跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 02:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂珮瑜
研究生(外文):Pei-Yu Lu
論文名稱:肝癌手術之醫療資源耗用評估研究
論文名稱(外文):A Study of Medical Resource Utilization on Surgery of Hepatocellular Carcinoma
指導教授:張俊郎張俊郎引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:155
中文關鍵詞:肝癌醫療資源耗用資料探勘粒子群最佳化演算法倒傳遞類神經網路支援向量機分類迴歸樹案例式推理
外文關鍵詞:Hepatocellular CarcinomaMedical Resource UtilizationData MiningParticle Swarm Optimizer(PSO)Back-Propagation Neural Network(BPN)Support Vector Machine(SVM)Classification and Regression Tree(CART)Case-Based Reasoning(CBR)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
全民健保的財務規劃原本是以自給自足為原則,而在1995年全民健保實施以來,卻屢傳財務失衡的危機,隨著健保費用不斷的高漲下,為了避免醫療資源的浪費,有效的評估醫療資源分配成為一項重要的評估性指標。
肝癌是全世界五大常見的惡性腫瘤之ㄧ,台灣亦是肝癌高盛行區,近幾年的研究顯示,全球各地區肝癌發生率皆有上升的趨勢,其治療所花費的資源與費用比例是相當可觀的,因此,如何有效評估住院天數對於醫療資源分配與醫院管理是一個重要的議題且具挑戰性的工作。
本研究主要挖掘影響肝癌手術的相關因子來做探討,以健保資料庫中肝癌之患者為研究對象,運用人工智慧法中的粒子群最佳化演算法、倒傳遞類神經網路、支援向量機、分類迴歸樹、案例式推理等有效的評估肝癌手術患者的住院天數與醫療費用,以提供相關醫療人員參考依據。研究結果顯示,住院天數整體而言,除了單分類迴歸樹,其他準確度皆高於85%以上,其中以粒子群最佳化演算法結合倒傳遞類神經網路最高,為96.78%,在醫療費用準確度也達87.86%,結果顯示系統準確度之可行性,以提供醫師作為臨床診斷輔助參考,對於醫院醫療資源分配與病患家屬後續照顧上更能有效的控管。


The originally enactment planning for the national health insurance was based on the income-costs self-sufficiency principle. Since the promulgation of the national health insurance act in 1995, it has always fallen into the crisis and financial imbalance and deficits. Subsequently, the avoidance of medical resource wastes integrated with the effective estimation of the medical resource apportionment has thus become one of important evaluation indicators. Especially both the domestic and foreign researches all show that the length of stay for the surgery will directly influence the total medical costs, meanwhile.
The hepatocellular Carcinoma ranks the top 5th common malignant tumor globally amid Taiwan as a high-prevalent area unexceptionally. The researches in the past few years indicate that the global occurrence hepatocellular Carcinoma rates all remain in an ever-increasing tendency. The medical resources and medical treatment cost spent for such the hepatocellular Carcinoma are significantly tremendous. Such a situation, therefore, constitutes an important issue and a challengeable mission for how to evaluate effectively the length of stay for the surgery and medical resource appropriation and medical institution management.
With targeting on exploring all the relevant variables influencing the liver surgery, it has been adopted in this research some effective evaluation algorithm belonging to the Artificial Intelligence Method including the Particle Swarm Optimizer, Back-Propagation Neural Network, Support Vector Machine, Classification and Regression Tree, and Case-Based Reasoning for trying the overall average hepatocellular Carcinoma surgery patients’ length of stay (number of days), and medical treatment costs for providing relevant medical professionalism for evaluation basis and reference. The research results indicate that except the Classification and Regression Tree Algorithm, all other evaluation methods demonstrate precision rates more than 85% among which the portfolio of Classification and Regression Tree and Back-Propagation Neural Network achieves as high as 97.86%, ranking the top 1, and also a precision rate of 87.86% for analyzing medical treatment cost. Having reaching such so high feasibility, all those research results validate the adopted systematic precision rates can provided physicians auxiliary reference data for clinical diagnosis and assist the medical institutions in applying more effective control measures in medical resources apportionment and for help patients’ family conducting follow-up caring.


摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 ix
圖目錄 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究重要性 3
1.3 研究目的 3
1.4研究範圍與限制 4
1.5論文架構 5
第二章 文獻探討 7
2.1肝癌簡介 7
2.1.1肝癌形成原因 7
2.1.2肝癌症狀 8
2.1.3肝癌臨床診斷 10
2.1.4肝癌治療方式 10
2.1.5肝癌相關文獻 11
2.2醫療資源耗用 12
2.2.1醫療資源耗用定義 12
2.2.2醫療資源耗用國內外相關研究 13
2.3資料探勘 14
2.3.1資料探勘簡介 14
2.3.2資料探勘流程 16
2.3.3資料探勘功能 17
2.3.4資料探勘應用於醫療領域 18
2.4 粒子群最佳演算法 19
2.4.1粒子群最佳演算法簡介 19
2.4.2粒子群最佳演算法速度更新法則 20
2.4.3粒子群最佳化演算法參數設定 23
2.4.4粒子群最佳化演算法相關研究 24
2.5類神經網路相關應用 25
2.5.1類神經網路簡介 25
2.5.2類神經網路發展史 25
2.5.3生物神經元模型 27
2.5.4類神經網路架構 28
2.5.5類神經網路架構分類 30
2.5.6倒傳遞類神經網路模式 32
2.5.7 倒傳遞類神經網路之參數 33
2.5.8類神經網路應用醫療領域 34
2.6支援向量機 35
2.6.1支援向量機要素 35
2.6.2線性支援向量機 36
2.6.3非線性支援向量機 36
2.6.4支援向量機應用於醫療領域 37
2.7決策樹演算法 37
2.7.1決策樹演算法簡介 37
2.7.2常用模型 39
2.7.3分類迴歸樹 40
2.7.4決策樹應用醫療領域 41
2.8案例式推理 41
2.8.1案例式推理運作流程 42
2.8.2案例式推理應用於醫療領域 44
2.9 ROC曲線 44
2.10交叉驗證 45
第三章 研究方法 47
3.1研究對象及資料來源 47
3.2研究架構 48
3.3研究變數 51
3.4研究變項定義 52
3.5 研究變項操作定義 55
3.6資料前置處理 56
3.7建構診斷模型 58
3.7.1建構粒子群最佳演算法診斷模型 58
3.7.2建構倒傳遞類神經網路模型 61
3.7.3建構分類迴歸樹模型 64
3.7.4建構支援向量機模型 65
3.8建構案例式推理系統模型 67
3.8模型評估 72
3.8.1混亂矩陣 72
3.8.2 ROC曲線 73
第四章 住院天數預測研究結果分析 74
4.1 研究資料敘述型統計 74
4.2粒子群最佳化演算法實驗分析 78
4.2.1粒子群最佳化演算法最佳參數組合 78
4.2.2粒子群最佳化演算法結果分析 79
4. 3倒傳遞類神經網路實驗分析 80
4.3.1倒傳遞類神經網路最佳參數組合 80
4.3.2倒傳遞類神經網路模型驗證分析 86
4.3.3倒傳遞類神經網路模型結果分析 86
4.3.4倒傳遞類神經網路績效評估 87
4. 4支援向量機實驗分析 88
4.4.1支援向量機最佳參數組合 88
4.4.2支援向量機驗證分析 90
4.4.3支援向量機績效評估 91
4.5粒子群最佳化演算法結合倒傳遞類神經網路實驗分析 92
4.5.1粒子群最佳化演算法結合倒傳遞類神經網路最佳參數組合 92
4.5.2粒子群最佳化演算法結合倒傳遞類神經網路模型驗證分析 95
4.5.3粒子群最佳化演算法結合倒傳遞類神經網路績效評估 95
4.6粒子群最佳化演算法結合支援向量機實驗分析 96
4.6.1粒子群最佳化演算法結合支援向量機最佳參數組合 97
4.6.2粒子群最佳化演算法結合支援向量機驗證分析 98
4.6.3粒子群最佳化演算法結合支援向量機績效評估 99
4.7倒傳遞類神經網路模型結合支援向量機實驗分析 100
4.7.1倒傳遞類神經網路模型結合支援向量機最佳參數組合 100
4.7.2倒傳遞類神經網路模型結合支援向量機驗證分析 102
4.7.3倒傳遞類神經網路結合支援向量機績效評估 103
4.8 分類迴歸樹實驗分析 104
4.8.1 分類迴歸樹模型分析 104
4.8.2 分類迴歸樹結果分析 107
4.8.3分類迴歸樹績效評估 108
4.9分類迴歸樹結合倒傳遞類神經網路實驗分析 109
4.9.1分類迴歸樹結合倒傳遞類神經網路最佳參數組合 109
4.9.2分類迴歸樹結合倒傳遞類神經網路模型驗證分析 112
4.9.3 分類迴歸樹結合倒傳遞類神經網路績效評 112
4.10分類迴歸樹結合支援向量機實驗分析 114
4.10.1分類迴歸樹結合支援向量機最佳參數組合 114
4.10.2分類迴歸樹結合支援向量機驗證分析 116
4.10.3 分類迴歸樹結合支援向量機績效評估 116
4.11案例式推理 117
4.11.1案例式推理系統介面 118
4.11.2案例式推理系統驗證分析 124
4.12住院天數預測結果 125
第五章 醫療費用預測研究結果分析 127
5.1案例式推理 127
5.2案例式推理系統介面 127
5.3案例式推理系統驗證分析 133
第六章 結論與建議 135
6.1結論 135
6.2建議 136
參考文獻 138
Extended Abstract 149
簡歷 155



1.中央健保局(即時統計資訊),取自http://www.nhi.gov.tw/index.asp,2011/06/24。
2.尹相志(2006),SQL Server 2005資料採礦聖經,學貫行銷股份有限公司,台北。
3.王人澍、張寶源、熊雅意(2008),「應用決策樹理論於中醫辨證-以慢性咳嗽為例 」,中西整合醫學雜誌,10卷,2期,頁25-33。
4.王派洲 (2008),資料探勘蓋念與方法,頁386-387,滄海書局,台中。
5.王偉驎、林文燦、賴政皓等(2008),「應用資料探勘技術提升急診醫學檢傷分類之一致性-以台灣某醫學中心急診醫學部為例」,品質學報,15卷,4期,頁283-291。
6.朱基銘、何子銘、盧瑜芬等(2006),「運用三種資料探勘方法預測子宮頸癌存活情形之比較」,台灣家庭醫學雜誌,16卷,3期,頁192-163。
7.何子銘、盧瑜芬、許家瑋等(2006),運用三種資料探勘方法預測子宮頸癌存活情形之比較,臺灣家庭醫學雜誌, 16卷,3期,頁192-203。
8.吳耀銘、李伯皇 (2006),「肝癌」,台灣醫學,10卷,4期,頁482-487。
9.呂庭輝,楊長興,黃昱瞳等人(2007),「醫院、醫師手術量與肝癌病人術後死亡率之關係」,澄清醫護管理雜誌,3卷,1期,頁46-51。
10.周歆凱、黃興進、蔡明足等(2009),「運用資料探勘之叢集分析技術探討急診72小時再反診病患特性」,澄清醫護管理雜誌,5卷,3期,頁13-20。
11.周歆凱、蘇喜、黃興進等(2006),「運用決策樹技術探討急診病患醫療費用之消耗」,臺灣公共衛生雜誌,25卷,6期,頁430-439。
12.周嘉揚(2008),「肝切除治療肝細胞癌」,中華民國癌症學會雜誌,24卷,5期,頁311-317。
13.林正堅、黃雅紫、李繼永(2007),「以粒子群最佳化演算法為基礎之改良型多層類神經網路於臉部辨識應用」,朝陽學報,12期,頁417-436。
14.林恆慶、楊長興、陳楚杰等(2003),「醫院權屬別對其論病計酬醫療費用影響之研究-以剖腹生產為例」,慈濟醫學雜誌,15卷,1期,頁55-61。
15.林昭宏、黃茂雄、劉景寬等(2000),「影響腦中風患者復健治療住院天數長短的因素」,物理治療期刊,25卷,2期,頁1-11。
16.林景嘉、鄭信鈴、王泰裕(2010),「以類神經網路建構再發性腦中風之預測模式」,醫療資訊雜誌,19卷,2期,頁19-38。
17.邱志州、簡德年(2002),「整合類神經網路與分類迴歸樹在建構企業危機診斷模式上之應用」,中華管理評論學報,5卷,4期,頁55-82。
18.邱志洲、田政祺(2005),「資料探勘中集群模式與分類模式之建構-模糊自適應共振理論網路、分類迴歸樹與類神經網路之整合與應用」,工業工程學刊, 22期,2卷,頁171-88。
19.胡曉暉(2002),「粒子群優化算法介紹」,取自http://www.swarmintelligence.org/papers/cPSOTutorial.pdf,2011/06/24。
20.苑守慈、王詩翔、張瑋倫(2008),「智慧型老人居家照護-以替換調適模式之案例式推理為基礎」,資訊管理學報,15卷,2期,頁1-25。
21.張偉斌、吳振龍、紀櫻珍等人(2006),「案例推理法增進乳癌診斷率」,北市醫學雜誌,3卷,11期,頁78-84。
22.張樹棠、童瑞龍、錢慶文(2004),「醫療保險支付制度對醫師決策之影響-以裝置血管支架為例」,醫務管理期刊,5卷,1期,頁19-33。
23.梁定澎、蔡丞、顧宜錚(2004),「企業知識地圖建構之研究」,電子商務研究,2卷,3期,頁279-295。
24.連賢明(2008),如何使用健保資料進行經濟研究,經濟論文叢刊, 36卷,1期,頁115-143。
25.郭信川、張建仁、劉清祥(2004),「粒子群演算法於最佳化問題之研究」,台灣作業研究學會暨學術研討會。4月12日。
26.陳思翰、羅淑娟(2006),「以自我組織映射圖神經網路危基底之兩階層分群方法方析RFM變數」,電子商務,4卷,3期,頁265-284。
27.陳柏蒼、林永禎、陳昶憲(2007),「利用倒傳遞類神經網路建構未設測站流量推估模式之研究」,第七屆人工智慧與應用研討會,頁41-46。
28.陳啟浩、張俊郎、曾輝鈺 (2008),「結合類神經網路與決策樹於糖尿病前期診斷之研究」,中華民國品質學會期刊,4月12日。
29.陳銘樹、王建智、王麗雁 (2008),「應用決策樹演算法以探究高科技員工潛在的糖尿病之危險因子」,健康管理學刊,6卷,2期。頁135-146。
30.傅家啟、白炳豐、陳得源等(2009),「電腦輔助腮腺超音波乾燥症檢測系統開發」,醫療資訊雜誌,18卷,3期,頁42-54。
31.曾憲雄、蔡秀滿、蘇東興等 (2005),資料探勘,旗標出版社,台北。
32.黃美玲、邱飄逸 (2007),「精神科急診病患就醫及住院流程改善方案」,精神衛生護理雜誌,2卷,1期,頁51-59。
33.黃淑俐、丁冠玉、黃元惠 (2006),「全靜脈營養與重大腹部手術病患術後住院日數相關因子探討」,台灣營養學會雜誌,31卷,3期,頁87-94。
34.黃慧慈(2007),田口實驗設計於特徵擷取與參數搜尋之應用,暨南大學資訊管理研究所碩士論文 。
35.葉怡成 (2006),類神經網路模式應用與實作,頁1-35-4-22,儒林圖書,台北。
36.葉怡成、吳沛儒 (2009),「基於類神經網路與交叉驗證法之田口方法」,品質學報,16卷,4期,頁261-279。
37.葉金標、童春芳、張巍獻(2009),「醫療院所之門診失約預測:類神經網路之應用」,臺灣公共衛生雜誌,28卷,5期,頁361-373。
38.廖述賢、溫志皓 (2009),資料採礦與商業智慧,頁9-126,雙葉書廊,台北。
39.廖家鼎、高立均、林旭陽等(2010),「酒中黃麴毒素之檢驗」,食品藥物研究年報,1卷,頁99-108。
40.蔡明足、翁林仲、蔡維河等(2008),「灣地區糖尿病病患及其視網膜病變的醫療資源耗用」,台灣衛誌,27卷,2期,頁101-109。
41.蔡樹榮、陳銘仁、張文熊等(2009),「肝癌術後早期復發的危險因子的探討」,中華癌醫會誌,25卷2期, 114-122。
42.蔡蕙如、柯明中、張偉斌等(2007),「應用類神經網路與分類迴歸樹於肝癌分類模式」,北市醫學雜誌,4卷,8期,頁658-667。
43.鄭振廷、侯宏彬、錢慶文(2005),「影響洗腎病患定期血液透析醫療資源耗用之因素」,醫務管理期刊,4卷,8期,頁291-308。
44.錢才瑋、王文忠、溫義輝等(2009),「以存活分析法比較疾病之住院日」,醫務管理學刊,10卷,1期,頁23-35。
45.錢慶文、黃三桂(2000),「論併計酬制度對住院日數即醫療費用之影響:以痔瘡切除手術為例」,公共衛生雜誌,26卷,4期,頁303-317。
46.謝邦昌(2005),資料採礦與商業慧-SQL Server 2005,鼎茂圖書,台北。
47.韓揆(1994),醫療品質管理及門診服務品質定性指標,中華公共衛生雜誌, 13卷,1期,頁35-53。
48.羅健銘、陳素秋、賴允亮等(2007),「住院癌末病患照護型態對住院醫療費用與住院天數之影響」,臺灣公共衛生雜誌,26卷,4期,頁270-282。
49.羅華強 (2001),類神經網路-Matlab的應用,清蔚出版社,新竹。
50.嚴玉華、許碩芬、方世杰等(2009),「總和支付制度下個別醫院醫療費用預測模型建立-以某教學醫院為例」,澄清醫護管理雜誌,5卷,2期,頁15-21。
51.Aamodt A., Plaza E. (1994), “Cased-based reasoning: foundational issues, methodological variations and system approaches”, AI Communications IOS Press, Vol. 7, No. 1, pp. 39-59.
52.Aamodt A., Plaza E. (1994). “Cased-based reasoning: foundational issues, methodological variations and system approaches”, AI Communications IOS Press, Vol. 7, No. 1, pp. 39-59.
53.Andrew Kusiak, Christopher A. Caldarone, Michael D. Kelleher, Fred S. Lamb, Thomas J. Persoon, Alex Burns. (2006). “Hypoplastic left heart syndrome: knowledge discovery with a data mining approach.” Computers in Biology and Medicine, Vol. 36, No. 1, pp. 21-40.
54.Andrew, K., Bradley, D., & Shital, S. (2005). “Predicting survival time for kidney dialysis patients: a data mining approach”, Computers in Biology and Medicine, Vol. 35, No. 1, pp. 311-327.
55.Ardythe L. Morrow, Jareen Meinzen-Derr, Pengwei Huang, Kurt R.et al. (2011). ”Fucosyltransferase 2Non-Secretor and Low Secretor Status Predicts Severe Outcomes in Premature Infants”. The Journal of Pediatrics, Vol. 158, No. 5, pp.745-751.
56.Arminger, G., Enache, D. and Boone, T. (1997). “Analyzing Credit Risk Data: A Comparison of Logistic Discrimination Classification Tree Analysis and Feedforward Networks”, Computational Statistics, Vol. 12, No. 1, pp. 293-310.
57.B. Srinivasan, S. Palanki, D. Bonvin. (2003). “Dynamic optimization of batch processes: I. Characterization of the nominal solution.” Computers & Chemical Engineering, Vol. 27, No. 1, pp. 1-26.
58.Baumgartner C, Bohm C, Baumgartner D. (2005). “ Modelling of classification rules on metabolic patterns including machine learning and expert knowledge” , Journal of Biomedical Informatics, Vol. 38, No. 2, pp. 89-98
59.Behzad Eftekhar, Mohammad Reza Zarei, Mohammad Ghodsi, Koorosh MoezArdalan, Moosa Zargar, Ebrahim Ketabchi.(2005). “Comparing logistic models based on modified GCS motor component with other prognostic tools in prediction of mortality: Results of study in 7226 trauma patients.” Injury, Vol. 36, No. 8, pp. 900-904.
60.Berry, M.J.A. & Linoff, G., (1997). “Data Mining Technique for Marketing”, Sale, and Customer Support. Wiley Computer.
61.Berson, A., & Smith, S. J., & Thearling, K. (1999). Building Data Mining Applications for CRM, Mc Graw-Hill, pp. 6-31.
62.Bosch FX, Ribes J, Cleries R, Di a z M. (2005). “Epidemiology of hepatocellular carcinoma.” Clinics in Liver Disease, Vol. 9, No. 2, pp. 191-211.
63.Bradbury RC et al. (2000). “Linking health outcomes and resource efficiency for hospitalized patients: do physicians with low mortality and morbidity rates also have low resource expenditures? “ ,Health Services Management Research , Vol. 13, No. 1, pp. 57-68.
64.Cabena, P., Hadjinian P. and Stadler, R. (1998), Discovering Data Mining From Concept to Implementation, Prentice-Hall Inc.
65.Chae, Y.M., Kim, H.S., Tark, K.C., et al. (2003). “Analysis of healthcare quality indicator using data mining and decision support system”, Expert Systems with Applications, Vol. 24, pp. 167-172.
66.Charlson ME, Pompei P, Ales KL, Mackenzie CR. (1987). “A new method of classifying prognostic comorbidity in longitudinal studies: development and validation”, Journal of Chronic Diseases, Vol. 40, No. 5, pp. 373-383.
67.Chen, T.M., Chang, T.M., Huang, P.T., et al. (2008). “Management and patient survival in hepatocelluar carcinoma: Does the physician’s level of experience matter?” Journal of Gastroenterology and Hepatology, Vol. 21, No. 10, pp. 1561-1566.
68.Chin-Sheng Yang, Chih-Ping Wei, Chi-Chuan Yuan, Jen-Yu Schoung.(2010) “Predicting the length of hospital stay of burn patients: Comparisons of prediction accuracy among different clinical stages” Decision Support Systems, Vol. 50, No. 1, pp. 325-335.
69.Chong, DSY, & Karlberg, J. (2004). “Refining the Apgar score cut-off point for newborns at risk”, Acta Paediatr, Vol. 93, No. 1, pp. 53-59.
70.Clerc, M. (1999). “The Swarm and the Queen: towards a Deterministic and Adaptive Particle Swarm Optimization”, Proceedings of IEEE Congress on Evolutionary Computation Washington, DC, USA.
71.Clerc, M. (2004). “Discrete particle swarm optimization, illustrated by the Traveling Salesman Problem”, New Optimization Techniques in Engineering, Heidelberg, pp.219-239, Germany: Springer.
72.Clerc, M., & Kennedy, J. (2002). “The particle swarm explosion, stability, and convergences in a multidimensional complex space”, IEEE Transaction on Evolutionary Computation, Vol. 6, No. 1, pp.58-73.
73.Curt, H. (1995). “The Deville’s in The Detail: Techniques, Tool, and Applications for Data ming and Knowledge Discovery-Part 1”, Intelligent Software Strategies, Vol. 6, No. 9, pp. 3.
74.Davies P. C., (1994). “Design issues in neural network development”, NEUROVEST Journal, Vol. 5, No.1, pp. 21-25.
75.Debes, A. J., Storkson, R. H., & Jacobsen, M. B. (2008). Curative rectal cancer surgery in a low-volume hospital: A quality assessment.” Ejso, Vol. 34, No. 4, pp. 382-389.
76.Delen, D., Walker, G., & Kadam, A. (2005). “Predicting breast cancer survivability: a comparison of three data mining methods”, Artificial Intelligence in Medicine. Vol. 34, pp.113-127.
77.Deyo RA, Cherkin DC, Ciol MA, (1992). “Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases”, Journal of Clinical Epidemiology, Vol. 45, No. 6, pp. 613-619.
78.Eberhart, R.C., & Kennedy, J. (1995). “A new optimizer using particle swarm theory”, Proceedings of the Sixth International Symposium on Micromachine and Human Science, pp.39-43.
79.Eberhart, R.C., & Shi, Y. (2001). “Particle Swarm Optimization: Developments, Applications and Resources”, Proceeding IEEE International Conference on Evolutionary Computation, Vol. 1, pp.81-86.
80.Esmin, A.A.A., Aoki, A.R., & Lambert-Torres, G. (2002). “Particle Swarm Optimization For Fuzzy Membership Functions Optimization”, IEEE International Conference vol. 3.
81.Fabian Bamberg,John T. Nagurney, John H. Nichols, Keith Marill, David F.M. Brown, David A. Peak, N. Stuart Harris, Stewart Worrell, Blair Parry, Udo Hoffmann. (2005). “The Disposition Decision on Emergency Department Patients with Chest Pain is Affected by the Results of Multi-Detector Computed Axial Tomography Scan of the Coronary Arteries.” The Journal of Emergency Medicine, Vol. 39, No. 1, pp. 57-64.
82.Fatih Tasgetiren, S.-Z. Zhao, P.N. Suganthan, Quan-Ke Pan, M. (2011), “Dynamic multi-swarm particle swarm optimizer with harmony search.” Expert Systems with Applications, Vol. 38, No. 4, pp. 3735-3742.
83.Fayyad, U., Piatetsky, S, & Smyth, G. P. (1996). From Data Mining to Knowledge Discovery in Databases, American Association for Artificial Intelligence.
84.Feinglass J, Martin GJ, Sen A. (1991). “The financial effect of physician practice style on hospital resource use”. Health Services Research, Vol. 26, No. 2, pp. 83-205.
85.Fonarow GC, Edword TC. (2005). “Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis”. ACC Current Journal Review, Vol. 293, No. 5, pp. 72-80.
86.Frawley, W. J. & Piatetsky-Shapiro, G. & Matheus, C. J. (1991). “Knowledge Discovery Databases: An overview, in Knowledge Discovery in Database”, Cambridge, MA: AAAI/MIT, pp. 1-27.
87.Garzotto M. A., (2005). “Improved detection of prostate cancer using classification and regression tree analysis”. Journal of Clinical Oncology, Vol. 23, No. 19, pp.4322-4329.
88.Groupe, F. H. and M. Owrang, (1995) “Data base mining discovery new knowledge and cooperative advantage”, Information system Management, Vol. 12, No. 4, pp. 26-31.
89.Han, J. & Kamber, M. (2000). “Data Mining:Concepts and Techniques”, Morgan Kaufmann Press, GA: San Francisco.
90.Hanley, J.A., & McNeil, B.J. (1982). “The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve”, Radiology, Vol.143, No. 1, pp. 29-36.
91.Harber, J. R. (2001). “Assessing the quality of decision making in special education.” , The Journal of Special Education, Vol. 15, No. 1, pp. 77-90.
92.Hastie, T., Friedman, J., & Tibshirani, R. (2001). The element of statistical learning, Springer-Verlag. New York.
93.Hebert-Croteau, N.,Roberge,D.,& Bilsson, J.(2007). “Provider’s volume and quality of breast cancer detection and treatment.” Breast Cancer Research and Treatment, Vol.105, No. 2, pp. 117-132.
94.Hu, X., Eberhart, R., & Shi, Y. (2003). “Swarm intelligence for permutation optimization: a case study on n-queens problem”, Proceedings of the IEEE Swarm Intelligence Symposium Indianapolis, pp.243-246, USA.
95.Huang Mu-Jung, Chen Mu-Yen and Lee Show-Chin. (2007), “Integrating data mining with case- based reasoning for chronic diseases prognosis and diagnosis”, Expert Systems with Applications, Vol.32, No. 1, pp. 856-867.
96.Hui, S.C. & Jha, G., (2000). “Data mining for customer service support”, Information & Management, Vol. 38, No. 1, pp.1-14.
97.Keim, D.A., Pansea, C., Sipsa, M. & Northb, S.C. (2004), “Pixel based visual data mining of geo-spatial data”, Computer & Graphics, Vol. 28, pp. 327-344.
98.Kenneth J. Ottenbacher, Pam M. Smith, Sandra B, et al. (2001). “Comparison of logistic regression and neural networks to predict rehospitalization in patients with stroke”, Journal of Clinical Epidemiology, Vol. 54, pp. 1159-1165.
99.Kenneth, J.O., Smith, M.P., Illing, S.B., et al. (2001). “Comparison of logistic regression and neural networks to predict rehospitalization in patients with stroke”, Journal of Clinical Epidemiology, Vol. 54, pp. 1159-1165.
100.Ko, C., & Mcgory, M. (2007). “Surgeon and hospital characteristics as predictors of major adverse outcomes following colon cancer surgery- Understanding the volume outcome relationship Invited critique.” Archives of Surgery, Vol. 142, No. 1, pp. 32-32.
101.Kolodner, J.L. (1993). “Case-Based Reasoning”, Morgan Kaufmann Publishers Inc, CA: San Mateo.
102.Kurt, I., Ture, M., & Kurum, A.T. (2008). “Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease”, Expert Systems with Applications, Vol. 34, pp. 366-374.
103.Lin HC, Xirasagar S, Kao S. (2004). “Association of hospital ownership with patient transfers to outpatient care hospice palliative care for patients with hepatocellular carcinoma in Taiwan.” Palliative Medicine, Vol. 18, No. 1, pp. 93-99.
104.Liu CN, Yang MC. (2002). “National health insurance expenditures for adult beneficiaries in Taiwan in their last year of life.” Journal of the Formosa Medical Association, Vol. 101, pp. 552-559.
105.M. Bergenfeldt, B.V. Jensen, B. Skjoldbye, D. Nielsen. (2011). “Liver resection and local ablation of breast cancer liver metastases – A systematic review.” European Journal of Surgical Oncology, Vol. 37, No. 7, pp. 549-557.
106.McColl, R. J., YOU, X. Q., Ghali, W. A., Laplan, G., Myers, R., & Dixon, E. (2008). “Recent Trends of Hepatic Resection in Canada: 1995-2004.” Journal of Gastrointestinal Surgery, Vol. 12, No. 11, pp.1839-1846.
107.Mossman, D. (1994). “Assessing predictions of violence: Being accurate about accuracy”, Journal of Consulting and Clinical Psychology, Vol. 62, pp.783-792.
108.Nishida NL. (2005). “Determination of smoking and obesity as periodontitis risks using the classification and regression tree method”, Amercian Academy of Periodontology, Vol. 76, No. 6, pp. 923-928.
109.Petra et al. (2002). “Image mining: issues, framework, a generic tool and its application to medical-image diagnosis.” Engineering Applications of Artificial Intelligence, Vol. 15, No. 2, pp.205-216.
110.Rao, G. (2003). “What is an ROC curve?” The Journal of Family Practice, Vol. 52, No. 9, pp. 695.
111.Rice, M. E., & Harris, G. T. (1995), “Violent recidivism: Assessing predictive validity.” Journal of Consulting and Clinical Psychology, Vol. 63, pp. 737-748.
112.Riget, J. and Vesterstroem, J. S, (2002). “A diversity-guided particle swarmoptimizer-the ARPSO”, Technical Report No. 2002-02 Department of Computer Science University of Aarhus.
113.Rossille, D., Laurent, J.F., & Burgun, A. (2005). “Modelling a decision support system for oncology using rule-based and case-based reasoning methodologies”, International Journal of Medical Informatics, Vol. 74, No. 2, pp.299-306.
114.Ruth McCorkle, Andréa Maria Laizner, Linda M. Shegda Yost, Frances K. Barg. (1993). “Needs of family caregivers of persons with cancer: A review.” Seminars in Oncology Nursing, Vol. 9, No. 2, pp. 114-120.
115.Shankar, K. P., Tharam, S. D. and Daniel, S. Y. (2001). “Soft Computing in Case Based Reasoning,” Springer-Verlag, London Berlin Heidelberg.
116.Schank, R. (1982),”Dynamic Memory: A Theory of learning in computers and People,” University of Cambridge. Press, New York.
117.Shaw, M. J., Subramaniam, C. & Tan, G. W. (2001). “Knowledge management and data mining for marketing”, Decision Support Systems, Vol. 31, pp.127-137.
118.Shi, Y. & Eberhart, R.C. (1998). “A modified particle swarm optimizer.”IEEE International Conference on Evolutionary Programming, Alaska, May 4-9.
119.Sousa, T., Silva, A., & Neves, A. (2004). “Particle Swarm based Data Mining Algorithms for Classification tasks”, ELSEVIER on Parallel Computing, Vol. 30, No. 5-6, pp.767-783.
120.Szpurek, D., Moszynski, R., Smolen, A., & Sajdak, S. (2005). “Artificial neural network computer prediction of ovarian malignancy in women with adnexal masses”, International Journal of Gynecology and Obstetrics, Vol. 89, pp.108-113.
121.T.-H. Wu, M.-C. Yu, K.-M. Chan, et el. (2011). “Prognostic effect of steatosis on hepatocellular carcinoma patients after liver resection.” European Journal of Surgical Oncology, Vol. 37, No. 7, pp. 618-622.
122.Tanaka S, Noguchi N, Ochiai T, et al. (2007). “Outcomes and recurrence of initially resectable hepatocellular carcinoma meeting milan criteria: Rationale for partial hepatectomy as first strategy.” Journal of the American College of Surgeons, Vol. 204, No. 1, pp. 1-6.
123.Wachter, R. M., et al. (1998). “Reorganizing an academic medical service impact oncost, quality patient satisfaction, and education.” Journal of the American Medical Association, Vol. 279, pp. 1560-1565.
124.Wei-Chang Yeh, Wei-Wen Chang, Yuk Ying Chung. (2009). “A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method” Expert Systems with Applications, Vol. 36, No. 4, pp. 8204-8211.
125.Wu, M., Scholkopf, B., & Bakir, G. (2006). “A direct method for building sparse kernel learning algorithms,” Journal of Machine Learning Research, Vol. 7, pp. 603-624.
126.Yeh CN, Lee WC, Chen MF. (2003). “Hepatic resection and prognosis for patients with hepatocellular carcinoma larger than 10 cm: Two decades of experience at Chang Gung memorial hospital.” Annals of Surgical Oncology, Vol. 10, pp. 1070-1076.
127.Yih-Lon Lin, Wei-Der Chang, Jer-Guang Hsieh. (2008). “A particle swarm optimization approach to nonlinear rational filter modeling.” Expert Systems with Applications, Vol. 34, No. 2, pp. 1194-1199.
128.Zhang G, Berardi VL. (1998). “An investigation of neural networks in thyroid function diagnosis.” Health Care Management Science, Vol. 1, No. 1, pp. 29-37.
129.Zlobec IA. (2005). “A predictive model of rectal tumor response to preoperative radiotherapy using classification and regression tree methods.” Clinical Cancer Research, Vol. 11, No. 15, pp. 5440-544.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3. 王人澍、張寶源、熊雅意(2008),「應用決策樹理論於中醫辨證-以慢性咳嗽為例 」,中西整合醫學雜誌,10卷,2期,頁25-33。
2. 5. 王偉驎、林文燦、賴政皓等(2008),「應用資料探勘技術提升急診醫學檢傷分類之一致性-以台灣某醫學中心急診醫學部為例」,品質學報,15卷,4期,頁283-291。
3. 6. 朱基銘、何子銘、盧瑜芬等(2006),「運用三種資料探勘方法預測子宮頸癌存活情形之比較」,台灣家庭醫學雜誌,16卷,3期,頁192-163。
4. 7. 何子銘、盧瑜芬、許家瑋等(2006),運用三種資料探勘方法預測子宮頸癌存活情形之比較,臺灣家庭醫學雜誌, 16卷,3期,頁192-203。
5. 8. 吳耀銘、李伯皇 (2006),「肝癌」,台灣醫學,10卷,4期,頁482-487。
6. 9. 呂庭輝,楊長興,黃昱瞳等人(2007),「醫院、醫師手術量與肝癌病人術後死亡率之關係」,澄清醫護管理雜誌,3卷,1期,頁46-51。
7. 10. 周歆凱、黃興進、蔡明足等(2009),「運用資料探勘之叢集分析技術探討急診72小時再反診病患特性」,澄清醫護管理雜誌,5卷,3期,頁13-20。
8. 13. 林正堅、黃雅紫、李繼永(2007),「以粒子群最佳化演算法為基礎之改良型多層類神經網路於臉部辨識應用」,朝陽學報,12期,頁417-436。
9. 14. 林恆慶、楊長興、陳楚杰等(2003),「醫院權屬別對其論病計酬醫療費用影響之研究-以剖腹生產為例」,慈濟醫學雜誌,15卷,1期,頁55-61。
10. 18. 邱志洲、田政祺(2005),「資料探勘中集群模式與分類模式之建構-模糊自適應共振理論網路、分類迴歸樹與類神經網路之整合與應用」,工業工程學刊, 22期,2卷,頁171-88。
11. 20. 苑守慈、王詩翔、張瑋倫(2008),「智慧型老人居家照護-以替換調適模式之案例式推理為基礎」,資訊管理學報,15卷,2期,頁1-25。
12. 21. 張偉斌、吳振龍、紀櫻珍等人(2006),「案例推理法增進乳癌診斷率」,北市醫學雜誌,3卷,11期,頁78-84。
13. 22. 張樹棠、童瑞龍、錢慶文(2004),「醫療保險支付制度對醫師決策之影響-以裝置血管支架為例」,醫務管理期刊,5卷,1期,頁19-33。
14. 23. 梁定澎、蔡丞、顧宜錚(2004),「企業知識地圖建構之研究」,電子商務研究,2卷,3期,頁279-295。
15. 24. 連賢明(2008),如何使用健保資料進行經濟研究,經濟論文叢刊, 36卷,1期,頁115-143。