n99n17oln6.htm
[21]SpamAssassin Public Corpus, included in the Apache Spam- Assassin Project (spam and legitimate email), http://spamassassin.apache.org/publiccorpus/
[22]Tony Andrew Meyer, A TREC along the Spam Track with SpamBayes, The Text REtrieval Conference (TREC),March,2005
[23]The Text Retrieval Conference) 2005 Spam Public Corpora
http://plg.uwaterloo.ca/~gvcormac/treccorpus/
[24]Vapnik, V., N.: The Nature of Statistical Learning Theory (Information Science and Statistics), Springer, 2 edition, November 19, 1999.
[25]William S. Yerazunis, The Spam-Filtering Accuracy Plateau at 99.9% Accuracy and How to Get Past It., 2004 MIT Spam Conference, January 18, 2004
[26]Web Site: BNC frequency lists are available from ftp://ftp.itri.bton.ac.uk/pub/bnc.
[27]Web Site: What is Stemming ? http://www.comp.lancs.ac.uk/computing/research/stemming/index.htm
[28]Web Site:Porter Stremming Algorithm
http://www.tartarus.org/~martin/PorterStemmer
[29]Web Site:Term Weighting Approaches in Automatic Text
Retrieval
http://portal.acm.org/citation.cfm?id=866292
[30]Yuan Lian, E-mail Filtering, August 30, 2002
[31]Yiming Yang, Jan O. Pedersen. A comparative Study on Feature
Selection in Text Categorization, In Proceedings of the Fourteeth
International Conference on Machine Learning (ICML’97), pages 412-420, July 08-12, 1997
[32]Y.Yang, An Evaluation of Statistical Approaches to Text Categorization,Information Retrieval 1, Volume 1, Numbers 1-2 ,pages 69-90.,April, 1999
[33]中研院中文計算語言研究小組CKIP斷詞軟體1.0版,2002
http://rocling.iis.sinica.edu.tw/CKIP/
[34]永遠的Unix首頁http://www.fanqiang.com
[35]吳昭逸:具垃圾信過濾與安全機制之電子郵件收發系統,台灣科 技大學,2004[36]陳振南,吳毓傑:特徵選取與權重分配於中文新聞分類之比較, 銘傳大學,2002
[37]陳峰棋,Visual Basic網路應用程式設計-Internet篇,March 2002
[38]網路安全小組 http://www.20cn.net
[39]美國線上 http://www.aol.com/
[40]趨勢科技「網路安全分析報告」
http://www.trendmicro.com/tw/about/news/pr/archive/2005/pr050908.htm
[41]最長詞組符合演算法 Maximum Matching Algorithm 及MMESG
http://technology.chtsai.org/mmseg/
[42]謝居呈:應用機器學習理論改良分類竄改過之中英文垃圾電子 郵件,台灣科技大學,2005