跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/22 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱辰
研究生(外文):CHEN, YU-CHEN
論文名稱:高層建築配置之潛在風能評估研究
論文名稱(外文):Evaluation of Wind Power Potential for High-rise Building Layouts
指導教授:楊安石楊安石引用關係
指導教授(外文):YANG, AN-SHIK
口試委員:楊安石簡良翰蘇瑛敏曾豊育
口試委員(外文):YANG, AN-SHIKCHIEN, LIANG-HANSU, YING-MINGTSENG, LI-YU
口試日期:2020-05-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:61
中文關鍵詞:高層建築城市風能集風加速文丘里效應計算流體力學
外文關鍵詞:High-rise BuildingUrban Wind EnergyWind ConcentrationVenturi EffectComputational Fluid Dynamics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬針對高層建築群體密集城市環境為研究對象,考量城市建築配置、建築紊流擾動、風場條件等因素,建立典型四棟2×2排列之建築模型以評估建築週遭風力潛能,其中型式包括:(A)迎風面為兩棟平行矩形建築的阻擋陣列結構,再改變與上游建築物不同間距以比較其氣流場分佈;(B)迎風面建築物90度夾角排列形成擴散通道,分析文丘里效應(Venturi effect)是否達成上游建築擴散通道設計可獲致更佳氣流集中效果。本文應用計算流體力學數值模擬提出高層建築群體助益於強化和聚集風力的構型設計以實現最大化風能利用。隨後檢視風能密度、紊流強度以分析風力發電潛能與適合風機設置地點,模擬結果顯示上游建築平行排列於高層建築接近屋頂處因通道集風加速,而呈現更好的風能延伸效果,又以上游建築通道間距越大,致使下游建築通道有較佳的風能潛力結果,但產生最佳風能密度之建築配置受建物本身邊緣尖角構型導致紊流強度較大,故未來可藉由角隅氣動優化方法,以邊緣斜角、圓角化為設計目標以降低紊流強度,達成氣流集中加速之建築配置,為城市規劃及高層建築/風能利用提供設計參考。
This study proposes the high-rise building complex configuration to facilitate the concentration effect for acceleration of the wind flow in a highly urbanized area with consideration of the urban space allocation, turbulence disturbances associated with buildings. We first examine the integrated wind energy buildings to analyze the features including the layout of high-rise building complex and open flow channel between two buildings for wind power generation. We construct a 2×2 array pattern of typical high-rise buildings, including Case A: Two parallel rectangular building blocks are added to the windward side to develop a typical 2x2 array structure. We then change the gap spacing of upstream buildings to probe the wind flow across the upstream and downstream passages. Case B: The rotating configuration of windward buildings forms a divergent channel with an intersected angle of 90, inducing the “Venturi effect” to attain better airflow concentration effect for making full use of wind energy. We conduct the CFD simulations to assess the wind power density and turbulence intensity results to determine the appropriate sites for turbine installation. The simulation results of wind power density reveal that parallel passages have a higher wind concentration effect as compared to the case of diverging passages at a height near the roof of upstream high-rise buildings. With an increase in gap distance of upstream passages, we can observe the better performance of wind power density in downstream buildings. However, the sharp corner design can also result in high turbulence intensities, which are unsuitable for turbine installation. It is therefore to replace the sharp corner with the chamfered or rounded corners for attaining better airflow concentration effect with low turbulence intensities for making full use of wind energy. The results of improved high-rise building layouts can realize the best wind concentration outcomes for wind energy utilization.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 CFD應用於建築風環境評估 3
1.2.2 城市建築風機之發展 4
1.2.3 建築配置及設計之風能潛力 5
1.3 研究目的 7
1.4 研究方法 9
第二章 數值模擬理論分析 11
2.1 基本假設與統御方程式 11
2.1.1 統御方程式 11
2.1.2 標準k-ε紊流模式 11
2.2大氣邊界層理論 12
2.2.1 大氣邊界層之風速剖面 18
2.3 數值方法 20
第三章 CFD模擬分析流程 22
3.1 計算模型說明 22
3.2 CFD網格建立 23
3.3 邊界條件 24
3.4 建築配置模擬案例 25
第四章 結果與討論 27
4.1 網格獨立性測試 27
4.2 計算模型驗證分析 28
4.3 建築通道間之速度場模擬分析 31
4.3.1 建築物平行排列之影響 31
4.3.2 建築物夾角排列之影響 34
4.4 建築通道間之風能密度模擬分析 36
4.4.1 建築物平行排列之影響 36
4.4.2 建築物夾角排列之影響 38
4.5 建築通道間之紊流強度模擬分析 40
4.5.1 建築物平行排列之影響 40
4.5.2 建築物夾角排列之影響 42
4.6 建築配置之風能潛勢評估 44
第五章 結論 52
參考文獻 53
符號彙編 60

[1]丁平,城市建築風環境模擬及風能利用研究,北京,華北電力大學,2016。
[2]Dutton, A.G., Halliday, J.A., Blanch, M.J., The Feasibility of Building- Mounted/Integrated Wind Turbines (BUWTs):Achieving their potential for carbon emission reductions. UK:Energy Research Unit, CCLRC. 2005; 17-18.
[3]Chen, Q., “Comparison of Different Models for Indoor Air Flow,” Numerical Heat Transfer., Part B. 1995; 28: 353-369.
[4]Chen, Q., ”Using computational tools to factor wind into architectural environment design,” Energy and Buildings. 2004; 36: 1197-1209.
[5]村上周三,CFDによる建築‧都市の環境設計工學,東京大學出版會,2000。
[6]Blocken, B., Carmeliet, J. ‘‘Pedestrian wind conditions at outdoor platforms in a high-rise apartment building: generic sub-configuration validation, wind comfort assessment and uncertainty issues,’’ Wind and Structures. 2008; 11(1): 51–70.
[7]Blocken B, Defraeye T, Derome D, Carmeliet J. ‘‘High-resolution CFD simulations of forced convective heat transfer coefficients at the facade of a low-rise building,’’ Building and Environment. 2009; 44(12): 2396-2412.
[8]Blocken B, Stathopoulos T, Carmeliet J, Hensen JLM. ‘‘Application of CFD in building performance simulation for the outdoor environment: an overview,’’ Journal of Building Performance Simulation. 2011; 4(2): 157-184.
[9]Blocken, B., Janssen, W.D., van Hooff, T. ‘‘CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus,’’ Environ. Modell. Softw. 2012; 30: 15-3.
[10]Moonen P, Defraeye T, Dorer V, Blocken B, Carmeliet J. ‘‘Urban physics: effect of the microclimate on comfort, health and energy demand,’’ Frontiers of Architectural Research. 2012; 1(3), 197–228.
[11]Blocken, B., Carmeliet, J. ‘‘Pedestrian Wind Environment around Buildings: Literature Review and Practical Examples,’’ Journal of Thermal Envelope and Building Science. 2004; 28: 107-159.
[12]Blocken, B., Persoon, J. ‘‘Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard,’’ Journal of Wind Engineering and Industrial Aerodynamics. 2009; 97: 255–270.
[13]Van Hooff T, Blocken B. ‘‘Coupled urban wind flow and indoor natural ventilation modeling on a high-resolution grid A case study for the Amsterdam ArenA stadium,’’ Environmental Modeling & Software. 2010; 25(1): 51-65.
[14]Van Hooff T, Blocken B. ‘‘Full-scale measurements of indoor environmental conditions and natural ventilation in a large semi-enclosed stadium: possibilities and limitations for CFD validation,’’ Journal of Wind Engineering and Industrial Aerodynamics. 2012; 104-106:330-341.
[15]王乃粒,城市風力發電,世界科學,2005。
[16]Taylor, D. “Using buildings to harvest wind energy.”, Building Research & Information. 1998; 199-202.
[17]Blanch M.J. “Wind energy technologies for use in the built environment.”, Wind Engineering. 2002; 125-143.
[18]Sander Mertens. “Wind energy in urban areas: Concentrator effects for wind turbines close to buildings.”, Refocus. 2002; 22-24.
[19]Abe, K., Ohya, Y. “An investigation of flow fields around flanged diffusers using CFD.”, Journey of Wind Engineering and Industrial Aerodynamics. 2004; 315-330.
[20]Van Bussel, GJ.W., Mertens, S. “Small wind turbines for the built environment.”, The Fourth European & African Conference on Wind Engineering. 2005.
[21]Dayan, E. “Wind Energy in buildings”, Refocus. 2006; 33-38.
[22]Salameh, Z., Nandu, C.V. “Overview of building integrated wind energy conversion systems.”, Power and Energy Society General Meeting. 2010.
[23]Chaudhry, H.N., Calautit, J.K., Hughes, B.R.. “The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT)”. 2014.
[24]Chaudhry, H.N., Calautit, J.K., Hughes, B.R.. “Computational Analysis to Factor Wind into the Design of an Architectural Environment”. 2015.
[25]Li, Q.S., Chen, F.B., Li, Y.G., Lee, Y.Y. “Implementing wind turbines in a tall building for power generation: A study of wind loads and wind speed amplifications”, Journal of Wind Engineering and Industrial Aerodynamics. 2013; 116: 70-82.
[26]Li, Q.S., Shu, Z.R., Chen, F.B. “Performance assessment of tall building-integrated wind turbines for power generation”, Applied Energy. 2016; 165: 777-788.
[27]Kim, H.G., Jeon, W.H., Kim, D.H. “Wind Resource Assessment for High-Rise BIWT Using RS-NWP-CFD”. 2016.
[28]Khayrullina A, Hoof Tv, Blocken B. A study on the wind energy potential in passages between parallel buildings. Proceedings of the 6th European-African Conference on Wind Engineering (EACWE). Cambridge, UK. 2013; 1-8.
[29]Wang B, Cot LD, Adolphe L, Geoffroy S, Morchain J. Estimation of wind energy over roof of two perpendicular buildings. Energy and Buildings. 2015; 88: 57-67.
[30]Heo YG, Choi NJ, Choi KH, Ji HS, Kim KC. CFD study on aerodynamic power output of a 110 kW building augmented wind turbine. Energy and Buildings. 2016; 129: 162-73.
[31]Blocken, B., Moonen, P., F.ASCE, T. S., & Carmeliet, J. Numerical study on the existence of the venturi effect in passages between perpendicular buildings. Journal of Engineering Mechanics. 2008; 134(12), 1021-1028.
[32]Li, B., Luo, Z., Sandberg, M., & Liu, J. Revisiting the‘venturi effect’ in passage ventilation between two non-parallel buildings. Building and Environment. 2015; 94: 714-722.
[33]Zhou H, Lu Y, Liu X, Chang R, Wang B. Harvesting wind energy in low-rise residential buildings: Design and optimization of building forms. Journal of Cleaner Production. 2017; 167: 306-16.
[34]Balduzzi F, Bianchini A, Ferrari L. Microeolic turbines in the built environment: Influence of the installation site on the potential energy yield. Renewable Energy. 2012; 45: 163-74.
[35]Wang, B.L.,. Cot, D, Adolphe, L., Geoffroy, S., Sun, S. “Cross indicator analysis between wind energy potential and urban morphology”, Renewable Energy. 2017; 113: 989-1006.
[36]Toja-Silva F, Lopez-Garcia O, Peralta C, Navarro J, Cruz I. An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings. Applied Energy. 2016; 164: 769-94.
[37]Abohela I, Hamza N, Dudek S. Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renewable Energy. 2013; 50: 1106-18.
[38]Ledo L, Kosasih PB, Cooper P. Roof mounting site analysis for micro-wind turbines. Renewable Energy. 2011; 36: 1379-91.
[39]Lu L, Ip KY. Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong. Renewable and Sustainable Energy Reviews. 2009; 13: 450-61.
[40]Wang Q, Wang J, Hou Y, Yuan R, Luo K, Fan J. Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements. Renewable Energy. 2018; 115: 1118-33.
[41]Lu L, Sun K. Wind power evaluation and utilization over a reference high-rise building in urban area. Energy and Buildings. 2014; 68, Part A: 339-50.
[42]IEC61400.2-2013. Wind Turbines Part II. Design Requirements for Small Wind Turbines. 2013.
[43]ANSYS, Theory Guide 4.4.1, Standard k-ε model.
[44]Launder BE. Spalding D.B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering. 1974; 3: 269-89.
[45]Launder BE, Spalding DB. Mathematical models of turbulence. London: Academic Press. 1972.
[46]Launder BE, Spalding DB. Editor, Lectures in Mathematical Models of Turbulence, Academic Press publishers, London, 1972.
[47]朱佳仁,環境流體力學,台北:科技圖書出版公司,2003。
[48]Davenport AG. The relationship of wind structure to wind loading. International Conference on the Wind Effects on Buildings and Structures. National Physical Laboratory. Teddington, Middlesex, England. 1963; 2: 26-28.
[49]內政部營建署,建築物耐風設計規範及解說,營建雜誌社,2013。
[50]Plate EJ, Kiefer H. Wind loads in urban areas. Journal of Wind Engineering and Industrial Aerodynamics. 2001; 89: 1233-1256.
[51]Wieringa J. Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics. 1992; 41: 357-368.
[52]Hellman G. Über die Bewegung der Luft in den untersten Schichten der Atmosphäre, Meteorol. Z. 1916; 34:273.
[53]Simiu E, Scanlan RH. Wind effects on structures: An introduction to wind engineering. New York: Wiley. 1986.
[54]Jang Y, Kim J. Total SO2 emission control strategies for the management of air pollution in Ulsan industrial complex. Atmospheric Environment. 1987; 21(3): 469-477.
[55]Van Doormaal JP, Raithby GD. Enhancements of The SIMPLE Method for Predicting Incompressible Fluid Flows. Numerical Heat Transfer. 1984; 7: 147-163.
[56]Jian Hang, Zhiwen Luo, Mats Sandberg, Jian Gong. Natural ventilation assessment in typical open and semi-open urban environments under various wind directions. Building and Environment. 2013; 70: 318-333.
[57]Yoshihide Tominaga, Akashi Mochida, Shuzo Murakami, Satoshi Sawaki. Comparison of various revised k–ε models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer. Journal of Wind Engineering and Industrial Aerodynamics. 2008; 96: 389-411
[58]A. Mochida, Y. Tominaga, S. Murakami, R. Yoshie, T. Ishihara, R.Ooka. Comparison of various k-ε models and DSM applied to flow around a high-rise building – report on AIJ cooperative project for CFD prediction of wind environment. Wind and Structures. 2002; 5: 227-244.
[59]Gunturu UB, Schlosser CA. Characterization of wind power resource in the United States. Atmos Chem Phys. 2012; 12: 9687-702.
[60]Ahmed Elshaer, Girma Bitsuamlak, Ashraf El Damatty. Enhancing wind performance of tall buildings using corner aerodynamic optimization”. Engineering Structures. 2017; 136: 133-148.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊