跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳雯琪
研究生(外文):Wen-Chi Wu
論文名稱:以雙水相系統進行鳳梨蛋白酶最適化分離之研究
論文名稱(外文):Optimization of Bromelain separation by using Aqueous Two-Phase System
指導教授:藍祺偉
指導教授(外文):John Chi-Wei Lan
口試委員:張嘉修張煜光陳博彥顏宏偉
口試委員(外文):Jo-Shu ChangYu-kaung ChangBor-Yann ChenHong-Wei Yen
口試日期:104-05-30
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:雙水相系統液液分離鳳梨蛋白酶
外文關鍵詞:Aqueous two-phase systemATPSliquid-liquid separationBromelain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:586
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雙水相系統(Aqueous Two-Phase System, ATPS)已被廣泛應用於生物材料的分離
過程。 ATPS 的優點為低界面張力,良好的生物相容性和產率。雙水相系統影響參數
會由pH 值,節線長度(Tie-line, TLL),雙節曲線,離心速度,工作溫度,離子強度
和體積比的不同分離結果有所差異。本研究使用的含水兩相系統(ATPS)溶液進行,
以回收所表達的蛋白酶從鳳梨粗取液調查純化。
本研究利用鳳梨果肉(Ananas comosus Merr. Tainung No 17)動力攪拌成粗取液,接著
以雙水相系統分離目標物鳳梨蛋白酶,找出最適化分離條件。利用磷酸鹽系統及檸檬
酸鹽系統測試不同相圖之節線長度,比較鳳梨蛋白酶之分配係數及純化倍率,進行標
準品及粗取液(Crude extract)雙水相系統分離,選定磷酸鹽系統加以進行環境條件之參
數操作。最佳結果為包含選擇不同環境pH 值、雙結點曲線(Binodal curve)、節線長度
(Tie-line length, TLL)、分離速度(Centrifugation speed)、鹽類(Salt)對鳳梨蛋白酶的影響,
進行分離效果的探討。目前最適化分離結果由粗取液經由17% (w/w)的PEG 4000 /14%
(w/w) 的PO4 pH 8 所組成於分離速度8000×g 室溫操作下分離後,其活性為2.7 U、純
化倍率(PF)達16.3 及回收率可達55.6%。研究結果顯示雙水相系統是一高效率的蛋白
純化及分離技術,可直接由鳳梨粗取液中分離出鳳梨蛋白酶。
Aqueous two-phase system (ATPS) has been widely applied in various separation
processes of biomaterials. ATPS possesses several advantages, such as low interfacial
tension, good biocompatibility and resulting in high yield of target product. The partition
behaviour of a target product in an ATPS could be affected by tie-line length (TLL),
centrifugation speed, operational temperature, ionic strength, pH and volume ratio (VR) of
the ATPS. In this study, recovery of expressed protease from flesh pineapple fruit using
polymer/salt ATPS was investigated. The partition behaviour of bromelain standard in the
developed polyethylene glycol (PEG)/phosphate ATPS was also studied. Screening of the
partition behaviour of bromelain by PEG/Phosphate/Citrate systems indicated that
(PEG)/phosphate system showed the better partition coefficient and purification. The
operating factors includes pH value, binodal curve, tie-line length (TLL), centrifugation
speed, ionic strength, and operational temperature upon recovery of bromelain from
pineapple using PEG/phosphate ATPS were investigated and discussed. The results
demonstrated that the optimal conditions for bromelain recovery from crude extract were
obtained at ATPS consisted of 17% (w/w) PEG 4000 and 14% (w/w) PO4 at pH value of 8,
centrifugation speed of 8000×g ;and at room temperature. The resulting specific activity
and purification factor (PF) of bromelain at top phase of PEG/phosphate ATPS were 2.7 U
and 16.3 respectively. The efficiency of recovery achieved 55.6%. The findings illustrated
that ATPS could be a promising technique to recover bromelain in one-step operation.
目錄
摘要 ......................................................................................................................................... 2
Abstract ................................................................................................................................... 3
致謝 ......................................................................................................................................... 4
目錄 ......................................................................................................................................... 5
圖目錄 ..................................................................................................................................... 9
表目錄 ................................................................................................................................... 11
第一章 緒論 .......................................................................................................................... 12
1.1 前言 .......................................................................................................................... 12
1.2 蛋白質純化技術 ...................................................................................................... 13
1.2.1 膠體過濾技術 ............................................................................................... 14
1.2.2 離子交換層析技術 ....................................................................................... 15
1.2.3 疏水性層析技術 ........................................................................................... 16
1.2.4 親和性層析技術 ........................................................................................... 17
1.2.5 雙水相系統 ................................................................................................... 18
1.2.5.1 雙水相系統的特性 ............................................................................ 19
1.2.5.2 雙水相系統相圖 ................................................................................ 20
1.2.5.3 雙水相系統分類 ................................................................................ 22
1.2.5.3.1 聚合物—鹽類系統 ................................................................. 24
1.2.5.3.2 聚合物—聚合物系統 ............................................................. 24
1.2.5.3.3 離子溶液系統 ......................................................................... 24
1.2.5.4 雙水相系統的分配係數(K) .............................................................. 24
6
1.2.5.5 雙水相系統的分析 ............................................................................ 26
1.3 蛋白酶 ...................................................................................................................... 27
1.3.1 蛋白酶簡介 ................................................................................................... 27
1.3.2 蛋白酶分類 ................................................................................................... 30
1.3.3 鳳梨蛋白酶簡介 ........................................................................................... 33
1.3.4 鳳梨蛋白酶應用 ........................................................................................... 34
1.4 研究目的與策略 ...................................................................................................... 35
1.4.1 研究目的 ....................................................................................................... 35
1.4.2 研究策略 ....................................................................................................... 36
第二章 以不同雙水相系統組成分離純化鳳梨粗取液之鳳梨蛋白酶 .............................. 37
2.1 導論 .......................................................................................................................... 37
2.1.1 鳳梨蛋白酶純化之技術及研究 .................................................................. 37
2.2 實驗藥品 .................................................................................................................. 39
2.3 實驗儀器設備 .......................................................................................................... 40
2.4 實驗方法與分析 ...................................................................................................... 41
2.4.1 鳳梨蛋白酶製備 ........................................................................................... 41
2.4.2 鳳梨蛋白酶活性測定 ................................................................................... 41
2.4.3 聚丙烯醯胺膠體電泳分析 ........................................................................... 41
2.4.4 Coomassie blue 呈色法 ............................................................................... 43
2.4.5 總蛋白質濃度測定 ....................................................................................... 44
2.4.6 雙水相系統製備 ........................................................................................... 44
2.4.8 雙水相系統之雙節點曲線建立 ................................................................... 45
2.5 結果與討論 ............................................................................................................. 47
2.5.1 探討不同系統組成之雙節點曲線對ATPS 分離效果影響 ...................... 47
7
2.5.2 探討系統組成對鳳梨蛋白酶分離效果影響 .............................................. 51
2.5.3 利用SDS-PAGE 進行ATPS 純化結果之分析 ........................................... 52
2.6 結論 ......................................................................................................................... 53
第三章 雙水相系統參數操作之最適化條件探討 .............................................................. 54
3.1 導論 ......................................................................................................................... 54
3.2 實驗藥品 ................................................................................................................. 54
3.3 實驗儀器設備 ......................................................................................................... 54
3.4 實驗方法與分析 ..................................................................................................... 55
3.4.1 鳳梨蛋白酶製備 ........................................................................................... 55
3.4.2 鳳梨蛋白酶活性測定 .................................................................................. 55
3.4.3 總蛋白質濃度測定 ...................................................................................... 55
3.4.4 雙水相系統之參數操作 .............................................................................. 55
3.4.4.1 系統組成之影響 ............................................................................... 55
3.4.4.2 pH 值之影響 ...................................................................................... 56
3.4.4.3 鹽類添加之影響 ............................................................................... 56
3.4.4.4 分離速度之影響 ............................................................................... 57
3.4.4.5 不同體積比及溫度之影響 ............................................................... 57
3.5 結果與討論 .............................................................................................................. 58
3.5.1 探討雙節點曲線對ATPS 分離效果影響 ................................................... 58
3.5.2 探討pH 值對ATPS 分離效果影響 ............................................................. 60
3.5.4 探討鹽類對ATPS 分離效果影響 ............................................................... 61
3.5.5 探討不同分離速度對ATPS 分離效果影響 .............................................. 63
3.5.6 探討不同體積比及溫度對ATPS 分離效果影響 ...................................... 65
3.5.7 利用SDS-PAGE 進行ATPS 純化最適化結果之分析 ............................... 67
8
3.6 結論 ......................................................................................................................... 68
第四章 總結與未來工作 ...................................................................................................... 69
4.1 總結 .......................................................................................................................... 69
4.2 未來工作 .................................................................................................................. 69
參考文獻 ............................................................................................................................... 70
圖目錄
圖1-1、膠體過濾技術原理圖.............................................................................. 14
圖1-2、離子交換技術原理圖解 ......................................................................... 15
圖1-3、疏水性層析技術原理圖解 ..................................................................... 16
圖1-4、親和性層析技術原理圖解 ..................................................................... 17
圖1-5、雙水相系統萃取原則流程圖(Hustedt, 1986) ........................................ 18
圖1-6、雙水相系統相圖圖示(Hatti-Kaul, 2000) ................................................ 21
圖1-7 研究架構圖 ................................................................................................ 36
圖2-1 PEG 2000 之折射率檢量線 ...................................................................... 45
圖2-2 PEG 4000 之折射率檢量線 ...................................................................... 45
圖2-3 PEG 6000 之折射率檢量線 ...................................................................... 45
圖2-4 PEG 8000 之折射率檢量線 ...................................................................... 45
圖2-5 Potassium phosphate pH7.5 之折射率檢量線 ........................................... 46
圖2-6 Potassium phosphate pH7.5 之電導度檢量線 ........................................... 46
圖 2-7 PEG 8000 / PO4 於 pH 7.5 的 Binodal curve ............................................. 48
圖 2-8 PEG 6000 / PO4 於 pH 7.5 的 Binodal curve ............................................. 48
圖2-10 以SDS-PAGE 分析標準品及粗取液經雙水相系統純化之結果 .......... 52
圖3-1 PEG 4000 / PO4 於pH 7.5 的 Binodal curve ...................................... 58
圖3-2 不同TLL 對標準品中鳳梨蛋白酶分配係數的影響 .............................. 59
圖3-3 不同TLL 對粗取液中鳳梨蛋白酶分配係數的影響 .............................. 59
圖3-4 pH 值對標準品中鳳梨蛋白酶分配係數的影響....................................... 60
圖3-5 pH 值對粗取液中鳳梨蛋白酶分配係數的影響....................................... 61
10
圖3-6 添加鹽類對標準品中鳳梨蛋白酶分配係數的影響 ............................... 62
圖3-7 添加鹽類對粗取液中鳳梨蛋白酶分配係數的影響 ............................... 63
圖3-8 不同分離速度對標準品中鳳梨蛋白酶分配係數的影響 ....................... 64
圖3-9 不同分離速度對粗取液中鳳梨蛋白酶分配係數的影響 ....................... 64
圖3-10 ATPS 中不同體積比在300 K 下對鳳梨蛋白酶分配係數之影響 ........ 66
圖3-11 ATPS 中不同體積比在277 K 下對鳳梨蛋白酶分配係數之影響 ........ 66
圖3-12 以SDS-PAGE 分析粗取液經雙水相系統最適化結果之分析 .............. 67
11
表目錄
表 1-1 依據蛋白質不同特性做分離分類 ........................................................ 13
表1-2、不同種類的雙水相系統 ......................................................................... 23
表1-3 存在自然界中的蛋白酶 (Adler - Nissen, 1986) ..................................... 28
表2-1 不同純化技術之產率及純化倍率 ........................................................... 38
表2-2 實驗所使用之藥品.................................................................................... 39
表2-3 實驗所使用之儀器設備............................................................................ 40
表2-4 Gel formulation for SDS-PAGE analysis of protein ................................... 42
表2-5 Running buffer (1X) ................................................................................... 43
表2-6 磷酸緩衝溶液(Phosphate buffered saline, PBS) ...................................... 43
表2-7 樣品緩衝液(Sample buffer) (2X) .............................................................. 43
表2-8 染色液(Staining solution) .......................................................................... 44
表2-9 去色液(De-staining solution) .................................................................... 44
表 2-10 PEG/Sodium citrate 和PEG/Phosphate 系統不同分子量及TLL 之Ke
和PFT 比較 .................................................................................................... 50
表 2-11 系統組成對粗取液及標準品分配係數比較 ......................................... 51
表3-1 不同節線長度之系統組成 ....................................................................... 55
表3-2 不同pH 值之磷酸鉀鹽溶液配製 ............................................................. 56

參考文獻
Adler - Nissen, J. (1986). Enzymic hydrolysis of food proteins, Elsevier Applied Science,
London [etc.].
Akbari, N., Daneshjoo, S., Akbari, J., and Khajeh, K. (2011). Isolation, characterization, and
catalytic properties of a novel lipase which is activated in ionic liquids and organic
solvents. Applied Biochemistry and Biotechnology 165, 785-794.
Albertsson, P. A. (1986). Partition of cell particles and macromolecules. 3rd edition. Wiley
& Sons, New York.
Andrew D. Rowan, D. J. B. a. A. J. B. (1990). The cysteine proteinases of the pineapple
plant. Biochem. J., 7.
Andrews, B. A., and Asenjo, J. A. (2010). Theoretical and experimental evaluation of
hydrophobicity of proteins to predict their partitioning behavior in aqueous two phase
systems: A review. Separation Science and Technology 45, 2165-2170.
Andrews, B. A., Schmidt, A. S., and Asenjo, J. A. (2005). Correlation for the partition
behavior of proteins in aqueous two-phase systems: effect of surface hydrophobicity
and charge. Journal of Biotechnology and Bioengineering 90, 380-90.
Antov, M. G., Pericin, D. M., and Pejin, S. N. (2004). Pectinases partitioning in aqueous
two-phase systems an integration of the systems poly(ethylene glycol)crude dextran
and poly(ethylene glycol)ammonium sulphate. Journal of the Serbian Chemical
Society 69, 299-307.
Arshad, Z. I., Amid, A., Yusof, F., Jaswir, I., Ahmad, K., and Loke, S. P. (2014). Bromelain:
an overview of industrial application and purification strategies. Appl Microbiol
Biotechnol 98, 7283-97.
Asenjo, J. A., and Andrews, B. A. (2011). Aqueous two-phase systems for protein separation:
a perspective. Journal of Chromatography A 1218, 8826-35.
Baskir, J. N., Hatton, T. A., and Suter, U. W. (1989). Thermodynamics of the partitioning of
biomaterials in two-phase aqueous polymer systems: Comparison of lattice model to
experimental data. Journal of Physical Chemistry 93, 2111-2122.
Bassani, G., Farruggia, B., Nerli, B., Romanini, D., and Pico, G. (2007). Porcine pancreatic
lipase partition in potassium phosphate-polyethylene glycol aqueous two-phase
systems. J Chromatogr B Analyt Technol Biomed Life Sci 859, 222-8.
Biazus, J. P. M., Severo, J. B., Santana, J. C. C., Souza, R. R., and Tambourgi, E. B. (2006).
Study of amylases recovery from maize malt by ion-exchange expanded bed
chromatography. Process Biochemistry 41, 1786-1791.
Blanchard, L. A., Gu, Z., and Brennecke, J. F. (2001). High-pressure phase behavior of ionic
liquid/CO2 systems. The Journal of Physical Chemistry B 105, 2437-2444.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein dye binding. Analytical
Biochemistry 72, 248-254.
C.Ramalingam, R. S. a. N. N. I. (2012). pineapple (Ananas Comosus).pdf>. Food Science and Biotechnology 45, 5.
Carola Metzig, E. G., Klaus Eckert, Klaus Rehse and H. Rainer Maurer (1999). Bromelain
Proteases Reduce Human Platelet Aggregation in Vitro,
Adhesion to Bovine Endothelial Cells and Thrombus Formation in
71
Rat Vessels in Vivo. in vivo 13, 5.
Chavez-S, A., Benavides, J., Vermaas, W., and Rito-Palomares, M. (2010). Application of
Aqueous Two-Phase Systems for the Potential Extractive Fermentation of
Cyanobacterial products. Chemical Engineering and Technology 33, 177-182.
Chien-Pei Chen, S.-L. W. (2006). Purification and Characterization of Proteases and
Chitinases from Bromelain.
Chiou, Y.-T. (2014). Purification and characterization of protease from a hot spring
microorganism of Tepidimonas taiwanensis I1-1
Coelho, D., Silveira, E., Junior, A. P., and Tambourgi, E. (2013). Bromelain purification
through unconventional aqueous two-phase system (PEG/ammonium sulphate).
Bioprocess and biosystems engineering 36, 185-192.
Corzo, C. A., Waliszewski, K. N., and Welti-Chanes, J. (2012). Pineapple fruit bromelain
affinity to different protein substrates. Food Chemistry 133, 631-635.
de Lencastre Novaes, L. C., Jozala, A. F., Lopes, A. M., de Carvalho Santos-Ebinuma, V.,
Mazzola, P. G., and Pessoa Junior, A. (2016). Stability, purification, and applications
of bromelain: A review. Biotechnol Prog 32, 5-13.
De Souza, R. L., Barbosa, J. M. P., Zanin, G. M., Lobão, M. W. N., Soares, C. M. F., and
Lima, Á . S. (2010). Partitioning of porcine pancreatic lipase in a two-phase systems
of polyethylene glycol/potassium phosphate aqueous. Applied Biochemistry and
Biotechnology 161, 288-300.
Fisher, D., and Sutherland, I. A. (1989). Separations using aqueous phase system:
applications in cell biology and biotechnology. Plenum press, New York.
Forciniti, D., Hall, C. K., and Kula, M. R. (1991). Influence of polymer molecular weight
and temperature on phase composition in aqueous two-phase systems. Fluid Phase
Equilibria 61, 243-262.
Gould, B. (1975). Enzyme data. Handbook of Enzyme Biotechnology. A. Wiseman, ed.
Gupta, R., Beg, Q., and Lorenz, P. (2002). Bacterial alkaline proteases: molecular
approaches and industrial applications. Applied microbiology and biotechnology 59,
15-32.
H-Kittikun, A., Prasertsan, P., Zimmermann, W., Seesuriyachan, P., and Chaiyaso, T. (2012).
Sugar ester synthesis by thermostable lipase from Streptomyces thermocarboxydus
ME168. Applied Biochemistry and Biotechnology 166, 1968-1982.
Harrach, T., Eckert, K., Schulze-Forster, K., Nuck, R., Grunow, D., and Maurer, H. R.
(1995). Isolation and partial characterization of basic proteinases from stem
bromelain. Journal of protein chemistry 14, 41-52.
Harris, J. M. (1992). Poly(ethylene glycol) chemistry: Biotechnical and biomedical
applications. Plenum press, New York.
Hatti-Kaul, R. (2000). Aqueous Two-Phase Systems: Methods and Protocols. Humana Press,
Totowa, New Jersey.
Hatti-Kaul, R. (2001). Aqueous two-phase systems: A general overview. Applied
Biochemistry and Biotechnology - Part B Molecular Biotechnology 19, 269-277.
Hayamizu, K., Aihara, Y., Nakagawa, H., Nukuda, T., and Price, W. S. (2004). Ionic
conduction and ion diffusion in binary room-temperature ionic liquids composed of
[emim][BF4] and LiBF4. The Journal of Physical Chemistry B 108, 19527-19532.
Hebbar, U. H., Sumana, B., Hemavathi, A. B., and Raghavarao, K. S. M. S. (2010).
Separation and Purification of Bromelain by Reverse Micellar Extraction Coupled
72
Ultrafiltration and Comparative Studies with Other Methods. Food and Bioprocess
Technology 5, 1010-1018.
Hemavathi, A. B., Hebbar, H. U., and Raghavarao, K. S. (2007). Reverse micellar extraction
of bromelain from Ananas comosus L. Merryl. Journal of chemical technology and
biotechnology 82, 985-992.
Hustedt, H. (1986). Extractive enzyme recovery with simple recycling of phase forming
chemicals. Biotechnology Letters 8, 791-796.
Illanes, A. (2008). Enzyme production. In "Enzyme Biocatalysis", pp. 57-106. Springer.
Jue, E., Yamanishi, C. D., Chiu, R. Y., Wu, B. M., and Kamei, D. T. (2014). Using an
aqueous two‐phase polymer‐salt system to rapidly concentrate viruses for improving
the detection limit of the lateral ‐ flow immunoassay. Biotechnology and
bioengineering 111, 2499-2507.
Kennedy, J. F., and Cabral, J. M. S. (1993). Recovery processes for biological materials.
Wiley & Sons, New York.
Ketnawa, S., Benjakul, S., Ling, T. C., Martínez-Alvarez, O., and Rawdkuen, S. (2013).
Enhanced recovery of alkaline protease from fish viscera by phase partitioning and
its application. Chemistry Central Journal 7, 79.
Ketnawa, S., Chaiwut, P., and Rawdkuen, S. (2011a). Aqueous two-phase extraction of
bromelain from pineapple peels (‘Phu Lae’ cultv.) and its biochemical properties.
Food Science and Biotechnology 20, 1219-1226.
Ketnawa, S., Chaiwut, P., and Rawdkuen, S. (2011b). Aqueous two-phase extraction of
bromelain from pineapple peels (‘Phu Lae’cultv.) and its biochemical properties.
Food Science and Biotechnology 20, 1219-1226.
Kumar, S., Hemavathi, A., and Hebbar, H. U. (2011). Affinity based reverse micellar
extraction and purification of bromelain from pineapple (Ananas comosus L. Merryl)
waste. Process Biochemistry 46, 1216-1220.
Kunasundari, B., and Sudesh, K. (2011). Isolation and recovery of microbial
polyhydroxyalkanoates. Express Polymer Letters 5, 620-634.
Lazreg-Aref, H., Mosbah, H., Fekih, A., Mars, M., and Said, K. (2012). Purification and
Biochemical Characterization of Lipase from Ficus carica Latex of Tunisian East
Coast Zidi Variety. Journal of the American Oil Chemists' Society 1-9.
Lima, Á . S., Alegre, R. M., and Meirelles, J. A. (2002). Partitioning of pectinolytic enzymes
in polyethylene glycolpotassium phosphate aqueous two-phase systems.
Carbonhydrate Polymers 50, 63-68.
Lopes, F. L. G., Júnior, S., Baptista, J., Souza, R. R. d., Ehrhardt, D. D., Santana, J. C. C.,
and Tambourgi, E. B. (2009). Concentration by membrane separation processes of a
medicinal product obtained from pineapple pulp. Brazilian Archives of Biology and
Technology 52, 457-464.
Luo, J., Wu, W., Zou, B., Song, Q., and Zhou, G. (2016). Expression and Purification of
ATP Sulfurylase from Saccharomyces cerevisias in Escherichia coli and Its
Application in Pyrosequencing. Advances and Clinical Practice in Pyrosequencing,
187-195.
MA, C., WU, M.-y., QIAO, X.-g., SONG, Y., and ZHAO, Y. (2009). Study on purification
of stem bromelain by nano-TiO_2 and ultrafiltration. Food Science and Technology 4,
046.
Madeira, P. P., Teixeira, J. A., Macedo, E. A., Mikheeva, L. M., and Zaslavsky, B. Y. (2008).
Correlations between distribution coefficients of various biomolecules in different
polymer/polymer aqueous two-phase systems. Fluid Phase Equilibria 267, 150-157.
MAJID, F. A. A., GANI, M. A., Talib, S., and Hasyim, K. (2008). Stability of
73
bromelain-polyphenol complex in pineapple juice. Journal of Technology 49, 27-38.
Maurer, H. R. (2001). Bromelain: biochemistry, pharmacology and medical use. Cellular
and Molecular Life Sciences 58, 11.
Mehrnoush, A., and Yazid, A. M. M. (2013). Purification and recovery of serine protease
from mango (Mangifera indica cv. Chokanan) waste using aqueous two-phase system:
Potential low cost of enzyme and purification method. Journal of Food, Agriculture
& Environment 11, 40-46.
Miller, J. M. (2004). Chromatography: Concepts and Contrasts. 2nd edition. Wiley & Sons,
Hoboken, New Jersey
Muntari Bala, N. A. I., Maizirwan Mel, Mohamed Saedi Jami, Hamzah, and Mohd. Salleh,
A. A. (2012). Bromelain Production: Current Trends and Perspective. Archives Des
Sciences, 31.
Navapara, R. D., Avhad, D. N., and Rathod, V. K. (2011). Application of response surface
methodology for optimization of bromelain extraction in aqueous two-phase system.
Separation Science and Technology 46, 1838-1847.
Neurath, H. (1984). Evolution of proteolytic enzymes. Science 224, 350-357.
Ng, H. S., Tan, C. P., Chen, S. K., Mokhtar, M. N., Ariff, A., and Ling, T. C. (2011). Primary
capture of cyclodextrin glycosyltransferase derived from Bacillus cereus by aqueous
two phase system. Separation and Purification Technology 81, 318-324.
Nguyen, A. L., Grothe, S., and Luong, J. H. T. (1988). Applications of pullulan in aqueous
two-phase systems for enzyme production, purification and utilization. Applied
Microbiology and Biotechnology 27, 341-346.
Nie, H., Li, S., Zhou, Y., Chen, T., He, Z., Su, S., Zhang, H., Xue, Y., and Zhu, L. (2008).
Purification of bromelain using immobilized metal affinity membranes. Journal of
Biotechnology 136, S416.
Ooi, C. W., Tey, B. T., Hii, S. L., Kamal, S. M. M., Lan, J. C. W., Ariff, A., and Ling, T. C.
(2009). Purification of lipase derived from Burkholderia pseudomallei with
alcohol/salt-based aqueous two-phase systems. Process Biochemistry 44, 1083-1087.
Pan, I. H., Yao, H. J., and Li, Y. K. (2001). Effective extraction and purification of
β-xylosidase from Trichoderma koningii fermentation culture by aqueous two-phase
partitioning. Enzyme and Microbial Technology 28, 196-201.
Pantazaki, A. A., Ioannou, A. K., and Kyriakidis, D. A. (2005). A thermostable
β-ketothiolase of polyhydroxyalkanoates (PHAs) in Thermus thermophilus:
Purification and biochemical properties. Molecular and Cellular Biochemistry 269,
27-36.
Piculell, L., Nilsson, S., Falck, L., and Tjerneld, F. (1991). Phase separation in aqueous
mixtures of similarly charged polyelectrolytes. Polymer Communications Guildford
32, 158-160.
Qi, Q., Steinbuchel, A., and Rehm, B. H. A. (2000). In vitro synthesis of
poly(3-hydroxydecanoate): Purification and enzymatic characterization of type II
polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa.
Applied Microbiology and Biotechnology 54, 37-43.
Rao, M. B., Tanksale, A. M., Ghatge, M. S., and Deshpande, V. V. (1998). Molecular and
biotechnological aspects of microbial proteases. Microbiology and molecular biology
reviews 62, 597-635.
Ratanapongleka, K. (2012). in aqueous two phase systems.pdf>. Songklanakarin Journal of Science and
Technology 34, 8.
Reed, G. (2012). "Enzymes in food processing," Elsevier.
74
Rito-Palomares, M. (2004). Practical application of aqueous two-phase partition to process
development for the recovery of biological products. Journal of Chromatography. B,
Analytical Technologies in the Biomedical and Life Science 807, 3-11.
Rowan, A. D., Buttle, D. J., and Barrett, A. J. (1990). The cysteine proteinases of the
pineapple plant. Biochem. J 266, 869-875.
Saravanan, S., Rao, J. R., Nair, B. U., and Ramasami, T. (2008). Aqueous two-phase
poly(ethylene glycol)–poly(acrylic acid) system for protein partitioning: Influence of
molecular weight, pH and temperature. Process Biochemistry 43, 905-911.
Soares, P. A., Vaz, A. F., Correia, M. T., Pessoa, A., and Carneiro-da-Cunha, M. G. (2012).
Purification of bromelain from pineapple wastes by ethanol precipitation. Separation
and purification technology 98, 389-395.
Sturesson, S., Tjerneld, F., and Johansson, G. (1990). Partition of macromolecules and cell
particles in aqueous two-phase systems based on hydroxypropyl starch and
poly(ethylene glycol). Applied Biochemistry and Biotechnology 26, 281-295.
Tjerneld, F., Berner, S., Cajarville, A., and Johansson, G. (1986). New aqueous two-phase
system based on hydroxypropyl starch useful in enzyme purification. Enzyme and
Microbial Technology 8, 417-423.
Todd, M. D. (1949). . 14.
Velu, N., Divakar, K., Nandhinidevi, G., and Gautam, P. (2012). Lipase from Aeromonas
caviae AU04: Isolation, purification and protein aggregation. Biocatalysis and
Agricultural Biotechnology 1, 45-50.
Vernau, J., and Kula, M. R. (1990). Extraction of proteins from biological raw material
using aqueous polyethylene glycol-citrate phase systems. Applied Biochemistry and
Biotechnology 12, 397-404.
Verral, M. S. (1996). Downstream Processing of Natural Products: A Practical Handbook.
Wiley & Sons, New York.
Walter, H., Brook, D. E., and Fisher, D. (1985). Partitioning in aqueous two-phase system.
Academic press, New York.
Wan-Ru Chen, T. Y. (2009). Size separations of silver nanoparticles using aqueous
two-phase systems. 83.
Wu, Y. T., Zhu, Z. Q., Lin, D. Q., and Li, M. (1999). Modeling of liquid-liquid equilibrium
of polyethylene glycol-salt aqueous two-phase systems - The effect of partial
dissociation of the salt. Fluid Phase Equilibria 154, 109-122.
You-Ting Wu , Z.-Q. Z., Dong-Qiang Lin , Mian Li (1998). Modeling of liquid–liquid
equilibrium of polyethylene glycol-salt
aqueous two-phase systems—the effect of partial dissociation of the
salt. Fluid Phase Equilibria 154, 14.
Zhou, Y. J., Hu, C. L., Wang, N., Zhang, W. W., and Yu, X. Q. (2013). Purification of
porcine pancreatic lipase by aqueous two-phase systems of polyethylene glycol and
potassium phosphate. J Chromatogr B Analyt Technol Biomed Life Sci 926, 77-82.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top