跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/29 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧俊安
研究生(外文):Lu Chun-An
論文名稱:製程對BaO-Sm2O3-TiO2系微波介電陶瓷之影響研究
論文名稱(外文):Processing of BaO-Sm2O3-TiO2 system Microwave Dielectric Ceramics
指導教授:王玉瑞王玉瑞引用關係王錫福
指導教授(外文):Wang Yuh-RueyWang Sea-Fue
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:124
中文關鍵詞:微波介電陶瓷製程
外文關鍵詞:microwave dielectric ceramicsprocessing
相關次數:
  • 被引用被引用:3
  • 點閱點閱:769
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:1
無線衛星行動通訊設備的小型化,可藉由先進的電路設計與模組化來縮小部分元件的體積與重量,然而更穩定的基礎材料能更有效使元件的體積縮小,並提高元件的品質。BaO•Ln2O3•4TiO2(Ln=La,Pr,Nd,Sm及Gd)系列具有較高的介電常數,並可藉由摻雜不同離子等方式,控制其共振頻率溫度係數,加上其擁有高品質因子,故非常適合使用於微波區段通訊用途上,做為諧振器及濾波器用。本研究探討於固態反應中,不同溫度及持溫時間對煆燒後粉體之影響,並配合不同溫度及燒結持溫時間來研究持溫時間及溫度對燒結體的影響,藉此了解兩持溫時間與溫度對陶瓷製程所扮演的角色。並利用添加Sm2O3粉末方式,利用特製壓力罐於高溫及飽和蒸氣壓條件下,製備BaO•Sm2O3•4TiO2微波介電陶瓷粉末,實驗結果可使BaO•Sm2O3•4TiO2微波介電陶瓷於1200℃下生成BaSm2Ti4O12相。
The miniaturization of microwave telecommunication productions can be achieved by miniaturizing the microwave devices using IC design and modulation. The small volume and good quality of devices can be effective improved by the more stable and reliable dielectric materials. BaO•Ln2O3•4TiO2 (Ln = La, Pr, Nd, Sm and Gd) system with a high dielectric constant, a low temperature coefficient of resonance frequency, tf, and a high Q factor is well known to be use in microwave telecommunication. This research is to study the effects of the temperature and soaking time on the calcining and sintering in solid-state process. A hybrid method of hydrothermal synthesizing BaO•Sm2O3•4TiO2 dielectric ceramic powders was investigated. The initial results show that the BaSm2Ti4O12 phase can be sintered at temperature lower than 1200℃.
中文摘要 i
Abstract ii
致謝 iii
目 次 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究方向及目的 2
第二章 前人研究探討 4
第三章 理論基礎 15
3.1微波陶瓷材料簡介 15
3.1.1 微波介電材料 15
3.1.2 介電諧振器DR 18
3.1.3 BaO•Sm2O3•4TiO2之晶體結構 19
3.2 微波介電理論 23
3.2.1 介電常數 23
3.2.2 共振頻率溫度係數 29
3.2.3 品質因子 31
3.3 各種陶瓷粉末合成方法 38
3.3.1 為何要合成陶瓷粉末 38
3.3.2 固相反應法 41
3.3.3 溶液法 45
3.3.4 氣相反應法 50
3.4 水熱合成單晶陶瓷粉末 53
3.4.1 簡介 53
3.4.2 文獻探討 55
3.4.3 水熱反應機構 62
第四章 實驗方法 67
4.1實驗使用儀器規格與操作條件 67
4.1.1 XRD粉末繞射分析儀 67
4.1.2 DTA熱差分析儀 67
4.1.3 SEM掃描式電子顯微鏡 68
4.1.4 雷射粒度分析儀 68
4.1.5 性質量測 69
4.2 n值對BaO•Sm2O3•nTiO2微波介電陶瓷之影響研究 71
4.2.1 藥品選擇 71
4.2.2 實驗步驟及流程 71
4.3煆燒與燒結條件對BaO•Sm2O3•4TiO2影響之研究 74
4.3.1 實驗步驟及流程 74
4.4水熱合成法合成BaO•Sm2O3•4TiO2之製備研究 76
4.4.1 藥品選擇 76
4.4.2 實驗步驟及流程 76
第五章 結果與討論 79
5.1 n值對BaO•Sm2O3•nTiO2微波介電陶瓷之影響 79
5.2 煆燒與燒結條件對BaO•Sm2O3•4TiO2之影響 88
5.3 水熱合成法合成BaO•Sm2O3•4TiO2之製備研究 102
第六章 結論與建議 117
第七章 參考文獻 119
1. A. J. Moulson and J. M. Herbert, Electroceramics, Chapman and Hall, New York, 1990.
2. G. W. Morey, “Hydrothermal Synthesis , ” J. Am. Ceram. Soc., 36, p279-283(1953)
3. E. S. Razgon, A. M. Gens, M. B. Varfolomeev, S. S. Korovin, and V. S. Kostomarov, “The Complex Barium and Lanthanum Titanates,” Russ. J. Inor. Chem., 25(6), p945-947,(1980).
4. E. S. Razgon, A. M. Gens, M. B. Varfolomeev, S. S. Korovin, and V. S. Kostomarov, “Some Barium Lanthanide Titanates,” Russ. J. Inor. Chem., 25(8), p1274-1275,(1980).
5. A. M. Gens, M. B. Varfolomeev, V. S. Kostomarov, and S. S. Korovin, “Crystal and Electrophysical Properties of Complex Titanates of Barium and the Lanthanides,” Russ. J. Inor. Chem., 26(4), p482-483,(1981).
6. R. G. Matveeva, M. B. Varfolomeev, and L. S.ll’ yushchenko, “Refinement of the Composition and Crystal Structure of Ba3.75Pr9.5Ti18Ti54,” Russ. J. Inor. Chem, 29(1),1984.
7. T. Jaakola, A. Uusimaki, R. Rautioaho, and S. Leppavuori,“Matrix Phase in Ceramics with Composition near BaO-Nd2O3-5TiO2,” J. Am. Ceram. Soc., 69(10), p234-235,(1986).
8. M. B. Varfolomeev, A. S. Mironov, V. S. Kostomarov, L. A. Golubtsova, and T. A. Zolotova, “The Synthesis and Homogeneity Ranges of the Phases Ba6-xLn8+2x/3Ti18O54,” Russ. J. Inor. Chem., 33(4), p607-608,(1988).
9. S. Nishigaki, H. Kato, S. Yano, and R. Kamimura,”Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramic,” Am. Ceram. Soc., 66(9)., p1405-1410, (1987).
10. Wu, and Chang,”Reaction Sequence and Effects of Calcination and Sintering on Microwave Properites of (Ba,Sr)O-Sm2O3-TiO2 Ceramics,” J. Am. Ceram. Soc., 73(6), p1599-1605, (1990).
11. Takahashi and Ikegami,”Occurrence of Dielectric 1:1:4 Compound in the Ternary System BaO-Ln2O3-TiO2 (Ln=La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single-Phase Powder of Ternary Compound in the BaO-La2O3-TiO2 System,” J. Am. Ceram. Soc., 74(8), p1868-1872, (1991).
12. Takahashi and Ikegami,”Occurrence of Dielectric 1:1:4 Compound in the Ternary System BaO-Ln2O3-TiO2 (Ln=La, Nd, and Sm): II, Reexamination of Formation of Isostructural Ternary Compounds in Identical System,” J. Am. Ceram. Soc., 74(8), p1873-1879, (1991).
13. G. Laffez, G. Desgardin, and B. Raveau, “Influence of calcinations, sintering and composition upon microwave properties of the Ba6-xSm8+2x/3Ti8O54-type oxide,” J. Mater. Sci., 30, p267-273, (1991).
14. K. C. Raju, V. Sivasubramanst , and R. Pragasam,”Contributions to the dielectric constant of the system BaLn2Ti4O12 from packing fraction and nephelauxetic ratio,” J. Appl. Phys. 74(3), 1 August (1993).
15. X. M. Chen, Y. Suzuki, and N. Sato, “Microstuctures and microwave dielectric characteristics of ceramics with the composition BaO-Nd2O3-5TiO2,” J. Mater. In Electronic., 6, p10-16, (1995).
16. Fukuda and Kitoh, “Microwave characteristics of BaPr2Ti4O12 and BaPr2Ti5O14 ceramics,” J. Mater. Res., 10, p312-319, (1995).
17. Ohsato, Ohhashi, Kato, Nishigaki and Okuda, “Microwave Dielectric Properties and Structure of Ba6-3xSm8+2xTi18O54 Solid Solution,” Jpn. J. Appl. Phy., 34, p187-191, (1995).
18. P. Laffez, G. Desgardin and B. Raveau, “Microwave dielectric properties of doped Ba6-3x(Sm1-y’Ndy)8+2xTi18O54 oxides,” J. Mater. Sci., 30, p267-273, (1995).
19. Cruickshank, Jing, Wood, E. Lachowski, and R. West, “Barium Neodymium Titanate Electroceramics: Phase Equilibria Studies of Ba6-3xNd8+2xTi18O54 Solid Solution,” J. Am. Ceram. Soc., 79, p1605-1610, (1996).
20. H. Sreemoolanadhan, M. T. Sebastian, and P. Mohanan, “Dielectric resonators in BaO-Ln2O3-5TiO2 system (Ln=La, Pr, Nd, Sm),” British. Ceram. Tran., 95, p79-81, (1996).
21. V. Satheesh, P. Murugavel, V. R. K. Murthy, and B. Viswanathan, “Synthesis and Role of Nd and Sm on the Microwave Dielectric Properties of BaNd2(1-x)Sm2xTi5O14 Dielectric Resonator,” Material Science and Engineering B48 , p202-204, (1997).
22. D. Suvorov, M. Valant, and D. Kolar, “The Role of Dopants in Tailoring the Microwave Properties of Ba6-xR8+2/3xTi18O54 R=(La-Gd) Ceramic,” J. Mater. Sci., 32, p6483-6488, (1997).
23. Ohsato, Mizuta, Ikoma, Onogi, Nishigaki and Okuda, “Microwave Dielectric Properties of Tungsten Bronze-Type Ba6-3xR8+2xTi18O54 (R=La, Pr, Nd, and Sm) Solid Solutions,” Jpn. J. Ceram. Soc. Int. Edition, p106184,(1998).
24. A. G. Belous and O. V. Ovchar, “MW Dielectrics with Perovskite-like Structure Based on Sm-Containing Systems,” J. Eur. Ceram. Soc., 19, p1119-1122, (1999).
25. Ubic, M. Reaney, and E. Lee, “Space Group Determination of Ba6-3xNd8+2xTi18O54,” J. Am. Ceram. Soc., 82(5), p1336-1338, (1999).
26. H. Okudera, H. Nakamura, H. Toraya, and H. Ohsato, “Tungsten Bronze-Type Solid Solutions Ba6-3xSm8+2xTi18O54 (x=0.3,0.5,0.67,0.71) with Superstructure,” J. Solid. State. Chem., 142, p336-343, (1999).
27. Y. J. Wu and X. M. Chen, “Modified Ba6-3xNd8+2xTi18O54 Microwave Dielectric Ceramics,” J. Eur. Ceram. Soc., 19, p1123-1126, (1999).
28. P. S. Cheng, C. F. Yang, Y. C. Chen, and W. C. Tzou, “The Reaction Sequence and Dielectric Properties of BaSm2Ti4O12 Ceramics,” Ceram. International., 26, p877-881, (2000).
29. Y. J. Wu and X. M. Chen, “Bismuth/Samarium Cosubstituted Ba6-3xNd8+2xTi18O54 Microwave Dielectric Ceramics,” J. Am. Ceram. Soc., 84(7), p1837-1839, (2000).
30. Xu,”Preparation of Ba6-3xNd8+2xTi18O54 via Ethylenediaminetetraacetic Acid Precursor,” J. Am. Ceram. Soc., 83(11), p2893-2895, (2000).
31. 吳朗,電子陶瓷介電篇,全欣資訊圖書股份有限公司,83年。
32. 王怡鈞譯,電磁學,超級科技圖書股份有限公司,民國79年。
33. B. G. Hyde and S. Andersson, Inorganic Crystal Structure, Wiley-Interscience, New York, 1988.
34. L. L. Hench, and J. K. West., Principles of Electronic Ceramics, Wiley-Interscience, New York, 1990.
35. Y. M. Chiang, Dunbar P. Birnie III, and W. David Kingery., Physical Ceramics., Wiley-Interscience, New York, 1997.
36. 吳朗,電工材料,滄海書局,87年。
37. Ganguli and Chatterjee., Ceramic Powder Preparation: A Handbook., Kluwer Academic Publishers, Boston.
38. A. Ring., Fundamentals of Ceramic Powder Processing and Synthesis., Academic Press., San Diego, 1996.
39. S. Somiya, K. Ioku and M. Yoshimura, “Hydrothermal Synthesis and Characterization of Fine Apatite Crystals,” Mater. Sci. Forum., p371-78., 1988.
40. L. M. Demetsyanets and A. N. Lopachev, “Some Problems of Hydrothermal Crystallization Process Under Hydrothermal Condition,” Consaltant Bureau, London Press, 1973.
41. 姚連增,晶體生長基礎,中國科學技術大學出版社,1995。
42. 仲維卓、華素坤,晶體生長型態學,科學出版社,1999。
43. J. Dawson., “Hydrothermal Synthesis of Advanced Ceramic Powder,” Ceramic Bulletin., 67(10), p1673-1678, 1988.
44. W. Morey,”Hydrothermal Systhesis,” J. Am. Ceram. Soc., 36(9), p279-285, 1953.
45. Malogorata M. Lencka and Richard E. Riman, “Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders”., Chem. Mater. 5, 61-70, 1993.
46. C. T. Xia, E. W. Shi, W. Z. Zhong and J. K. Guo, “Preparation of BaTiO3 by the Hydrothermal Method,” J. Eur. Ceram. Soc., 15, p1171-1176, 1995.
47. E. E. Oren and A. C. Tas., “Hydrothermal Synthesis of Dy-Doped BaTiO3 Powder,” Metallurgical and Material Transaction B., 30B, p1089-1093, 1999.
48. R. K. Roeder and E. B. Slamovich,”Stoichiometry Control and Phase Selection in Hydrothermally Derived BaxSr1-xTiO3 Powder,” J. Am. Ceram. Soc., 82(7), p1665-1675, 1999.
49. 鄭文君、庵文琴,新型複合鈣鈦礦Ba(SbIII,SbV)O3之水熱合成與表徵,無機材料學報,第15卷第二期,2000年。
50. R. A. Laudise, “Grystal Growth of Electronic Materials,” Elsevier Science, 1985.
51. M. A. Feil, B. W. Wessels, L. M. Tonge, and T. J. Marks, “Organometallic Chemical Vapor Deposition of Strotium Titanate,” J. Appl. Phys., 67(8), p3858-3863, 1990.
52. Wu, Xu and Feng, “The Influence of Anions on the Products of BaTiO3 Under Hydrothermal Conditions,” J. Mater. Sci., 31, p6201-6209, 1996.
53. 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,民國八十五年。
54. 呂維明、戴怡德,粉粒體粒徑量測技術,高立圖書有限公司,民國87年。
55. 錢逸泰,結晶化學導論,中國科學技術大學出版社,1999。
56. 俞文海、劉皖育,晶體物理學,中國科學技術大學出版社,1998。
57. 林震宇,(Ba,Sr)Sm2Ti4O12陶瓷微波介電材料之合成、分析與性質研究。國立成功大學資源工程研究所論文,1998。
58. 余仲哲,Ba(SnxZn(1-x)1/3Nb(1-x)2/3)O3陶瓷體之微波介電特性,國立成功大學電機工程學系研究所論文,1991。
59. 陳彥文,鈦酸鋇鍶鈦(BSST)系微波陶瓷材料之製備與性質研究,國立成功大學資源工程研究所論文,1997。
60. 黃俊銘,微波介電材料Ba(Mg1/3Ta2/3)O3的燒結性與微波介電性質之研究,國立清華大學材料科學工程研究所論文,1995。
61. 楊喬麟,水熱法製備鈦酸鋇(鍶)薄膜及其性質研究,國立成功大學化學工程學系論文,1998。
62. 簡瑞峰,2La2O3-9TiO2微波陶瓷低溫燒結及微波性質研究,國立交通大學材料科學與工程研究所論文,1998。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top