跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏傑
研究生(外文):Po-Chieh Chen
論文名稱:利用數值方法探討內頸動脈狹窄程度與血液流場變化之相關性
論文名稱(外文):Evaluation of the Correlation between the Degree of Stenosis and the Alteration of Blood Flow Field in Internal Carotid Artery by Using Numerical Methods
指導教授:曾嘉儀曾嘉儀引用關係許政行許政行引用關係
指導教授(外文):Chia-Yi TsengCheng-Hsing Hsu
學位類別:碩士
校院名稱:中原大學
系所名稱:生物醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:130
中文關鍵詞:壁面剪應力內頸動脈狹窄流場變化數值分析
外文關鍵詞:Blood FlowWall Shear StressCarotid Artery StenosisNumerical Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
內頸動脈狹窄起因於頭頸部血管的動脈粥樣硬化斑塊沉積使得血管內膜增厚,進而阻塞血管導致流經內頸動脈至腦部的血流供應減少。因此內頸動脈狹窄的程度愈高,發生缺血性腦中風的危險性也愈大。而臨床上的診斷與治療方向注重於供應至腦部的血流量是否充足,對於狹窄的型態通常不列入考慮。此外過去學者的研究數據,大多數是針對嚴重狹窄程度( > 70% )做討論,輕度狹窄(< 30%)的研究相對較少。本論文使用數值方法針對頸動脈狹窄的例子進一步分析與討論。簡而言之,以臨床健康受試者的電腦斷層掃描影像為基礎建立一個數學理論模型,來模擬各種頸動脈狹窄情形:狹窄的型態分為同心與偏心;狹窄程度分別為10%、30%、50%、70%與90%。除此之外,大量蒐集臨床文獻血液流量統計數據,以病人的血液流量條件做為邊界條件,使得到的數值結果具有臨床意義與可靠性。除了數值模擬之外,同時建立體外頸動脈模型做比較試驗分析,以探討內頸動脈狹窄程度與血液流場變化之相關性。
利用臨床血液流量的統計數據做為邊界的數值分析結果顯示,血液流量變化隨著狹窄程度增高而呈現減少的趨勢,此處結果與文獻學者的臨床數值相符合。流線速度、剖面向量與壁面剪應力分佈變化的結果顯示,輕、中程度(30%-50%)的狹窄流場無論哪一型態其速度分佈皆有明顯變化,並形成顯著的迴流、軸向渦流與二次流等紊流現象,而且偏心狹窄與同心狹窄比起,在斑塊的周邊有多數的渦流現象形成,遠側端的紊流現象也會增加,以及產生更顯著的速度梯度與壁面剪應力分佈。體外染劑實驗的流場觀察結果顯示,對於狹窄程度30%的同心與偏心狹窄流場,分岔處與遠側內壁面分別皆有顯著的軸向渦流與迴流形成,導致染色劑出現滯留情形,這些實驗結果皆與數值分析方法的流動模式結果一致。另外,體外實驗的壓力變化顯示,隨著狹窄程度增高,偏心狹窄型態的壓力呈現升高的趨勢,而同心型態狹窄的壓力卻為下降的趨勢。
本論文的研究結果證明在同心與偏心狹窄型態之間,流場變化有明顯的差異性,並且對於輕微與中度狹窄的流場皆已存在顯著的紊流現象,以及在兩狹窄型態之間的內頸動脈壓力變化呈現相反的趨勢。因此,本論文可進一步提供醫學診斷及臨床上頸動脈內膜切除術與頸動脈支架置入術術前的評估參考。

It is well known that carotid artery stenosis is the major factor causing ischemic stroke. Clinically, diagnosis for carotid artery stenosis is determinated by the sufficiency of blood supply to the brain. There are two types of carotid artery stenosis, however, no investigations emphasized the impact between their differences. Previous studies have focused on the degree of stenosis over 70% and less on the mild one lower than 30%. Accordingly, a stenosis model we built with a simulation method which is based on a carotid artery computer tomography image from a healthy adult with age 50. Several degree of stenosis (e.g. 10%, 30%, 50%, 70% and 90%) are generated and categorized into concentric or eccentric type. The boundaries have introduced to the values collected from the published clinical references. In addition, to address the correlation with the information from simulation method and clinical references we have also developed in vitro carotid artery models of normal, concentric and eccentric stenosis conditions. The later two conditions contained 30% and 70% degree of stenosis respectively. Furthermore, the dynamics of flow field is observed by application of three different color dyes to the in vitro model.
The results suggest that the blood flow decreases while the degree of stenosis increases in both concentric and eccentric conditions. Eccentric stenosis has more significant turbulence and wall shear stress. In mild and moderate (30% to 50%) degree of stenosis, recirculation, streamwise vortex and secondary flow are initially occurred especially under the view of hydromechanics. Similarly, in vitro model shows that recirculation and streamwise vortex have significantly enhanced in a stenosis degree dependent manner, which are consistent with the numerical results. Besides, the blood pressure of internal carotid artery is reduced with an increase in stenosis degree, which is more significant in concentric stenosis type.
This study demonstrates that the variation of flow field differs between concentric and eccentric type of stenosis. Existence of turbulence appears in the mild and moderate degree of stenosis. Variation of internal carotid artery blood pressure is opposite between two types of stenosis. Hence, this study could be able to provide a powerful medical evaluation before carotid endarterectomy and carotid artery stenting.

目錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖索引 VIII
表索引 X
第一章 序論 1
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻回顧 11
2.1 正常人體頸動脈分岔血流量分佈 11
2.2 不同內頸動脈狹窄程度的臨床血流量 13
2.3 頸動脈狹窄體外模型流量探討 18
2.4 頸動脈狹窄分佈位置、型態、形狀與臨床狹窄長度的研究探討 20
2.5 剪應力與紊流現象對於血管內壁面之影響 24
2.6 以數值方法分析各種動脈的相關研究探討 26
第三章 實驗設計與方法 31
章節A. 數值方法 31
3A.1 統御方程式 31
3A.2 數值方法 33
3A.3 理論模型 34
3A.3.1 三維頸動脈的醫學影像 34
3A.3.2 三維頸動脈理論模型的建立 35
3A.3.3 不同程度的狹窄設計 35
3A.3.4 內頸動脈狹窄流場的剖面位置設計 36
3A.4 網格系統 37
3A.4.1 網格系統產生方式 37
3A.4.2 網格類型 37
3A.5 邊界條件 38
3A.5.1 進口端與出口端的邊界條件 38
3A.5.2 流體物理條件 38
3A.5.3 壁面邊界條件 38
章節B. 體外模型實驗方法 39
3B.1 三維頸動脈體外模型製作 39
3B.2 體外模型的流場循環設計 39
3B.2.1 流場循環灌注與監測設備 39
3B.2.2 流場循環的流體選擇 40
3B.3 體外模型的流場循環實驗設計 40
3B.3.1 控制組(I): 模擬健康頸動脈的血液流場情況 40
3B.3.2 實驗組(II): 以固定平均動脈壓模擬內頸動脈狹窄
情形的血液流場變化 41
3B.3.3 實驗組(III): 以固定總頸動脈流量模擬內頸動脈
狹窄情形的血液流場變化........................................................41
3B.3.4 統計分析方法 41
3B.4 染色劑注射於體外流場循環的實驗方法 42
第四章 結果 53
4.1 不同內頸動脈狹窄程度的流場流線分佈圖 53
4.1.1 正常生理情況下的流線與速度分佈圖 53
4.1.2 同心型態狹窄流場的流線與速度分佈圖 53
4.1.3 偏心型態狹窄流場的流線與速度分佈圖 56
4.2 不同內頸動脈狹窄程度的速度分佈與向量分佈之剖面圖 58
4.2.1 同心型態狹窄的速度分佈與向量分佈之剖面圖 58
4.2.2 偏心型態狹窄的速度分佈與向量分佈之剖面圖 60
4.3 不同內頸動脈狹窄程度的流場壁面剪應力分佈 62
4.3.1 同心型態狹窄的壁面剪應力分佈情形 62
4.3.2 偏心型態狹窄的壁面剪應力分佈情形 63
4.4 不同邊界條件對於內頸動脈狹窄流場的流量值之影響 64
4.5 頸動脈體外模型流場循環流量值與壓力值變化 65
4.6 染色劑注射於體外流場循環之實驗結果 68
4.6.1 未狹窄流場的染色劑流動變化 69
4.6.2 同心型態狹窄流場的染色劑流動變化 69
4.6.3 偏心型態狹窄流場的染色劑流動變化 70
第五章 討論 98
5.1 狹窄型態對於動脈流場及臨床診斷治療的影響 98
5.2 狹窄程度對於動脈流場及臨床診斷治療的影響 100
5.3 壁面剪應力分佈對於動脈粥樣硬化與血栓形成的影響 101
5.4 內頸動脈狹窄流場壓力變化對於臨床診斷治療的影響 102
5.5 體外實驗流量值與臨床狹窄血液流量之相關性 104
第六章 結論與未來展望 107
6.1 結論 107
6.2 未來展望 108
參考文獻 109

圖索引
圖1. Carotid Bulb的解剖部位定義圖 7
圖2. Carotid Bulb病變類型 7
圖3. 內頸動脈狹窄型態 8
圖4. 常見的狹窄形狀 8
圖5. 常見狹窄程度的測量方法 9
圖6. 典型的頸動脈內膜切除術手術過程 9
圖7. 典型的頸動脈支架置入術手術過程 10
圖8. 圓柱座標系統示意圖 44
圖9. MIMICS 15.01轉換頸動脈三維影像之操作示意圖 44
圖10. 3-MATIC 3.0編輯之頸動脈的三維影像 45
圖11. 頸動脈理論模型及各分支名稱定義 45
圖12. 不同狹窄程度的理論模型設計 46
圖13. 剖面位置及視角的示意圖 47
圖14. ANSYS-FLUENT網格系統產生的各種網格類型 47
圖15. 頸動脈的三維幾何體劃分網格 48
圖16. 頸動脈三維模型邊界條件設定 48
圖17. 臨床內頸動脈狹窄血流量 49
圖18. 體外狹窄模型設計 49
圖19. 頸動脈體外模型與流場循環灌注監測示意圖 50
圖20. 模擬正常生理情況體外模型流場循環與實驗參數設置示意圖 50
圖21. 固定平均動脈壓模擬狹窄情況體外模型流場循環與實驗參數設置示意圖 51
圖22. 固定總頸動脈流量模擬狹窄情況體外模型流場循環與實驗參數設置示意圖 51
圖23. 單一或三種染色劑注入於頸動脈體外模型流場循環的實驗設置 52
圖24. 數值分析方法產生之頸動脈流線與速度分佈圖 77
圖25. 同心狹窄型態的速度與向量之剖面圖 81
圖26. 偏心狹窄型態的速度與向量之剖面圖 85
圖27. 內頸動脈同心型態狹窄壁面剪應力分佈情形 86
圖28. 內頸動脈偏心型態狹窄壁面剪應力分佈情形 88
圖29. 固定平均動脈壓下總頸動脈流量與壓力變化 89
圖30. 固定平均動脈壓下內頸動脈流量與壓力變化 89
圖31. 固定平均動脈壓下外頸動脈流量與壓力變化 90
圖32. 固定總頸動脈流量下總頸動脈流量與壓力變化 90
圖33. 固定總頸動脈流量下內頸動脈流量與壓力變化 91
圖34. 固定總頸動脈流量下外頸動脈流量與壓力變化 91
圖35. 頸動脈體外模型三色染劑流動變化 95
圖36. 頸動脈體外模型單色染劑流動變化 97
圖37. 體外模型的流量值與臨床文獻血液流量值的相關性分析 106

表索引
表一. 頸動脈分岔處之正常生理血流量分佈 28
表二. 臨床內頸動脈狹窄血流量研究文獻彙整表 28
表三. 臨床狹窄長度的研究文獻彙整表 30
表四. 臨床內頸動脈狹窄血流量參考值 43
表五. 模擬健康情況的血液流場之流量值與壓力值 43
表六. 不同邊界條件帶入內頸動脈狹窄理論模型的流量結果 72
表七. 固定平均動脈壓內頸動脈狹窄程度為30% 與70%的同心型態體外模型之頸動脈分叉區域的流量值與壓力值比較 73
表八. 固定平均動脈壓內頸動脈狹窄程度為30% 與70%的偏心型態體外模型之頸動脈分叉區域的流量值與壓力值比較 73
表九. 固定總頸動脈流量內頸動脈狹窄程度為30% 與70%的同心型態體外模型之頸動脈分叉區域的流量值與壓力值比較 74
表十. 固定總頸動脈流量內頸動脈狹窄程度為30% 與70%的偏心型態體外模型之頸動脈分叉區域的流量值與壓力值比較 74
[1] Jones DL, Adams RJ, ........., Rosett JW. Heart disease and stroke statistics--2010 update
: A report from the american heart association. Circulation,2010;121:e46-e215.
[2] 行政院衛生署 (2011) ‧中華民國一○○年死因統計‧2013年1月25日取自
http://www.doh.gov.tw/CHT2006/index_populace.aspx
[3] Higashida RT, Meyers PM, Phatouros CC, Connors JJ, Barr JD and Sacks D. Reporting
standards for carotid artery angioplasty and stent placement. Stroke, 2004;35:e112-e134.
[4] Moftakhar R, Turk AS, Niemann DB, Hussain S, Rajpal S, Cook T, Geraghty M,
Kienitz BA, PA, and Newman GC. Effects of carotid or vertebrobasilar stent placement
on cerebral perfusion and cognition. AJNR Am J Neuroradiol, 2005;26:1772–1780.
[5] Kishikawaa K, Kamouchia M, Okadaa Y, Inouec T, Ibayashib S and Iidab M. Effects of
carotid endarterectomy on cerebral blood flow and neuropsychological test performance
in patients with high-grade carotid stenosis. Journal of the Neurological Sciences, 2003;
213:19-24.
[6] Kasner SE, Chimowitz MI, Lynn MJ, Smith HH, Stern BJ, Hertzberg VS, Frankel MR,
Levine SR, Chaturvedi S, Benesch CG, Sila CA, Jovin TG, Romano JG and Cloft HJ.
Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial
stenosis. Circulation, 2006:555-563.
[7] Park ST, Kim JK, Yoon KH, Park SO, Park SW, Kim JS, Kim SJ and Suh DC.
Atherosclerotic carotid stenoses of apical versus body lesions in high-risk carotid
stenting patients. Am J Neuroradiol, 2010;31:1106-1112.
[8] Spencer MP and Reid JM. Quantitation of carotid stenosis with continuous-wave (C-W)
doppler ultrasound. Stroke, 1979;10:326-330.
[9] Umemura A and Yamada K. B-mode flow imaging of the carotid artery. Stroke, 2001;
32:2055-2057.
[10] Mikami T, Takahashi A and Houkin K. Evaluation of blood flow in carotid artery stenosis
using B-flow sonography. Neurol Med Chir, 2003 ;43:528-533.
[11] Jeremias A, Huegel H, Lee DP, Hassan A, Wolf A, Yeung AC, Yock PG and Fitzgerald
PJ. Spatial orientation of atherosclerotic plaque in non-branching coronary artery
segments. Atherosclerosis, 2000;152:209-215.
[12] Tambasco M and Steinman DA. Path-dependent hemodynamics of the stenosed carotid
bifurcation. Annals of Biomedical Engineering, 2003;31:1054-1065.
[13] Lorenzini G and Casalena E. CFD analysis of pulsatile blood flow in an atherosclerotic
human artery with eccentric plaques. Journal of Biomechanics, 2008;41:1862-1870.
[14] Steinman DA, Poepping TL, Tambasco M, Rankin RN, and Holdsworth DW. Flow
patterns at the stenosed carotid bifurcation: effect of concentric versus eccentric stenosis.
Annals of Biomedical Engineering, 2000;28:415-423.
[15] Zwiebel WJ, Zagzebski JA, Crummy AB and Hirscher M. Correlation of peak doppler
frequency with lumen narrowing in carotid stenosis. Stroke, 1982;13:386-391.
[16] Frericks H, Kievit J, Baalen JM and Bockel JH. Carotid recurrent stenosis and risk of
ipsilateral stroke : A systematic review of the literature.Stroke, 1998;29:244-250.
[17] Barnett JM, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, Rankin RN,
Clagett GP, Hachinski VC, Ackett DS, Horpe KT, and Meldrum HE. Benefit of carotid
endarterectomy in patients with symptomatic moderate or severe stenosis. N Engl J Med,
1998;339:1415–1125.
[18] Roffi M, Mukherjee D and Clair DG. Carotid artery stenting vs endarterectomy.
European Heart Journal, 2009;30:2693-2704.
[19] Brott TG, Hobson RW, Howard G, Roubin GS, Clark WM, Brooks W, Mackey A, Hill
MD, Leimgruber PP, Sheffet AJ, Howard VJ, Moore WS, Voeks JH, Hopkins LN,
Cutlip DE, Cohen DJ, Popma JJ, Ferguson RD and Cohen SN. Stenting versus
endarterectomy for treatment of carotid-artery stenosis. N Engl J Med, 2010;363(1):11-23.
[20] Schlichting, H. (1968). Boundary-layer theory (Vol. 539). New York: McGraw-Hill.
[21] Khabakhpasheva EM. (2011, February 2 ). Turbulent Flow. Retrieved July 29, 2013,
from http://www.thermopedia.com/content/1226/?tid =104&sn=1424
[22] Boffetta G and Ecke RE. Two-dimensional turbulence. Annual Review of Fluid
Mechanics, 2012;44:427-451.
[23] Pattison MJ. (2011, February 2 ). Vortices. Retrieved July 29, 2013, from
http://www.thermopedia.com/content/1248/?tid=104&sn=1159
[24] Bengt S. (2011, February 2 ). Tubes, Crossflow Over. Retrieved July 29, 2013, from
http://www.thermopedia.com/content/1216/
[25] Pattison MJ. (2011, February 2 ). Secondary Flows. Retrieved July 29, 2013,from
http://www.thermopedia.com/content/1113/?tid=104&sn=1420
[26] Mizukami M, Yamaguchi K and Yunoki K. Evaluation of occlusive cerebrovascular
disease using ultrasonic quantitative flow measurement. Stroke, 1981;12:793-798.
[27] Ackroyd N, Gill R, Griffiths K, Kossoff G and Appleberg M. Quantitative common
carotid artery bloodflow: prediction of internal carotid artery stenosis. J Vasc Surg,
1986;3:846–853.
[28] Bendel P, Buonocore E, Bockisch A and Besozzi MC. Blood flow in the carotid arteries:
quation by using phase-sensitive MR imaging. AJR 1989;152:1307-1310.
[29] Schoning M, Walter J and Scheel P. Estimation of cerebral blood flow through color
duplex sonography of the carotid and vertebral arteries in healthy adults. Stroke, 1994,
25:17-22.
[30] Bogren HG, Buonocore MH and Gu WZ. Carotid and vertebral artery blood flow in left-
and right-handed healthy subjects measured with MR velocity mapping. Journal of
Magnetic Resonance Imaging, 1994;4:37–42.
[31] Grond J, Eikelboom BC and Mali WP. Flow-related anaerobic metabolic changes in
patients with severe stenosis of the internal carotid artery. Stroke,1996;27: 2026-2032.

[32] Boorder MJ, Hendrikse J and Grond J. Phase-contrast magnetic resonance imaging
measurements of cerebral autoregulation with a breath-hold challenge a feasibility study.
Strok, 2004;35:1350-1354.
[33] Ho SSY and Metreweli C. Preferred technique for blood flow volume measurement in
cerebrovascular disease. Stroke, 2000;31:1342-1345.
[34] Sato K and Sadamoto T. Different blood flow responses to dynamic exercise between
internal carotid and vertebral arteries in women. J Appl Physiol, 2010;109:864–869.
[35] Sato K, Ogoh S, Hirasawa A, Oue A and Sadamoto T. The distribution of blood flow in
the carotid and vertebral arteries during dynamic exercise in humans. J Physiol, 2011;
589(11):2847–2856.
[36] Keller HM, Meier WE and Kumpe DA. Noninvasive measurement of velocity profiles
and blood flow in the common carotid artery by pulsed doppler ultrasound. Stroke,
1976;7:370-377.
[37] Uematsu S,Yang A, Preziosi TJ, Kouba R and Toung TJ. Measurement of carotid
blood flow in man and its clinical application. Stroke,1983(14);2:256-266.
[38] Benetos A, Simon A, Levenson J, Lagneau p, Bouthier J, and Safar M. An evaluation
of diameter, blood velocity and blood flow of the common carotid artery in patients
with isolated unilateral stenosis of the internal carotid. Stroke, 1985;16:969-972.
[39] Uematsu S, Folstein MF. Carotid blood flow measured by an ultrasonic volume
flowmeter in carotid stenosis and patients with dementia. Journal of Neurology,
Neurosurgery, and Psychiatry, 1985;48: 1230-1233.
[40] Lindegaard KF, Lundar T, Wiberg J, Sjøberg D, Aaslid R and Nornes H. Variations in
middle cerebral artery blood flow investigated with noninvasive transcranial blood
velocity measurements. Stroke, 1987;18:1025-1030.
[41] Wada T, Kodaira K and Okamura T. Correlation of common carotid flow volume
measured by ultrasonic quantitative flowmeter with pathological findings. Stroke,
1991;22:319-323.
[42] Gordon IL, Stemmer EA and Wilson SE. Redistribution of blood flow after carotid
endarterectomy. Journal of Vascular Surgery, 1995(22);4:349-360.
[43] Vanninen R, Koivisto K, Tulla H, Manninen H and Partanen K. Hemodynamic effects of
carotid endarterectomy by magnetic resonance flow quantification. Stroke, 1995;26: 84-89.
[44] Everdingen KJ, Klijn CJM, Kappelle LJ, Mali WPTM and Grond J. MRA flow
quantification in patients with a symptomatic internal carotid artery occlusion. Stroke,
1997;28:1595-1600.
[45] Blankensteijn JD , Grond J, Mali WP and Eikelboom BC. Flow volume changes in the
major cerebral arteries before and after carotid ndarterectomy: an MR angiography
study. Eur J Vasc Endovasc Surg, 1997;14:446-450.
[46] Yoshinaga S, Tanaka A, Nakayama Y and Ueno Y. The relationship between the degree
of internal carotid artery stenosis and cerebral blood flow,cerebrovascular reserve
capacity. Clinical Neurology, 1997.
[47] Rutgers DR, Blankensteijn JD and Grond J. Preoperative MRA flow quantification in
CEA patients: flow differences between patients who develop cerebral ischemia and
patients who do not develop cerebral ischemia during cross-clamping of the carotid
artery. Stroke,2000;31:3021-3028.
[48] Nie AJ, Blankensteijn JD, Visser GH, Grond J and Eikelboom BC. Cerebral blood flow
in relation to contralateral carotid disease,an MRA and TCD study. Eur J Vasc Endovasc
Surg, 2001;21: 220–226 .
[49] Tan TY, Schminke U, Lien LM, Eicke BM and Tegeler CH. Extracranial internal
carotid artery occlusion: the role of common carotid artery volume flow. J
Neuroimaging, 2002;12:144–147.
[50] Eckstein HH, Eichbaum M, Klemm K, Doerfler A, Ringleb P, Bruckner T and Allenberg
JR. Improvement of carotid blood flow after carotid endarterectomy evaluation using
intraoperative ultrasound flow measurement. Eur J Vasc Endovasc Surg, 2003;25:168-174.
[51] Lam W WM, Ho S SY, Leung SF, Wong KS and Metreweli C. Cerebral Blood Flow
Measurement by Color Velocity Imaging in Radiation-Induced Carotid Stenosis. J
Ultrasound Med, 2003;22:1055–1060.
[52] Hendrikse J, Raamt AF,Graaf Y,Mali WP T. M and Grond J. Distribution of cerebral
blood flow in the circle of willis. Radiology, 2005; 235:184–189.
[53] Kamouchi M, Kishikawa K, Okada Y, Inoue T, Ibayashi S and Iida M. Reappraisal of
flow velocity ratio in common carotid artery to predict hemodynamic change in carotid
stenosis. AJNR Am J Neuroradiol, 2005;26:957–962.
[54] Patankar T, Widjajaa E, Chantb H, McCollumb C, Baldwinc R, Jeffriesc S, Sutcliffec
C, Burnsd A and Jackson A. Relationship of deep white matter hyperintensities and
cerebral blood flow in severe carotid artery stenosis. European Journal of Neurology,
2006;13:10–16.
[55] Kamouchi M, Kishikawa K, Okada Y, Inoue T, Toyoda K, Ibayashi S and Iida M.
Transoral ultrasonographic evaluation of carotid flow in predicting cerebral
hemodynamics after carotid endarterectomy. AJNR Am J Neuroradiol, 2006;27:1295–1299.
[56] Hartkamp NS, Hendrikse J, Worp HB, Borst GJ and Bokkers RPH . Time course of
vascular reactivity using repeated phase-contrast mr angiography in patients with carotid
rtery stenosis. Stroke, 2012;43:553-556.
[57] Smith RF, Rutt BK and Holdsworth DW. Anthropomorphic carotid bifurcation phantom
for MRI applications. Journal Of Magnetic Resonance Imaging, 1999;10:533–544.
[58] Frangi AF, Niessen WJ and Hoogeveen RM. Model-based quantitation of 3-D magnetic
resonance angiographic images. Ieee Transactions On Medical Imaging,1999;18(10):946-956.
[59] Barratt DC, Ariff BB, Humphries KN, Thom SA, and Hughes AD. Reconstruction and
quantification of the crotid artery bifurcation from 3-D ultrasound images. Ieee
Transactions On Medical Imaging,2004;23(5):567-582.
[60] Meng W, Yu F, Chen H, Zhang J, Zhang E, Dian K and Shi Y. Concentration
polarization of high-density lipoprotein and its relation with shear stress in an in
vitromodel. Journal of Biomedicine and Biotechnology, 2009:1-8.
[61] Zhang F, Lanning C, Mazzaro L, Barker AJ, Gates P, Strain WD, Fulford J, Gosling OE,
Shore AC, Bellenger NG, Rech B, Chen I, Chen J and Shandas R. In vitro and
preliminary in vivo validation of echo particle image velocimetry in carotid vascular
imaging. Ultrasound Med Biol, 2011;37(3):450–464.
[62] Biao H, Wei W, Xixu W,Jue W and Meng Y. Numerical simulation to get flow pattern in
modified carotid artery bifurcation model using piv. Life Science Journal,
2012;9(3):1296-1301.
[63] Kabinejadian F, Cui F, Zhang Z, Ho P and Leo HL. A novel carotid covered stent design:
in vitro evaluation of performance and influence on the blood flow regime at the carotid
artery bifurcation. Biomedical Engineering Society, 2013;10 .
[64] Deweese JA, May AG, Lipchik EO and Rob CG. Anatomic and hemodynamic
correlations in carotid artery stenosis. Strok, 1970;1:149-157.
[65] Vozzi CR, Rodriguez AO, Paolantonio D, Smith JA and Wholey MH. Extracranial
carotid angioplasty and stenting. Tex Heart Inst J,1997;24:167-172.
[66] Ebrahim S, Papacosta O, Whincup P, Wannamethee G, Walker M, Nicolaides AN,
Dhanjil S, Griffin M, Belcaro G, Rumley A and Lowe G DO. Carotid plaque, intima
media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men
and women: the british regional heart study. Stroke, 1999;30:841-850.
[67] Houdart E Mounayer C, Chapot R, Maurice JP S and Merland JJ. Carotid stenting for
radiation-induced stenoses : a report of 7 cases. Stroke, 2001;32:118-121.
[68] Leisch F, Kerschner K, Hofmann R, Steinwender C, Grund M, Bibl D, Leisch FA and
Bergmann H. Carotid sinus reactions during carotid artery stenting: predictors, incidence,
and influence on clinical outcome. Catheterization and Cardiovascular Interventions,
2003;58:516-523.
[69] Pappada G, Beghi E, Marina R, Agostoni E, Cesana C, Legnani F, Parolin M, Petri D,
and Sganzerla EP. Hemodynamic instability after extracranial carotid stenting. Acta
Neurochir (Wien), 2006;148:639-645.
[70] Cremonesi A, Manetti R, Setacci F, Setacci C and Castriota F. Protected carotid stenting
clinical advantages and complications of embolic protection devices in 442 consecutive
patients. Stroke, 2003;34:1936-1941.
[71] Sayeed S, Stanziale SF, Wholey MH and Makaroun MS. Angiographic lesion
characteristics can predict adverse outcomes after carotid artery stenting. Journal Of
Vascular Surgery, 2008;47(1):81-87.
[72] Anzidei M, Napoli A, Marincola BC, Nofroni L, Geiger D, Zaccagna F, Catalano C,
Passariello R. Gadofosveset-enhanced mr angiography of carotid arteries: does steady-
state imaging improve accuracy of first-pass imaging? comparison with selective digital
subtraction angiography. Radiology, 2009;251(2):457-466.
[73] Brott TG, Hobson RW, Howard G, Roubin GS, Clark WM, Brooks W, Mackey A, Hill
MD, Leimgruber PP, Sheffet AJ, Howard VJ, Moore WS, Voeks JH, Hopkins LN,
Cutlip DE, Cohen DJ, Popma JJ, Ferguson RD, Cohen SN. Stenting versus
Endarterectomy for Treatment of Carotid-Artery Stenosis. N Engl J Med, 2010;363(1):11-23.
[74] Hopkins LN, Roubin GS, Chakhtoura EY, Gray WA, Ferguson RD, Katzen BT,
Rosenfield K, Goldstein J, Cutlip DE, Morrish W, Lal BK, Sheffet AJ, Tom M, Hughes
S, Voeks J, Kathir K, Meschia JF, Hobson RW and Brott TG. The carotid
revascularization endarterectomy vs stenting trial: credentialing of interventionalists and
final results of lead-in phase. J Stroke Cerebrovasc Dis, 2010;19(2):153–162.
[75] Zhu L, Wintermark M, Saloner D, Fandel M, Pan XM, Rapp JH. The distribution and
size of ischemic lesions after carotid artery angioplasty and stenting: Evidence for
microembolization to terminal arteries. Journal of Vascular Surgery, 2011;971-976.
[76] Naggara O, Touze E, Beyssen B, Trinquart L, Chatellier G, Meder JF, Mas JL.
Anatomical and technical factors associated with stroke or death during carotid
angioplasty and stenting results from the endarterectomy versus angioplasty in patients
with symptomatic severe carotid stenosis (eva-3s) trial and systematic review. Stroke,
2011;42:380-388.
[77] Cicha I, Worner A, Urschel K, Beronov K, Struebe MG, Verhoeven E, Daniel WG,
Garlichs CD. Carotid Plaque Vulnerability A Positive Feedback Between Hemodynamic
and Biochemical Mechanisms. Stroke, 2011;42:3502-3510.
[78] Muraki M, Mikami T, Yoshimoto T, Fujimoto S, Tokuda K, Kaneko S and Kashiwaba T.
New criteria for the sonographic diagnosis of a plaque ulcer in the extracranial carotid
artery. AJR, 2012;198:1161–1166.
[79] Saba L, Sanfilippo R, Sannia S, Anzidei M, Montisci R, Mallarini G and Suri JS.
Association between carotid artery plaque volume, composition, and ulceration: a
retrospective assessment with MDCT. AJR, 2012;199:151-156.
[80] Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients.
Circulation Research, 1968;22:165-197.
[81] Perktold K and Rappitsch G. Computer simulation of local blood flow and vessel
mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics,
1995;28(7):845-856.
[82] Stein PD and Sabbah HN. Measured turbulence and its effect on thrombus formation.
Circ Res, 1974;35:608-614.
[83] Imbesi SG and Kerber CW. Why do ulcerated atherosclerotic carotid artery plaques
embolize? A flow dynamics study. AJNR Am J Neuroradiol, 1998;19:761-766.
[84] Malek AM, Alper SL, and Izumo S. Hemodynamic shear stress and its role in
atherosclerosis. Journal of the American Medical Association, 1999;282(21):2035- 2042.
[85] Wootton DM and Ku DN. Fluid mechanics of vascular systems, diseases, and thrombosis.
Annu. Rev. Biomed. Eng, 1999;01:299–329.
[86] Liu JS, Lu PC and Chu SH. Turbulence characteristics downstream of bileaflet aortic
valve prostheses. Journal of Biomechanical Engineering, 2000;122;118-124.
[87] VanderLaan PA, Reardon CA and Getz GS. Site specificity of atherosclerosis:
siteselective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol,
2004;24:12-22.
[88] Slager CJ, Wentzel JJ, Gijsen FJH, chuurbiers JCH, Wal AC, Steen AFW and Serruys
PW. The role of shear stress in the generation of rupture-prone vulnerable plaques.
Nature Reviews Cardiology, 2005;2:401-407.
[89] Slevin M, Elasbali AB, Turu MM, Krupinski J, Badimon L and Gaffney J. Identification
of differential protein expression associated with development of unstable human carotid
plaques. American Journal of Pathology, 2006;168:1004-1021.
[90] Groen HC, Gijsen FJH, van der Lugt A, Ferguson MS, Hatsukami TS, van der Steen
AFW, Yuan C and Wentzel JJ. Plaque rupture in the carotid artery is localized at the
high shear stress region: a case report. Stroke, 2007;38:2379–2381.
[91] Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS and Yuan C. A negative
correlation between human carotid atherosclerotic plaque progression and plaque wall
stress: in Vivo MRI-based 2d/3d FSI models. Journal of Biomechanics,2008;41(4):727–736.
[92] Gijsen FJH, Wentzel JJ, Thury A, Mastik F, Schaar JA, SchuurbiersJCH, Slager CJ,
Giessen WJ, de Feyter PJ, van der Steen AFW and Serruys PW. Strain distribution over
plaques in human coronary arteries relates to shear stress. Am J Physiol Heart Circ
Physiol, 2008;295:H1608- H1614.
[93] Furie B and Furie BC. Mechanisms of thrombus formation. N Engl J Med, 2008;359:
938-949.
[94] Thomas JB, Milner JS, Rutt BK and Steinman DA. Reproducibility of image-based
computational fluid dynamics models of the human carotid bifurcation. Annals of
Biomedical Engineering, 2003;31:132–141.
[95] Moore S, David T,Chase JG, Arnold J and Fink J. 3D models of blood flow in the
cerebral vasculature. Journal of Biomechanics, 2006;39:1454–1463.
[96] Dehlaghi V, Shadpoor MT and Najarian S. Analysis of wall shear stress in stented
coronary artery using 3D computational fluid dynamics modeling. Journal of materials
processing technology, 2008;197:174–181.
[97] Boutsianis E, Guala M, Olgac U, Wildermuth S, Hoyer K, Ventikos Y and Poulikakos D.
CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic
aneurysm. Journal of Biomechanical Engineering, 2009;131:1–15.
[98] Li ZY, Taviani V, Tang T, Sutcliffe MPF and Gillard JH. The hemodynamic effects of
in-tandem carotid artery stenosis: implications for carotid endarterectomy. Journal of
Stroke and Cerebrovascular Diseases, 2010;19(2): 138-145.
[99] Buchmann NA, Yamamoto M, Jermy M and David T. Particle image velocimetry (PIV)
and computational fluid dynamics (CFD) modelling of carotid artery haemodynamics
under steady flow: a validation study. Journal of Biomechanical Science and
Engineering, 2010;5(4):421-436.
[100] Page A and Mokhtar W. CFD simulation of carotid artery stenosis-simplified model.
American Society for Engineering Education, 2012.
[101] Ku DN, Giddens DP, Zarins CK, and Glagov S. Pulsatile flow and atherosclerosis in
the human carotid bifurcation: positive correlation between plaque location and low
oscillating shear stress. Arterioscler Thromb Vasc Biol, 1985;5:293-302.
[102] Perktold K and Rappitsch G. Computer simulation of local blood flow and vessel
mechanics in a compliant carotid artery bifurcation model. Journal of
biomechanics, 1995;28:845–856.
[103] Zhao SZ, Xu XY and Collins MW. The numerical analysis of fluid-solid interactions
for blood flow in arterial structures. Part II:Development of coupled fluid-solid
algorithms. Mechanical Engineers, 1998; 212:241–252.

[104] Lee D and Chn.r JJ. Computation of physiological bifurcation flows using a patched
grid. Computers Fluids, 1992;21( 4):519-535.
[105] Marmur JD. (2006). Interventional Cardiology. Retrieved January 17, 2013, from
http://www.marmur.com
[106] Weisstein EW. (1996). Cylindrical Coordinates. Retrieved January 15, 2013, from
http://bbs.sachina.pku.edu.cn/stat/math_world/math/c/c909.htm
[107] 朱紅鈞、林元華、謝龍漢 (2010,4月) ‧FLUENT‧流體分析及仿真實用教程
(一版,41頁) ‧北京:人民郵電出版社。
[108] Vitek JJ, Roubin GS, Mubarek NA, New G and Iyer SS. Carotid artery stenting:
technical considerations. AJNR Am J Neuroradiol, 2000;21:1736-1743.
[109] Chaichana T, Jewkes J and Sun Z. Computational fluid dynamics analysis of the effect
of simulated plaques in the left coronary artery: Apreliminary study. 19th International
Congress on Modelling and Simulation, 2011;12–16.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top