|
1. Thomas, M.L. and P. Marcato. Epigenetic Modifications as Biomarkers of Tumor Development, Therapy Response, and Recurrence across the Cancer Care Continuum. Cancers (Basel), 2018. 10(4). 2. Holliday, R. The inheritance of epigenetic defects. Science, 1987. 238(4824): p. 163-70. 3. Yang, W.Y., J.L. Gu, and T.M. Zhen. Recent advances of histone modification in gastric cancer. J Cancer Res Ther, 2014. 10 Suppl: p. 240-5. 4. Eckschlager, T., et al. Histone Deacetylase Inhibitors as Anticancer Drugs. Int J Mol Sci, 2017. 18(7). 5. Labbe, R.M., A. Holowatyj, and Z.Q. Yang. Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. Am J Transl Res, 2013. 6(1): p. 1-15. 6. Berry, W.L. and R. Janknecht. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res, 2013. 73(10): p. 2936-42. 7. Black, J.C., et al. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell, 2013. 154(3): p. 541-55. 8. Han, F., et al. JMJD2B is required for Helicobacter pylori-induced gastric carcinogenesis via regulating COX-2 expression. Oncotarget, 2016. 7(25): p. 38626-38637. 9. Wilson, C., et al. The histone demethylase KDM4B regulates peritoneal seeding of ovarian cancer. Oncogene, 2017. 36(18): p. 2565-2576. 10. Yang, J., et al. The role of histone demethylase KDM4B in Myc signaling in neuroblastoma. J Natl Cancer Inst, 2015. 107(6): p. djv080. 11. Shin, S. and R. Janknecht. Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun, 2007. 359(3): p. 742-6. 12. Wissmann, M., et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol, 2007. 9(3): p. 347-53. 13. Coffey, K., et al. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res, 2013. 41(8): p. 4433-46. 14. Berry, W.L., et al. Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol, 2012. 41(5): p. 1701-6. 15. Kawazu, M., et al. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS One, 2011. 6(3): p. e17830. 16. Mallette, F.A., et al. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J, 2012. 31(8): p. 1865-78. 17. Wang, L.Y., et al. KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis. Cell Rep, 2016. 16(11): p. 3016-3027. 18. Kim, T.D., et al. The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem, 2012. 113(4): p. 1368-76. 19. Mallette, F.A. and S. Richard. JMJD2A promotes cellular transformation by blocking cellular senescence through transcriptional repression of the tumor suppressor CHD5. Cell Rep, 2012. 2(5): p. 1233-43. 20. Li, H., et al. KDM4B plays an important role in mitochondrial apoptosis by upregulating HAX1 expression in colorectal cancer. Oncotarget, 2016. 7(36): p. 57866-57877. 21. Chu, C.H., et al. KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem, 2014. 57(14): p. 5975-85. 22. IARC, World Cancer Report 2014, ed. B.W. Stewart and C.P. Wild. 2014, Lyon, France. 23. Lauren, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol Microbiol Scand, 1965. 64: p. 31-49. 24. Polkowski, W., et al. Prognostic value of Lauren classification and c-erbB-2 oncogene overexpression in adenocarcinoma of the esophagus and gastroesophageal junction. Ann Surg Oncol, 1999. 6(3): p. 290-7. 25. Ma, J., et al. Lauren classification and individualized chemotherapy in gastric cancer. Oncol Lett, 2016. 11(5): p. 2959-2964. 26. Hu, B., et al. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol, 2012. 3(3): p. 251-61. 27. Yusefi, A.R., et al. Risk Factors for Gastric Cancer: A Systematic Review. Asian Pac J Cancer Prev, 2018. 19(3): p. 591-603. 28. Ge, S., et al. Association between Habitual Dietary Salt Intake and Risk of Gastric Cancer: A Systematic Review of Observational Studies. Gastroenterol Res Pract, 2012. 2012: p. 808120. 29. Fang, X., et al. Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Cancer, 2015. 51(18): p. 2820-32. 30. Cai, M., et al. Environmental factors, seven GWAS-identified susceptibility loci, and risk of gastric cancer and its precursors in a Chinese population. Cancer Med, 2017. 6(3): p. 708-720. 31. Camargo, M.C., et al. Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms and gastric cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev, 2006. 15(9): p. 1674-87. 32. Liu, W., et al. A functional SNP rs1892901 in FOSL1 is associated with gastric cancer in Chinese population. Sci Rep, 2017. 7: p. 41737. 33. Machado, J.C., et al. A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology, 2003. 125(2): p. 364-71. 34. Xue, H., et al. A meta-analysis of interleukin-8 -251 promoter polymorphism associated with gastric cancer risk. PLoS One, 2012. 7(1): p. e28083. 35. Naseem, M., et al. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat Rev, 2018. 66: p. 15-22. 36. Parsonnet, J., et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med, 1991. 325(16): p. 1127-31. 37. Ajani, J.A., et al. Gastric adenocarcinoma. Nat Rev Dis Primers, 2017. 3: p. 17036. 38. Sitarz, R., et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res, 2018. 10: p. 239-248. 39. IARC. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum, 1994. 61: p. 1-241. 40. Burkitt, M.D., et al. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis Model Mech, 2017. 10(2): p. 89-104. 41. Graham, D.Y. Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology, 2015. 148(4): p. 719-31 e3. 42. Zullo, A., et al. Follow-up of intestinal metaplasia in the stomach: When, how and why. World J Gastrointest Oncol, 2012. 4(3): p. 30-6. 43. Tomb, J.F., et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-47. 44. Noto, J.M. and R.M. Peek, Jr. The Helicobacter pylori cag Pathogenicity Island. Methods Mol Biol, 2012. 921: p. 41-50. 45. Kwok, T., et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature, 2007. 449(7164): p. 862-6. 46. Naumann, M., et al. Helicobacter pylori: A Paradigm Pathogen for Subverting Host Cell Signal Transmission. Trends Microbiol, 2017. 25(4): p. 316-328. 47. Colotta, F., et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009. 30(7): p. 1073-81. 48. Sun, X., et al. Relationship between serum inflammatory cytokines and lifestyle factors in gastric cancer. Mol Clin Oncol, 2019. 10(3): p. 401-414. 49. Epplein, M., et al. Circulating cytokines and gastric cancer risk. Cancer Causes Control, 2013. 24(12): p. 2245-50. 50. Lee, K.E., et al. Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol, 2013. 19(45): p. 8192-202. 51. Waugh, D.J. and C. Wilson. The interleukin-8 pathway in cancer. Clin Cancer Res, 2008. 14(21): p. 6735-41. 52. Lai, C.H., et al. Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. Infect Immun, 2008. 76(7): p. 3293-303. 53. Wang, H.J., et al. Helicobacter pylori cholesteryl glucosides interfere with host membrane phase and affect type IV secretion system function during infection in AGS cells. Mol Microbiol, 2012. 83(1): p. 67-84. 54. Ciaccio, M.F., et al. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods, 2010. 7(2): p. 148-55. 55. Szasz, A.M., et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget, 2016. 7(31): p. 49322-49333. 56. Crabtree, J.E., et al. Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. J Clin Pathol, 1995. 48(1): p. 41-5. 57. Snider, J.L., et al. The beta1 integrin activates JNK independent of CagA, and JNK activation is required for Helicobacter pylori CagA+-induced motility of gastric cancer cells. J Biol Chem, 2008. 283(20): p. 13952-63. 58. Aihara, M., et al. Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect Immun, 1997. 65(8): p. 3218-24. 59. Lai, C.H., et al. Helicobacter pylori CagA-mediated IL-8 induction in gastric epithelial cells is cholesterol-dependent and requires the C-terminal tyrosine phosphorylation-containing domain. FEMS Microbiol Lett, 2011. 323(2): p. 155-63. 60. De Luca, A., et al. Coexpression of Helicobacter pylori's proteins CagA and HspB induces cell proliferation in AGS gastric epithelial cells, independently from the bacterial infection. Cancer Res, 2003. 63(19): p. 6350-6. 61. Brandt, S., et al. NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A, 2005. 102(26): p. 9300-5. 62. Kikuchi, K., et al. Helicobacter pylori stimulates epithelial cell migration via CagA-mediated perturbation of host cell signaling. Microbes Infect, 2012. 14(5): p. 470-6. 63. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 1996. 12: p. 697-715. 64. Li, W., et al. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer. Biochem Biophys Res Commun, 2011. 416(3-4): p. 372-8. 65. Nagy, A., et al. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep, 2018. 8(1): p. 9227. 66. Hu, C.E., et al. JMJD2A predicts prognosis and regulates cell growth in human gastric cancer. Biochem Biophys Res Commun, 2014. 449(1): p. 1-7. 67. Kim, J.G., et al. Histone demethylase JMJD2B-mediated cell proliferation regulated by hypoxia and radiation in gastric cancer cell. Biochim Biophys Acta, 2012. 1819(11-12): p. 1200-7. 68. Zhang, J., et al. MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer. Am J Transl Res, 2018. 10(2): p. 525-534. 69. Wei, Z.W., et al. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett, 2015. 359(2): p. 335-43. 70. Aldinucci, D. and A. Colombatti. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm, 2014. 2014: p. 292376. 71. Cheng, W.L., et al. Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Ann Oncol, 2011. 22(10): p. 2267-76. 72. Sima, A.R., et al. Serum chemokine ligand 5 (CCL5/RANTES) level might be utilized as a predictive marker of tumor behavior and disease prognosis in patients with gastric adenocarcinoma. J Gastrointest Cancer, 2014. 45(4): p. 476-80. 73. Slee, R.B., et al. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene, 2012. 31(27): p. 3244-53. 74. Tamanini, A., et al. Trimethylangelicin reduces IL-8 transcription and potentiates CFTR function. Am J Physiol Lung Cell Mol Physiol, 2011. 300(3): p. L380-90. 75. Bower, K.E., J.M. Fritz, and K.L. McGuire. Transcriptional repression of MMP-1 by p21SNFT and reduced in vitro invasiveness of hepatocarcinoma cells. Oncogene, 2004. 23(54): p. 8805-14.
|