跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江慶華
研究生(外文):Ching-Hua Chiang
論文名稱:臺灣梅花鹿類緣關係與族群之分子遺傳結構研究
論文名稱(外文):Phylogenetic and Molecular Genetic Study of Formosan Sika Deer Populations
指導教授:朱有田朱有田引用關係
口試委員:王穎李壽先李匡悌馬協群翁自保
口試日期:2011-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:臺灣梅花鹿粒線體DNA微衛星DNA類緣關係遺傳結構
外文關鍵詞:Cervus nippon taiouanusmitochondrial DNAmicrosatellite DNAphylogenetic relationshipgenetic structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:969
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
梅花鹿(Cervus nippon)是遍布於亞洲地區的鹿科物種,自日本、中國、臺灣至越南均可見其蹤跡。臺灣梅花鹿(C. n. taiouanus)屬於臺灣特有亞種,曾因過度獵捕與棲地減少造成野生族群數量銳減,於西元1969年的調查中,臺灣梅花鹿已於野外絕跡。遂於1984年起,在墾丁社頂地區展開梅花鹿復育工作,自臺北圓山動物園引進22頭梅花鹿作為復育核心鹿群,歷經26年籌備與努力,目前已有復育鹿群於野外生活,達成復育目標。期間金門畜試所亦有保育臺北圓山動物園梅花鹿,綠島則有野放之圈養族群。惟復育鹿群之族群遺傳結構尚未完全清楚,種原來源問題亦常受質疑。本研究之目的在於探討臺灣梅花鹿之遺傳特徵與族群遺傳結構,藉以釐清種原來源疑慮,瞭解其族群間及與其他梅花鹿亞種之遺傳關係。
粒線體DNA序列之多型性可用以研究物種間或物種內母系類緣關係及基因交流情形。另一方面,細胞核內微衛星DNA標記多型性可探討族群或個體間遺傳關係,本研究同時以這兩種遺傳標記探討上述問題。
本研究分析164頭臺灣梅花鹿樣本之粒線體DNA序列,包含84個來自墾丁復育鹿群、35個來自綠島、16個來自金門及29個來自畜養鹿群之樣本,結果發現共有2種細胞色素b及5種D-loop之基因單套型。復育族群墾丁鹿群共有1種細胞色素b單套型及3種D-loop單套型;金門鹿群皆只有一種基因單套型。另自NCBI取得28條其他亞洲梅花鹿亞種之粒線體DNA序列,用以探討梅花鹿之類緣關係。所建構之類緣關係樹圖顯示臺灣梅花鹿與中國梅花鹿亞種關係較近,與日本亞種關係較遠。此外,自淇武蘭遺址收集距今約450年前之古老樣本進行遺傳分析,結果成功增幅及定序出591 鹼基長度之粒線體DNA D-loop序列片段,將其定義為古代梅花鹿粒線體DNA序列,此序列與現生梅花鹿D-loop第一型單套型序列相同,顯現其於母系遺傳之時間連續性。
本研究以22組微衛星標記之多型性分析臺灣梅花鹿復育族群及畜養族群之遺傳結構與類緣關係,共分析126個臺灣梅花鹿樣本,84個來自墾丁復育鹿群、16個來自金門及26個來自養殖鹿場。結果顯示,本研究所用微衛星標記之平均多型性指數為0.466,平均有效對偶基因數為2.2,顯示這22組微衛星標記於臺灣梅花鹿族群中具有多型性。估算族群遺傳結構及以遺傳距離建構之類緣關係,顯示臺灣梅花鹿可分為復育族群及畜養族群兩大類群。為瞭解其族群間分化程度,估算FST值,墾丁復育鹿群與臺南畜養鹿群、臺東畜養鹿群及金門鹿群間之FST值分別為0.110、0.104及0.088(p < 0.05),顯示復育族群與畜養族群間分化程度較高。
綜合上述結果,臺灣梅花鹿古代DNA研究可定義臺灣梅花鹿之遺傳特徵,協助釐清復育鹿群種原問題與演化歷程,未來若能獲取更多臺灣梅花鹿古代DNA序列之遺傳資訊,即可作深入且較完整之探討。此外,缺乏粒線體單套型多型性,證實遺傳管理之迫切性,而透過對臺灣梅花鹿遺傳結構與分化情形之瞭解,顯示復育鹿群與畜養族群遺傳特徵具有差異,可作為長期實行遺傳監控與管理之基礎,維持遺傳多樣性,使研究與保育工作得以永續發展。


Sika deer (Cervus nippon) are widespread throughout Asia, from mainland China in the west to Japan, and from Siberia in the north Russia to south China, Taiwan and Vietnam. The Formosan sika deer (C. n. taiouanus) had ever been an endemic subspecies in the wild of Taiwan. Because of the destruction of their habitats and suffered from strong hunting pressure, the sika deer was extincted in the wild in 1969. Since 1984, a recovery program has been executed, in which the original population included 22 deer obtained from Yuanshan Zoo was conserved in Kenting National Park (KNP). The conserved deer had reintroduced into the wild till 1994. In the meantime, several sika deer populations were reared in different sites in Taiwan, including Kinmen County Livestock Research Institute (KCLR) and Green Island (GI). However, these population genetic structure is not defined completely, and the wild origin of these conserved deer populations has been queried frequently. The purpose of present study is to determine genetic characteristics and structures among Formosan sika deer populations, and to understand the genetic relationship among different sika deer subspecies.
Polymorphism of mitochondrial DNA (mtDNA) sequences provides reliable information to study the phylogeny and the gene flow among species or inter-populations. One hundred and sixty four Formosan sika deer mtDNAs including 84 from KNP, 35 from GI, 16 from KCLR, and 29 from 2 farms were obtained. There are 2 cytochrome b haplotypes and 5 D-loop haplotypes obtained. To understand the phylogeny and gene flow, 28 sequences from eastern Asian sika deer subspecies were obtained from NCBI GenBank. A Bayesian phylogenetic tree revealed Formosan sika deer are genetically closer to the sika deer from south China than deer from Japan. In the other way, an ancient specimen from Ki Wu Lan archaeological site (450 years before present) was collected and used to define the mtDNA characteristic of ancient Formosan sika deer. A portion of D-loop sequence (591 base pairs) obtained successfully, and it was totally identical to one of modern Formosan sika deer haplotypes. The result indicated the continuity among the maternal linkage of ancient and modern Formosan sika deer.
Besides, the allelic diversity of microsatellite loci is commonly used for understanding the genetic relationship and differentiation among intra-population or individuals. Twenty two microsatellite markers were applied to study the genetic structures and phylogenetic relationship among conserved and cultivated populations in Taiwan. One hundred and twenty six of Formosan sika deer nuclear DNA including 84 from KNP, 16 from KCLR, and 26 from farms were analyzed. The polymorphism index content (PIC = 0.466) and effective alleles (mean = 2.2) were estimated, indicating the 22 microsatellite markers were informative. According to the results of Bayesian clustering analysis and phylogenetic trees, conserved and cultivated deer are divided as different populations. The F-statistic value for population differentiation (FST) of KNP versus Tainan, versus Taitung, and versus KCLR populations were 0.110, 0.104, and 0.088 respectively (p < 0.05), and showed that the higher population differentiation in KNP versus cultivated populations.
In conclusion, the genetic characteristics of Formosan sika deer were defined which provide insights into the phylogenetic relationship and evolutionary history. Ancient DNA study may also help to clarify the queries of the origin of conserved Formosan sika deer, but more ancient sequences should be included to strengthen the evidence. Moreover, understanding the genetic structures and differentiation of Formosan sika deer populations was valuable to find genetic characteristics of different populations. A valid genetic management program based on these results for further conservation and maintaining biodiversity can be proposed properly.


中文摘要 i
英文摘要 iii
前言 v
壹、文獻檢討 1
一、 臺灣梅花鹿分類與歷史介紹 1
(一) 臺灣梅花鹿形態特徵與生態習性簡介 1
(二) 臺灣梅花鹿族群之興衰 1
(三) 臺灣梅花鹿復育計畫 2
(四) 臺灣梅花鹿族群現況 2
二、 分子遺傳標記與遺傳多型性 4
(一) 分子遺傳標記 4
(二) 分子遺傳標記-粒線體DNA 4
1. 粒線體細胞色素b(cytochrome b)基因 5
2. 粒線體D-loop序列 5
(三) 分子遺傳標記-微衛星DNA 5
(四) 遺傳多型性分析 6
三、 分子遺傳標記多型性於梅花鹿遺傳分析之應用 7
(一) 鹿科動物類緣關係與演化史 7
(二) 以粒線體DNA多型性作梅花鹿遺傳分析 8
(三) 以微衛星DNA多型性作梅花鹿遺傳分析 9
(四) 臺灣梅花鹿遺傳分析之研究 9
貳、材料方法 11
一、 增幅現生臺灣梅花鹿之細胞色素b與D-loop DNA序列,作為臺灣梅花鹿種原及與其他梅花鹿亞種類緣關係之探討。 11
(一) 現生臺灣梅花鹿血液樣本採集 11
(二) 臺灣梅花鹿排遺樣本採集 11
(三) 臺灣梅花鹿血液與排遺DNA萃取 12
(四) 以聚合酶鏈鎖反應增幅細胞色素b與D-loop DNA 片段 12
(五) 細胞色素b及D-loop 增幅產物之純化及DNA定序 13
(六) 細胞色素b及D-loop序列收集與整理 14
(七) 細胞色素b及D-loop序列比對(Alignment) 14
(八) 類緣關係樹圖與網絡分析圖之繪製 14
二、自考古遺址鹿科動物遺留中萃取DNA,增幅梅花鹿D-loop序列,作梅花鹿種原之探討。 15
(一) 考古遺址鹿科動物遺留樣本收集 15
(二) 古代DNA萃取 15
(三) 以聚合酶鏈鎖反應增幅D-loop DNA 片段 16
(四) D-loop 增幅產物之純化及DNA定序 17
(五) D-loop序列整理與比對 17
三、萃取臺灣梅花鹿體細胞核DNA,並藉微衛星標記多型性探討臺灣梅花鹿族群遺傳結構與族群分化程度。 18
(一) 臺灣梅花鹿血液樣本採集 18
(二) 臺灣梅花鹿體細胞核基因組DNA(genomic DNA)之萃取 18
(三) 微衛星標記引子設計 19
(四) 聚合酶鏈鎖反應與毛細管電泳 19
(五) 應用微衛星標記多型性所進行之軟體分析 20
1. 分析臺灣梅花鹿族群之基因型頻率及雜合度 20
2. 22組微衛星基因座之哈溫平衡檢定 20
3. 估算臺灣梅花鹿族群間之遺傳距離與F-統計值(FST, FIS) 21
4. 建構臺灣梅花鹿族群類緣關係樹圖 21
5. 估算臺灣梅花鹿族群遺傳結構 22
四、實驗流程 23
參、結果 24
一、復育梅花鹿群之種原 24
(一) 定義臺灣梅花鹿粒線體DNA序列建立資料集(dataset) 24
1. DNA萃取與細胞色素b、D-loop序列之增幅與定序 24
2. 臺灣梅花鹿基因單套型分布與遺傳變異 24
3. 建立台灣梅花鹿粒線體DNA序列資料集 25
(二) 分析遺址出土(古代)臺灣梅花鹿粒線體DNA序列 25
(三) 比對古代與現生粒線體DNA序列,瞭解其遺傳關係 25
二、臺灣梅花鹿粒線體遺傳特徵探討及其與亞洲梅花鹿亞種之類緣關係探討 26
(一) 臺灣梅花鹿之粒線體遺傳特徵 26
(二) 臺灣梅花鹿與亞洲梅花鹿亞種之粒線體遺傳類緣關係 26
三、 臺灣梅花鹿族群之遺傳結構與族群分化程度 27
(一) 臺灣梅花鹿微衛星標記多型性分析 27
(二) 臺灣梅花鹿族群分化 27
1. 臺灣梅花鹿族群於微衛星標記之FST值與族群間之遺傳距離 27
2. 臺灣梅花鹿族群內個體間之遺傳距離與類緣關係樹 28
(三) 墾丁復育梅花鹿群之遺傳結構 29
1. 墾丁復育梅花鹿群微衛星標記多型性分析 29
2. 墾丁復育梅花鹿群微衛星標記哈溫平衡檢定與FIS值估算 30
肆、討論 31
一、釐清復育梅花鹿群之種原疑慮 31
(一) 遺傳樣本限制與代表性 31
1. 現生臺灣梅花鹿樣本 31
2. 遺址出土臺灣梅花鹿樣本 31
(二) DNA萃取、D-loop序列增幅與定序 32
1. 排遺DNA萃取、增幅與定序 32
2. 遺址出土鹿科動物遺留DNA萃取、增幅與定序 32
(三) 臺灣梅花鹿粒線體DNA細胞色素b及D-loop基因單套型 33
(四) 藉比對遺址出土與現生粒線體DNA序列,釐清復育鹿群之種原疑慮 33
二、臺灣梅花鹿遺傳特徵探討及其與其他梅花鹿亞種之類緣關係探討 34
(一) 臺灣梅花鹿之遺傳特徵 34
(二) 臺灣梅花鹿與亞洲梅花鹿亞種之類緣關係及演化探討 34
三、探討現生臺灣梅花鹿族群之遺傳結構與其分化程度 35
(一) 復育族群遺傳結構 35
1. 墾丁復育鹿群 35
2. 金門梅花鹿群 36
(二) 畜養族群遺傳結構 36
(三) 研究與保育工作之未來展望 37
1. 擬定育種計畫,人為介入配種、繁殖 37
2. 實行族群遺傳監控與管理 37
3. 保存臺灣梅花鹿遺傳資源,推廣生態教育 37
伍、結論 38
陸、表與圖 39
柒、參考文獻 57
捌、附錄 62


中華民國鹿產品運銷合作社
   http://www.deer.org.tw/b5/index.htm2011.05.21
中華民國養鹿協會
   http://tw.hxahv.com/html/VIP--/200908/28-704.html2011.05.21
內政部營建署墾丁國家公園管理處。1999。臺灣梅花鹿復育成果及展望研討會
報告及論文。屏東縣,臺灣。pp. 1-18。
王穎、楊慧娟。1988。臺灣梅花鹿復育研討會專輯。內政部營建署墾丁國家公
園管理處,屏東縣,臺灣。pp. 1-25。
王穎、李壽先、銀琬春、王佳琪。2002。臺灣梅花鹿遺傳基因分析之研究。內
政部,臺灣。保育研究第122號。
王穎、顏士清、陳匡洵、賴冠榮、廖昱銓、高詩豪。2010。墾丁國家公園及鄰
近地區臺灣梅花鹿調查計畫及其族群經營管理探討。內政部營建署墾丁
國家公園管理處,屏東縣,臺灣。pp. 1-5。
江樹生。1987。臺灣梅花鹿復育之研究七十四年度報告。內政部營建署墾丁國
家公園管理處,屏東縣,臺灣。pp. 1-18。
谷喬、王穎。1992。臺灣梅花鹿品系之分析。內政部營建署墾丁國家公園管理處,
   屏東縣,臺灣。pp. 1-30。
周婉窈。2003。陳第【東番記】─十七世紀初臺灣西南地區的實地調查報告。國
立故宮博物院,臺北市,臺灣。故宮文物月刊。241: 22-45。
金門縣畜產試驗所
   http://www.kinmen.gov.tw/Layout/sub_E/index.aspx?frame=91
2011.05.21
高章肇。2004。臺灣梅花鹿微衛星序列之研究。中央警察大學鑑識科學研究所,
   桃園縣,臺灣。碩士論文。
陳光祖。2000。試論臺灣各時代的哺乳動物群及其相關問題─台灣地區動物考古
   學研究的基礎資料之ㄧ,上篇。中央研究院歷史語言研究所,臺北市,臺
   灣。歷史語言研究所集刊。71(1): 129-198。
陳有貝、邱水金、李貞瑩。2008。淇武蘭遺址搶救發掘報告6。宜蘭縣立蘭陽博
   物館,宜蘭縣,臺灣。pp. 101-104。
黃傳景。2005。利用排遺DNA標定法探討金門地區水獺之族群遺傳結構與雌
雄播遷模式之差異。國立臺灣大學生態學與演化生物學研究所,台北市,
臺灣。碩士論文。
趙安雄。1988。綠島鄉志。臺東縣綠島鄉鄉公所,臺東縣,臺灣。pp. 20-21。
臧振華、李匡悌、朱正宜。2006。先民履跡: 南科考古發現專輯。臺南縣政府,
   臺南縣,臺灣。
Aquadro, C. F. and B. D. Greenberg. 1983. Human mitochondrial DNA variation and
   evolution: analysis of nucleotide sequences from seven individuals. Genetics
   103: 287-312.
Avise, J. C. 2004. Molecular Markers, Natural History, and Evolution. 2nd ed. Sinauer
   Associates, Sunderland, MA.
Bandelt, H. J., P. Forster, and A. Rohl. 1999. Median-joining networks for inferring
   intraspecific phylogenies. Mol. Biol. Evol. 16: 37-48.
Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a
   genetic linkage map in man using restriction fragment length polymorphisms.
   Am. J. Hum. Genet. 32: 314-331.
Brooke, V. 1878. On the classification of the Cervidae, with a synopsis of the existing
   species. Proc. Zool. Soc. Lond. 883-928.
Broquet, T., N. Me’nard, and E. Petit. 2007. Noninvasive population genetics: a review
   of sample source, diet, fragment length and microsatellite motif effects on
   amplification success and genotyping error rates. Conserv. Genet. 8: 249-260.
Brown, W. M., M. George, Jr., and A. C. Wilson. 1979. Rapid evolution of animal
   mitochondrial DNA. Proc. Natl. Acad. Sci. U. S. A. 76: 1967-1971.
Cavalli-sforza, L. L. and A. W. F. Edwards. 1969. Phylogenetic analysis: models and   
   estimation procedure. Amer. J. Hum. Genet. 19: 233-257
Dawid, I. B. and A. W. Blackler. 1972. Maternal and cytoplasmic inheritance of
   mitochondrial DNA in Xenopus. Dev. Biol. 29: 152-161.
Grubb, P. 1993. Order Artiodactyla. In Mammal Species of the World: A Taxonomic
and Geographic Reference. D. E. Wilson and D. M. Reeder, eds. Smithsonian Institution Press, Washington and London.
Gilbert, G., A. Ropiquet, and A. Hassanin. 2006. Mitochondrial and nuclear
   phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology,
   and biogeography. Mol. Phylogenet. Evol. 40: 101-117.
Hein, J. 1990. Unified approach to alignment and phylogenies. Methods Enzymol.
   183: 626-645.
Hein, J. and J. Stφvlbaek. 1996. Combined DNA and protein alignment. Methods
Enzymol. 266: 402-418
Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of
   phylogenetic trees. Bioinformatics 17: 754-755.
Irwin, D. M., T. D. Kocher, and A. C. Wilson. 1991. Evolution of the cytochrome b
gene of mammals. Mol. Evol. 32: 128-144.
IUCN. 2001. 2001 IUCN Red List of Threatened Animals. IUCN, Gland,
   Switzerland.
Kakoi, H., T. Tozaki, and H. Gawahara. 2007. Molecular analysis using
   mitochondrial DNA and microsatellites to infer the formation process of
   Japanese native horse populations. Biochem. Genet. 45: 375-395.
Kreitman, M. 1983. Nucleotide polymorphism at the alcohol dehydrogenase locus of
   Drosophila melanogaster. Nature 304: 412-417.
Kuwayama, R. and T. Ozawa. 2000. Phylogenetic relationships among european red
deer, wapiti, and sika deer inferred from mitochondrial DNA sequences. Mol.
Phylogenet. Evol. 15: 115-123.
Langella, M. 1999. Populations 1.2.30: Population genetic software (individuals or
   population distances, phylogenetic trees).
   http://bioinformatics.org/*tryphon/populations/. Accessed 10 Mar 2009
Larson, G., K. Dobney, U. Albarella, M. Fang, E. Matisoo-Smith, J. Robins, S.
   Lowden, H. Finlayson, T. Brand, E. Willerslev, P. Rowley-Conwy, L.
   Andersson, and A. Cooper. 2005. Worldwide phylogeography of wild boar
   reveals multiple centers of pig domestication. Science 307: 1618-1621.
Li, Y. C., A. B. Korol, T. Fahima, A. Beiles and E. Nevo. 2002. Microsatellites:
   genomic distribution, putative functions and mutational mechanisms: a review.
   Mol. Ecol. 11: 2453-2465.
McCullough, D. R. 1974. Status of Larger mammals in Taiwan. Tourism Bureau. pp.
   36.
Meyer, A. 1993. Evolution of mitochondrial DNA in fishes. In: Hochachka, P. W.
and Mommsen, T. P. (Eds.), Biochemistry and Molecular Biology of Fishes,
Vol. 2. Elsevier, Amsterdam.
Mulligan, C. J. 2005. Isolation and analysis of DNA from archaeological, clinical, and
   natural history specimens. Methods Enzymol. 395: 87-103.
Nabata, D., R. Masuda, and O. Takahashi. 2004. Bottleneck effects on the sika deer
   Cervus nippon population in Hokkaido, revealed by ancient DNA analysis.
   Zool. Sci. 21: 473-481.
Nagata, J., R. Masuda, K. Kaji, M. Kaneko, and M. C. Yoshida. 1998. Microsatellite
   DNA variations of the sika deer, Cervus nippon, in Hokkaido and Chiba.
   Mammal Study 23: 95-101.
Nagata, J., R. Masuda, H. B. Tamate, S. I. Hamasaki, K. Ochiai, M. Asada, S.
   Tatsuzawa, K. Suda, H. Tado and M. C. Yoshida. 1999. Two genetically
   distinct lineages of the sika deer, cervus nippon, in japanese islands:
   comparison of mitochondrial d-loop region sequences. Mol. Phylogenet.
   Evol. 13: 511-519.
Ohtaishi, N. 1986. Preliminary memorandum of classification, distribution and
   geographic variation on Sika deer. Honyurui Kagaku(Mammalian Science).
   53: 13-17.
Okada, A. and H. B. Tamate. 2000. Pedigree analysis of the sika deer (Cervus nippon)
   using microsatellite markers. Zoolog. Sci. 17: 335-340.
Page, R. D. M. 1996. TREEVIEW: An application to display phylogenetic
trees on personal computers. Computer Applications in the
Biosciences. 12: 357-358.
Parson, W., K. Pegoraro, H. Niederstatter, M. Foger, and M. Steinlechner. 2000.
   Species identification by means of the cytochrome b gene. Int. J. Legal. Med.
   114: 23-28.
Piggott, M. P. and A. C. Taylor. 2003. Extensive evaluation of faecal preservation and
   DNA extraction methods in Australian native and introduced species. Aust. J.
   Zoology 51: 341-355.
Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure
   using multilocus genotype data. Genetics 155: 945-959.
Raymond, M. and F. Rousset. 1995. Genepop (version 3.4): population genetics
   software for exact tests and ecumenicism. J. Heredity 896: 248-249
Senn, H. V. and J. M. Pemberton. 2009. Variable extent of hybridization between
   invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small
   geographical area. Mol. Ecol. 18: 862-876.
Senn, H. V., N. H. Barton, and S. J. Goodman. 2010. Investigating temporal changes
   in hybridization and introgression in a predominantly bimodal hybridizing
   population of invasive sika(Cervus nippon)and native red deer(C. elaphus)
   on the Kintyre peninsula, Scotland. Mol. Ecol. 19: 910-924.
Tamate, H. B., S. Tatsuzawa, K. Suda, M. Izawa, T. Doi, K. Sunagawa, F. Miyahira,
   and H. Tado. 1998. Mitochondrial DNA variations in local populations of the
   Japanese sika deer, Cervus nippon. J. Mamm. 79: 1396–1403.
Tautz, D. 1989. Hypervariability of simple sequences as a general source for
   polymorphic DNA markers. Nucleic Acids Res. 17: 6463-6471.
Wada, K., M. Nishibori, and M. Yokohama. 2007. The complete nucleotide sequence
of mitochondrial genome in the Japanese Sika deer (Cervus nippon), and a
phylogenetic analysis between Cervidae and Bovidae. Small Rumin. Res. 69:
46-54.
Weber, J. L. and C. Wong. 1993. Mutation of human short tandem repeats. Hum.
Mol. Genet. 2: 1123-1128.
Wilson, D. E. and D. M. Reeder. 2005. Mammal Species Of The World: A Taxonomic And Geographic Reference. Johns Hopkins University Press.
Willerslev, E. and A. Cooper. 2005. Ancient DNA. Proc. R. Soc. B. 272: 3-16.
Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA
   polymorphisms amplified by arbitrary primers are useful as genetic markers.
   Nucleic Acids Res. 18: 6531-6535.
Wolstenholme, D. R. 1992. Animal mitochondrial DNA: structure and evolution. Int.
   Rev. Cytol. 141: 173-215.
Xu, Y. C., Z. C. Pan, Z. R. Xu, S. H. Yang, Y. Jin, and S. Y. Bai. 2001. Status of
   microsatellites as genetic markers in cervids. Journal of Forestry Research.
   12: 55-58.
Zuckerkandl, E. and L. Pauling. 1965. Molecules as documents of evolutionary
   history. J. Theor. Biol. 8: 357-366.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top