跳到主要內容

臺灣博碩士論文加值系統

訪客IP:216.73.216.19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃曾平
研究生(外文):HUANG, TSENG-PING
論文名稱:跨產業廢棄物資源化合成硫酸亞鐵銨之研究
論文名稱(外文):Assessment of Rematerialization Technology Producing Ferrous (II) Ammonium Sulfate from Three Industrial Wastes
指導教授:吳南明吳南明引用關係
指導教授(外文):WU, NAN-MIN
口試委員:劉沛宏張宗良吳南明
口試委員(外文):LIU, PEY-HORNGCHANG, CHUNG-LIANGWU, NAN-MIN
口試日期:2017-04-14
學位類別:碩士
校院名稱:元培醫事科技大學
系所名稱:環境工程衛生系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:資源化硫酸亞鐵銨批次式結晶結晶成長率
外文關鍵詞:RemarteriallizationFerrous(II) Ammonium SulfateBatch CrystallizationCrystal Growth Rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:542
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合廢硫酸、廢硫酸銨液及廢鐵渣三項產業廢棄物,透過酸溶反應及減壓濃縮程序,使結晶溶液達到飽和後,再以批次式結晶程序製成硫酸亞鐵銨結晶顆粒,主要目的是探討結晶應用於跨產業廢棄物資源化技術的可行性,並利用結晶顆粒平衡模式評估結晶成長率的影響因子,包括廢硫酸銨液濃度、亞鐵離子濃度、結晶溶液pH值及結晶時間。
實驗結果顯示,硫酸亞鐵銨結晶產率隨廢硫酸銨液濃度增加而提昇,最高可達88.10 %,廢棄物轉化率可達70.06 %,且結晶效度可達到90 %以上,符合工業生產需求。將硫酸亞鐵銨結晶以XRD分析後,比較JCPDS所訂之硫酸亞鐵銨結晶標準圖譜,結果顯示圖譜峰值範圍相當一致,證實結晶技術應用於跨產業廢棄物資源化相當可行。
結晶成長率是控制結晶產率的關鍵要素,透過顆粒平衡模式可有效評估結晶成長率。實驗結果顯示,當廢硫酸銨液濃度是20 %時,經由顆粒平衡模式所獲得之結晶成長率是1.66×10-3 mm/min,隨著廢硫酸銨液濃度提高至30 %,結晶成長率增至2.19×10-3 mm/min,顯示結晶溶液濃度和結晶成長率呈正比率關係。當結晶溶液pH值介於1~3時,結晶成長率由3.2110-3 mm/min降低至1.6410-3 mm/min,此遞減趨勢顯示pH值應是影響亞鐵離子濃度的主要因素,由實驗得知當亞鐵離子濃度是4.47 M時,溶液的pH=1.87,結晶成長率是2.01×10-3 mm/min,隨著亞鐵離子濃度增至15.21 M,pH值降至1.09,結晶成長率則增加至2.99×10-3 mm/min。當結晶時間從30分鐘增加至120分鐘時,結晶成長率由5.4210-3 mm/min下降至1.1710-3 mm/min,顯示在硫酸亞鐵銨批次結晶程序中,結晶時間對結晶成長率呈反比率關係。
本研究指出廢硫酸、廢硫酸銨液及廢鐵渣三項跨產業廢棄物,可藉由結晶技術資源化,產率亦可達工業化之需求,藉由結晶成長率之影響因子評估結果,得知操控批次式結晶的資源化效率,對結晶技術應用於實務之差距可大幅縮短,是綠色產業科技的重要指引。

This research evaluated the crystal growth rate (CGR) in batch reactor using ferrous (II) ammonium sulfate crystals. The crystals was produced by the recycled industrial wastes including waste sulfuric acid, waste ammonium sulfate, and incinerator slag. The CGR was calculated using standard sieve measurement to obtain crystal size distribution firstly, and then fit into a semi-log plot of the population balance equation. Factors influencing the CGR were investigated including pH values, Fe(II) concentrations, and batch crystallization times. Experimental results showed that as pH=1.0~3.0, the CGR decreased from 3.2110-3 mm/min to 1.6410-3 mm/min, with a lowest CGR=1.5510-3 mm/min at pH=2.5. The pH-depended CGR can be partially attributed to the content of Fe(II) that was oxidized to Fe(III) as pH increased. Additionally, the effect of Fe(II) concentration was verified by comparing pH at 1.09, the CGR=2.9910-3 mm/min for Fe(II) =15.21 M, while pH at 1.87 the CGR decreased to 2.0110-3 mm/min as Fe(II) =4.47 M. A serial of batch crystallization times ranged from 0.5 to 2.0 hrs were tested, and the results showed that CGR decreased from 5.4210-3 mm/min to 1.1710-3 mm/min. This indicated that the lesser the batch crystallization time the higher the CGR, and can be well elucidated via the population balance equation. This study concludes that CGR can be serving as a custom-design process variable, and bridging the gap for crystallization as a viable rematerialization technology to the industrial wastes.
口試委員審定書 I
誌謝 II
中文摘要 III
英文摘要 V
目錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1
1-1研究背景 1
1-2研究目的 2
1-3研究架構 3
第二章 文獻回顧 4
2-1廢棄物來源及特性 4
2-1-1半導體產業廢硫酸來源 4
2-1-2半導體產業含氨廢液回收程序 5
2-1-3焚化鐵渣處理流程 9
2-2資源化技術 12
2-2-1資源再利用產值 12
2-2-2資源化技術案例 13
2-3結晶 16
2-3-1結晶程序 16
2-3-2結晶的成核及成長 17
2-3-3結晶模式推導 20
2-3-4結晶成長影響因子 24
2-3-5結晶操作形式 30
第三章 研究方法 32
3-1實驗流程 32
3-2實驗藥品與設備 33
3-2-1實驗藥品 33
3-2-2實驗設備 34
3-3實驗方法 37
3-3-1廢硫酸前處理 37
3-3-2廢鐵渣前處理 37
3-3-3廢硫酸銨液前處理 38
3-3-4硫酸亞鐵製備 38
3-3-5廢硫酸銨濃度配製 40
3-3-6硫酸亞鐵銨結晶 40
3-3-7效度測試實驗 41
3-3-8廢棄物轉化率 42
3-3-9 XRD分析 43
3-3-10結晶顆粒之篩分析 44
第四章 結果與討論 45
4-1結晶的資源化技術評估 45
4-1-1硫酸亞鐵銨結晶產率 45
4-1-2廢棄物轉化率 47
4-1-3結晶效度 49
4-1-4結晶XRD分析 50
4-2結晶成長率之探討 51
4-2-1廢硫酸銨液濃度之影響 51
4-2-2結晶溶液pH值之影響 54
4-2-3結晶溶液中亞鐵(II)含量之影響 55
4-2-4結晶時間之影響 56
4-2-5結晶顆粒數量與尺寸之關係 57
4-2-6結晶顆粒之粒徑分布 60
第五章 結論與建議 65
參考文獻 67
附錄一 73

1.Al−Jibbouri. S., ‘‘Effects of Additives in Solution Crystallization’’, Martin−Luther−Universität Halle−Wittenberg, 2002.
2.Anil Singh and Alok Singh, ‘‘A comparative overview of Bio-ethanol production from Organic Residues of Agro waste Materials’’, European Journal of Biotechnology and Bioscience, Vol 3, No. 3, 2015, pp. 11–14.
3.Aparna A. M. ‘‘Studies on Crystallization Process: Monitoring and Control’’, Master of Department of Chemical Engineering National Institute of Technology Rourkela, 2014.
4.Baliga J. B., ‘‘Crystal Nucleation and Growth Kinetics in Batch Evaporative Crystallization’’, Iowa State University, 1970.
5.Barrett P., Smith B., Worlitschek J., Bracken V., O’Sullivan B., and O’Grady D., ‘‘A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes’’, Organic Process Research & Development Vol. 9, No. 3, 2005, pp. 348–355.
6.Chithra M. J. , Sathya M. , Pushpanathan K., “Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method”, Acta Metall. Sin. (Engl. Lett.), Vol 28, No. 3, 2015, pp. 394–404.
7.Erdemir D., Lee A. Y., and Myerson A. S., ‘‘Nucleation of Crystals from Solution: Classical and Two-Step Models’’, Accounts of Chemical Research, Vol. 42, No. 5 , 2009, pp. 621–629.
8.Fujiwara M., Nagy Z. K., Chew J. W., Braatz R D., ‘‘First-principles and Direct Design Approaches for the Control of Pharmaceutical Crystallization’’, Journal of Process Control, Vol. 15, 2005, pp. 493–504.
9.Genck W. J.,“Temperature Effects on Growth and Nucleation Rates in Mixed Suspension Crystallization’’, Iowa State University,1969.
10.Green D. and Perry R. ‘‘Perry's Chemical Engineers' Handbook, 7th Edition’’, McGraw-Hill, 1998.
11.Griffin D. J., Grover M. A., Kawajiri Y., Rousseau R. W.,“Supersaturation Control during Fractional Crystallization” Georgia Institute of Technology, 2014.
12.Harrison M. L., Johns M. R., White E. T., Mehta C. M., ‘‘Growth Rate Kinetics for Struvite Crystallisation’’, Chem.Eng.Trans, 25, 2011, pp. 309–314.
13.Harrison M. L., Johns M. R., White E. T., Mehta C. M., ‘‘Growth Rate Kinetics for Struvite Crystallisation’’, Chemical Engineering transactions, Vol. 25, 2011, pp. 309–314.
14.Kardum J. P., Sander A., and Glasnoviæ A. , ‘‘Batch Crystallization of KCl: the Influence of the Cooling and Mixing Rate on the Granulometric Properties of Obtained Crystals’’, Chem. Biochem. Eng. Q., Vol. 19 No. 1, 2005, pp. 39–47.
15.Kherici D,. Benouali, M. Benyetou, R. Ghidossi, S. Lacampagne and Mietton-peuchot M., “Study of Potassium Hydrogen Tartrate Unseeded Batch Crystallization for Tracking Optimum Cooling Mode’’, OJCHEG, Vol. 31, No. 1, 2015, pp 249–255.
16.Larson M.A. and Randolph A. D., “Size Distribution Analysis in Continuous Crystallization”, Chemical Engineering Progress Symposium Series, Vol:65 No. 95, , 1969, pp. 1–13.
17.Lim Y. I., Lann J. L., Meyer X. M., Joulia X.; , Lee G., Yoon E. S., “On the Solution of Population Balance Equations (PBE) with Accurate Front Tracking Methods in Practical Crystallization Processes”, Chemical Engineering Science, Vol. 57, 2002, pp. 3715 –3732.
18.López-Andrés S., Fillali L., Jiménez J.A., Tayibi H., Padilla I. and A. López-Delgado “Synthesis of Alumina Based on Industrial Waste Material’’, WASTES: Solutions, Treatments and Opportunities, 2011.
19.Mensah J. K., Kim K. J. , Jang Y. N. , ‘‘Effect of Supersaturation on Particle Size of Ammonium Sulfate in Semi-batch Evaporative Crystallization’’, Ind. Eng. Chem. Res, 2013.
20.Mesbaha A., Landlustc J., Huesmana A.E.M., Kramerb H.J.M., Jansensb P.J., Van den Hofa P.M.J., ‘‘A Model-Based Control Framework for Industrial Batch Crystallization Processes’’, Chemical engineering research and design, Vol. 88, 2010, pp. 1223–1233.
21.Mohameed H. A., Abu-Jdayil B., Khateeb M. A., ‘‘Effect of Cooling Rate on Unseeded Batch Crystallization of KCl’’, Chemical Engineering and Processing, Vol. 41, 2002, pp. 297–302.
22.Mullin J. W., ‘‘Crystallization’’, 4th Edition, Butterworth-Heinemann Oxford, 2001.
23.Myerson A., ‘‘Handbook of Industrial Crystallization’’, Butterworth-Heinemann,2002.
24.Nagy K., Braatz D. ,‘‘Advances and New Directions in Crystallization Control’’, Chem. Biomol. Eng., Vol. 3, 2012, pp. 55–75.
25.Nagy Z. K., J. W. Chew, M. Fujiwara, R. D. Braatz, ‘‘Comparative Performance of Concentration and Temperature Controlled batch Crystallizations’’, Journal of Process Control , Vol. 18, 2008, pp. 399–407.
26.Nagy Z.K., ‘‘Model Based Robust Control Approach for Batch Crystallization Product Design’’ Computers and Chemical Engineering, Vol. 33, No. 10, 2009, pp. 1685–1691.
27.Ohmi T., ‘‘Total Room Temperature Wet Cleaning for Si Substrate Surface’’, Journal of Electrochemical Society, Vol.143, No. 9, 1996, pp. 2957–2964.
28.Ozmetin C., Copur M., Kocakerim M M. and Yapici S., ‘‘Crystallization of Silver Nitrate from Saturated Silver Nitrate Solution in Nitric Acid’’, Indian Journal of Chemical Technology, Vol. 8, 2001, pp. 112–119.
29.Peter G. V., “The Two-Step Mechanism of Nucleation of Crystals in Solution”, Nanoscale, Vol. 2 , 2010, pp. 2346–2357.
30.Podder J., ‘‘The Study of Impurities Effect on The Growth and Nucleation Kinetics of Potassium Dihydrogen Phosphate’’, Journal of Crystal Growth, Vol. 237–239, 2002, pp. 70–75.
31.Ramkrishna, D. ‘‘Population Balances Theory and Applications to Particulate Systems in Engineering’’, Academic Press, 2000.
32.Rawajfeh K., Al-Hunaidi T., Saidan M., Al-Hamamre Z., ‘‘Upgrading of Commercial Potassium Chloride by Crystallization: Study of Parameters Affecting the Process’’, Life Sci J, Vol. 11, No. 6, 2014, pp. 8–15.
33.Rózsa L. ‘‘ Crystal Growth and Crystallization Control Tactics in Industrial Sugar Crystallizers. Part 1. Crystal growth’’, International Sugar Journal., 2016, pp. 746–747.
34.Sander A., Kardum J. P.,‘‘Pentaerythritol crystallization – Influence of the process conditions on the granulometric properties of crystals’’, Advanced Powder Technology, Vol. 23, 2012, pp. 191–198.
35.Shaikh L., Pandit1 A. and Ranade V., ‘‘Crystallisation of Ferrous Sulphate Heptahydrate: Experiments and Modelling’’, Can. J. Chem. Eng. Vol. 9999, 2012, pp. 1–7.
36.Singh A., Singh A.,“A comparative Overview of Bio-ethanol Production from Organic Residues of Agro waste Materials”,European Journal of Biotechnology and Bioscience Vol.3,No.3, 2015, pp. 11–14.
37.Song Q. Z., Ou X. Q., Wang L., Liang G. C., Wang Z. R., “Effect of pH Value on Particle Morphology and Electrochemical Properties of LiFePO4 by Hydrothermal Method”, Materials Research Bulletin, Vol. 46, 2011, pp. 1398–1402.
38.Teodorescu R. , Bădiliţă V. , Roman M. , Purcaru V. , Capotă P., Tociu C., Gheorghe M. , Crisan A. ‘‘Optimization of Process for Total Recovery of Aluminum from Smelting Slag 2. Removal of Aluminum Sulfate’’, Environmental Engineering and Management Journal, Vol. 13. , No. 1, 2013, pp. 7–14.
39.Utomo J., Maynard N., Asakuma Y., Maeda K., Fukui K., Tade M. O., ‘‘Experimental Kinetics Studies of Seeded Batch Crystallization of Mono-ammonium Phosphate’’, Advanced Powder Technology, Vol. 21, 2010, pp. 392–400.
40.Vrhunec A., Kolenc A., Teslic D., Livk I. and Pohar C., ‘‘Crystal Size Distribution in Batch Sodium Perborate Precipitation’’, Acta Chim. Slov. , Vol. 46, No. 4, 1999, pp. 543–554.
41.Zhou C., Sun F., and Liu X., ‘‘The Effect Factors of Potassium Dihydrogen Phosphate Crystallization in Aqueous Solution’’, 2016 International Conference on Materials Science, Resource and Environmental Engineering, AIP Conf. Proc. Vol.1794, 2017, pp. 020003-1–020003-7.
1.徐樹剛,工業技術研究院,「高濃度氨氮廢水回收與處理技術介紹」, 2011。
2.江紹群,「批次結晶程序動力模型彙整及分析」,國立台灣大學工程學院化學工程學系碩士論文,2012。
3.行政院環保署,「推動底渣再利用及品質管理檢討專案計畫」,中興工程顧問股份有限公司,2015。
4.余騰耀,「國內事業廢棄物資源化再利用現況 與趨勢」,工業污染防治,第 91 期,127-138頁,2004。
5.李九龍、張瑩輝、張淑慧,「利用中空纖維薄膜接觸器結合硫酸水溶液去除廢液中氨氮之研究-以半導體廠測試之實例」,龍華科技大學,2012。
6.李中光,劉新校,侯佳蕙,「淺談物理化學法在處理氨氮廢水上之應用」,桃園縣大學院校產業環保技術服務團 環保簡訊,第 21 期,2013。
7.林彥志,「溶液性質對碳酸鈣晶體成長之影響」國立臺灣大學化學工程學研究所碩士論文,2005。
8.林恩添,「工業廢水氨氮處理技術」,陽光技術 第 3 期,2009。
9.林錕松,「高科技產業之廢棄物減量及回收再利用技術分析」,產服團高科技廠之廢棄物減 量及再利用技術講習會,2013。
10.侯瑋妮,「以物化方法處理高濃度氨廢液」,國立聯合大學環境與安全衛生工程學系碩士論文,2014。
11.施郁霈,「自矽泥廢料中回收切割液之研究」,臺北科技大學資源工程研究所 碩士論文,2011。
12.洪榮勳,「資源循環未來展望─永續物料管理在國內的發展」,永續產業發展季刊,第 72 期,59-66頁,2015。
13.財政部關務署統計資料庫。
14.高雄市環境保護局網站資料。
15.張本義,最新晶析理論操作,復漢出版社,2001。
16.張和裕,「半導體晶圓廠的清潔劑」,三聯技術,第 73 期,2009。
17.陳寶祺,「微溶物係之沉澱與結晶」,國立台灣大學化學工程研究所碩士論文,1992。
18.曾郁雯,「我國工業廢棄物資源化產業發展現況與未來展望」,桃園縣大學院校產業環保技術服務團 環保簡訊,第 24 期,2014。
19.黃奕潮,「磷酸銨鎂沉澱法處理水中氨氮之研究」,國立高雄應用科技大學化學工程與材料工程系碩士論文,2012。
20.新竹市環境保護局網站資料。
21.楊騏彰,「流體化床磷酸鈣結晶回收污水處理磷之研究」,朝陽科技大學 環境工程與管理系碩士論文,2013。
22.劉坤興、楊博傑、呂穎彬、蔡振球,「廢棄物與永續資源管理之國際發展
23.蔡平賜、王金印、高隆強、吳秋蕙,「以二次再結晶法資源化含硫飛灰廢棄物」,中國鑛冶工程學會會刊,119-126頁,2010。
24.謝祖榮,「以連續吐出料結晶槽製備氟化鈣奈米粒子之結晶動力學研究」,龍華科技大學工程技術研究所碩士論文,2007。
25.行政院國家科學委員會/經濟部能源局,「從米糠直接反應生產生質柴油及生質柴油新原料之開發」,能源科技學術合作研究計畫成果報告,2007。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top