跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 06:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李淑華
研究生(外文):Shu-hua Lee
論文名稱:適當的體適能運動處方對於提昇人體自由基清除效率相關性之研究
論文名稱(外文):Adaptation of Antioxidant Defense System to ROS in Human Blood during Physical Fitness Training
指導教授:侯征宏梁俊煌梁俊煌引用關係
指導教授(外文):Jeng-Horng HouChun-Huang Liang
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:80
中文關鍵詞:長期規律運動習慣組短期訓練組超氧自由基抗氧化酵素活性電子傳遞鏈抗氧化物質低密度脂蛋白高密度脂蛋白白血球血容比最大攝氧量身體質量指數遞增負荷運動測試冷光無運動習慣組氧化性傷害活性氧分子氧化性壓力
外文關鍵詞:reactive oxygen species (ROS)physical challengeantioxidantphysical fitness trainingsedentary group(SED)long-term training group(LTT)short-term training group(STT)catalasesuperoxide dismutaseglutathione peroxidase
相關次數:
  • 被引用被引用:9
  • 點閱點閱:828
  • 評分評分:
  • 下載下載:108
  • 收藏至我的研究室書目清單書目收藏:3
適度規律的運動習慣有益於身體健康,但是運動過程中,體內消耗大量氧氣及能量的情況下,使得代謝率上升,在這同時也伴隨產生釵h活性氧分子(reactive oxygen species; ROS),而過量的自由基會提高體內氧化性壓力(oxidative stress),造成潛在氧化性傷害(oxidative damages)。故本研究目的為探討適度規律的運動習慣,對於體內自由基產生與清除機制之調控。
本研究以健康女大學生為對象,分為無運動習慣組(sedentary group;SED)和長期規律運動習慣組(long-term training group;LTT);SED組經過6週有氧體適能訓練後稱為短期訓練組(short-term training group;STT)。我們分別對SED、STT、LTT進行遞增負荷運動測試,並且在測試前後及休息後採集血液,並分析血液中超氧自由基(superoxide anion radical;O2-•)、抗氧化酵素活性(scavenger enzymes activities)及各項生化指標等。
結果顯示,運動表現能力隨運動訓練時間增加而改變,如最大攝氧量、可負荷之最大運動時間和可負荷之最大運動強度,皆隨訓練時間增加而有顯著性提高之趨勢。相關係數分析顯示,超氧自由基與肌肉損傷指標、血球計數分析、脫水指標等因子無正相關性,表示本研究中超氧自由基量的變化並非上述因素所造成。血液中超氧自由基在遞增負荷運動測試後,SED有顯著性增加,STT有增加現象,但統計上並無顯著差異,LTT並無明顯改變。此外,在安靜狀態下(resting state),STT與LTT血液中超氧自由基皆低於SED。短期訓練後(STT),紅血球中抗氧化酵素活性有顯著性提高的現象,但STT卻與SED無顯著性差異。此外,血液脂肪分析中,除高密度脂蛋白隨訓練過程有逐漸上升的現象,其它項目並無明顯改變。
根據我們的研究結果發現,無運動習慣者,在運動過程中產生大量超氧自由基,但於體適能訓練後,自由基產量明顯降低。隨著不同的訓練型態及訓練時間長短,體內自由基產生與清除之平衡機制可能有所差異,短期有氧訓練,會以提高體內抗氧化酵素活性,來維持體內自由基之平衡狀態,而長期訓練可能提升粒線體電子傳遞鏈的效率使體內自由基的產生機率降低。故抗氧化酵素系統活性在長期規律運動習慣組與無運動習慣組間並無顯著性差異。另外,研究結果也顯示,高密度脂蛋白隨訓練期間加長而增加,再加上訓練後自由基產量明顯降低,減少了體內低密度脂蛋白被過氧化的危險性,因此我們認為,規律運動除有益於維持體內自由基的平衡狀態外,亦有利於預防心血管疾病之發生。
Generation of free radical is a part of normal metabolic processes, which can be neutralized by elaborating the antioxidant defense system. Physical activities may elicit an imbalance between the level of reactive oxygen species (ROS) and antioxidants, which is referred to as oxidative stress. On the other hand, one of the benefits of programmed physical training is that the increased modulate antioxidants defense system will enhance the quenching rate of the overproduced ROS during exercise.
In order to elucidate the relationship between ROS homeostasis and physical fitness training, the ROS levels of blood were measured before, after and during the recovery from a certain physical challenge by the method of chemiluminescence. The female volunteers were categorized into three groups, one consisted of people who regularly exercised (long-term training group;LTT), another that seldom exercised (sedentary group;SED). The group of seldom exercisers that underwent 6 weeks aerobic training were designated as short-term training group (STT). Other than the ROS levels, several clinical parameters of blood, and activities of antioxidants were also collected and evaluated at the same time.
The ROS turnover of these three groups were quite different during physical challenge. The ROS level seems to be consistent in the group of regular exercise, but increasing in the group of seldom exercisers during physical challenge. All volunteers were capable of neutralizing ROS after two hours rest. In spite of no significant change in some clinical parameters of blood, the activities of some scavenger enzymes seem to be down regulated in the group of regular exercisers. By comparing before with after 6-weeks-aerobic training, the group of seldom exercisers showed a decreased but similar patterns of the ROS level during physical challenge. Evan after 6-weeks of training, the ROS level measured after and recovery from the physical challenge were still higher than the group of regular exercisers.
Since the physical training will lead to increase ROS production at the very first stage, the strategy of human body to tolerate increased ROS is to up-regulate the performance of scavenger enzymes. As the training goes on, the efficacies of electron transport increase gradually, and ROS production decreases consequently. Thus, the expression of scavenger enzymes will return to basal or even lower levels in order to compromise with the decreased ROS. Based on the observation that we have made, we speculate that the more efficient energy supply will make people with regular exercise be able to tolerate more ROS during physical stress. The major benefit of regular exercise should be the increasing efficacies of the electron transport rather than the transient up-regulated activities of scavenger enzymes.
書名頁 I
學位考試委員會審定書 II
論文電子檔案上網授權書 III
授權書 IV
中文摘要 V
英文摘要 VII
誌謝 IX
目錄 X
圖表目錄 XII
符號說明 XIII
縮寫全寫對照 XVII
關鍵字 XVIII
第一章 前言 1
第二章 研究材料與方法 9
2-1.研究方法 9
2-2.實驗步驟 9
2-3.血液分析 13
2-4.結果分析統計方法 23
第三章 結果 29
第四章 討論 43
第五章 結論 48
第六章 參考文獻 50
附錄一.嘉南藥理科技大學人體試驗委員會同意書 59
附錄二.基本資料問卷 60
附錄三.受試同意書 61
附錄四.受試者須知 62
附錄五.自覺量表 63
作者簡歷 64
Bejma, J., & Ji, L.L. (1999). Aging and acute exercise enhance free radical generation in rat skeletal muscle. Journal of Applied Physiology, 87(1):465-470.
Alessio, H.M. (1993). Exercise-induced oxidative stress. Medicine and Science in Sport and Exercise, 25(2):218-224.
Child, R., Brown, S., Day, S., Donnelly, A., Roper, H., & Saxton, J. (1999). Change in indices of antioxidant status, lipid peroxidation and inflammation in human skeletal muscle after eccentric muscle actions, The Biochemical Society and the Medical Research Society, 96:105-115.
Halliwell, B., & Gutteridge, J.M.(1998). Free Radical in Biology and Medicine, 3th edition, London:OXFORD.
Ji, L.L. (1999). Antioxidants and oxidative stress in Exercise, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine, 222:283-292.
Leeuwenburgh, C., & Heinecke, J.W. (2000). Oxidative stress and antioxidants in exercise, Current Medicinal Chemistry 8:829-838.
Davies, K.J., Quintanilha, T.A., Brook, G.A., & Packer, L. (1982). Free radicals and tissue damage produced by exercise, Biochemical and Biophysical Research Communications, 107:1198-1205.
Staniek, K., Lars, G., Kozlov, A.V., & Nohl, H. (2002). Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential, Free Radical Research, 36(4):381-387.
Clanton, T.L., Zuo, L., & Klawitter, P.F. (1999). Oxidants and skeletal muscle function: physiologic and pathophysiologic implications, Society for Experimental Biology and Medicine, 222:253-262.
Herrero, A., & Barja, G. (1997). ADP-regulation of mitochondrial free radical production is different with complex I- or complex II-linked substrates: implications for the exercise paradox and brain hypermatabolism, Journal of Bioenergetics and Biomembranes, 29(3):241-249.
Lu, J., Chen, C. Z., Xu, Y. g., & Lai, R. X. (2003). Effect of antioxidant on lipid peroxidation in skeletal muscle of exercise training aged mice, Journal of Physical Education,10(4):57-59.
趙克然, 楊毅軍, 曹道俊, 胡淼琳, (2002). 氧自由基與臨床,初版,台灣,合記出版社.
Cuchel, M., & Rader, D.J. (2003). Genetics of Increased HDL Cholesterol Levels: Insights Into the Relationship Between HDL Metabolism and Atherosclerosis, Arteriosclerosis, Thrombosis and Vascular Biology, 23(10):1710-1712.
Kontush, A., Chantepie, S., & Chapman, M.J. (2003). Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arteriosclerosis, Thrombosis and Vascular Biology, 23(10):1881-1888.
Pratico, D., Clark, C.M., Liun, F., Rokach, J., Lee, V.Y., & Trojanowski, J.Q. (2002). Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease, Archives of Neurology, 59(6):972-6.
Csiszar, A., Ungvari, Z., Edwards, J.G., Kaminski, P., Wolin, M.S., Koller, A., & Kaley, G. (2002). Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function, Circulation Research, 90(11):1159-66.
Alonso de Vega J.M., Diaz, J., Serrano, E., & Carbonell, L.F. (2002). Oxidative stress in critically ill patients with systemic inflammatory response syndrome, Critical Care Medicine, 30(8):1782-6.
Channon, K.M. (2002). Oxidative stress and coronary plaque stability, Arteriosclerosis, Thrombosis and Vascular Biology, 22(11):1751-2.
Pietro, M., Paola, P., Stefania, G., Maurizio, D., Laura, M., Rosamaria, T., & Francesca, S. (2002). Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease, Circulation, 106(22):2800-5.
Siems, W.G., Brenke, R., Beier, A., & Grune, T. (2002). Oxidative stress in chronic lymphoedema, Quarterly Journal of Medicine, 95(12):803-9.
Mutlu-Turkoglu, U., Ilhan, E., Oztezcan, S., Kuru, A., Aykac-Toker, G., & Uysal, M. (2003). Age-related increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects, Clinical Biochemistry, 36(5):397-400.
Rodriguez, M.C., Rosenfeld, J., & Tarnopolsky, M.A. (2003). Plasma malondialdehyde increases transiently after ischemic forearm exercise, Medicine and Science in Sports and Exercise, 35(11):1859-65.
Bankson, D.D., Kestin, M., & Rifai, N. (1993). Role of free radicals in cancer and atherosclerosis, Clinics in Laboratory Medicine, 13(2):463-80.
Vasankari, T.J., Kujala, U.M., Vasankari, T.M., Vuorimaa, T., & Ahotupa, M. (1997). Effects of acute prolonged exercise on serum and LDL oxidation and antioxidant defences, Free Radical Biology and Medicine, 22(3):509-513.
Aguilo, A., Tauler, P, Pilar Guix, M., Villa, G., Cordova, A., Tur, JA., & Pons, A. (2003). Effect of exercise intensity and training on antioxidants and cholesterol profile in cyclists, Journal of Nutritional Biochemistry, 14:319-325.
Powers, S.K., & Howley, E.T. (2001). Exercise Physiology: Therory and Application to Fitness and Performance, 4th edition, US:McGraw-Hill.
Ionescu, G., Merk, M., & Bradford, R. (1999). Simple chemiluminescence assays for free radicals in venous blood and serum samples: results in atopic, psoriasis, MCS and cancer patients, Forsch Komplementarmed 6:294-300.
Ionescu, J.G., weber, D., & Bradford, R. (2000). Clinical applications of free radical assessment in blood, serum and plasma samples by enhanced chemiluminescence. II. antioxidative activity and therapy approaches with drugs and natural compounds, Journal of Biomedical Laboratory Science 12(2):46-56.
Sun, J. S., Tsuang, Y. H., Chen, I. J., Huang, W. H., Hang, Y. S., & Lu, F. J. (1998). An ultra-weak chemiluminescence study on oxidative stress in rabbits following acute thermal injury, Journal of the International Society for Burn Injuries, 24:225-231.
王正宏編譯. (1991). 血液學,初版,台灣台北,藝軒圖書出版社.
何敏夫. (1994). 臨床生化原理與實驗,初版,台灣台北,合記圖書出版社.
Rice-Evans CA., Diplock AT., & Symons MCR. (1991). Laboratory Techniques in Biochemistry and Molecular Biology: Techniques in Free Radical Research, London:ELSEVIER.
Tonkonogi, M., Walsh, B., Svensson, M., & Sahlin, K. (2000). Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress, Journal of Physiology, 528(2):379-388.
Urso, M.L., & Clarkson, P.M. (2003). Oxidative stress, exercise, and antioxidant supplementation, Toxicology, 189:41-54.
Clarkson, P.M., & Thompson, H.S. (2000). Antioxidants: what role do they play in physical activity and health? American Journal Clinical Nutrition, 72(suppl):637S-646S.
Mcallister, P.M., Reiter, B.L., Amann, J.F., & Laughlin, M.H. (1997). Skeletal muscle biochemical adaptations to exercise training in miniature swine, Journal of Applied Physiology, 82(6):1862-1868.
Zoll, J., Sanchcz, H., N’Gucssan, B., Ribcra, F., Lampcrt, E., Bigard, X., Serrurier, B., Fortin, D., Geny, B., Veksler, V., Ventura-Clapier, R., & Mettauer, B. (2002). Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle, Journal of Physiology, 543(1):191-200.
Korzeniewski, B., & Zoladz, J.A. (2003). Training-induced adaptation of oxidation phosphorylation skeletal muscles, Biochemical Journal, 374:37-40.
Burelle, Y., & Hochachka, P.W. (2002). Endurance training induces muscle-specific changes in mitochondrial function in skinned muscle fibers, Journal of Applied Physiology, 92:2429-2438.
Leek, B.T., Mudaliar, S.R., Henry, R., Mathieu-Costello, O., & Richardson, R.S. (2001). Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle, American Journal Physiological Regulatory Integrative and Comparative Physiology, 280:R441-447.
Starritt, E.C., Angus, D., & Hargreaves, M. (1999). Effect of short-term training on mitochondrial ATP production rate in human skeletal muscle, Journal of Applied Physiology, 86(2):450-454.
Putman, C.T., Jones, N.L., Hultman, E., Hollidge-Horvat, M.G., Bonen, A., McConachie, D.R., & Heigenhauser, G.J. (1998). Effects of short-term submaximal training in humans on muscle metabolism in exercise, American Journal Physiological, 275(Endocrinology and Metabolism 38):E132-139.
Howlett, R.A., Parolin, M.L., Dyck, D.J., Hultman, E., Jones, N.L., Heigenhauser, G.J., & Spriet, L.L. (1998). Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs, American Journal Physiological, 275 (Regulatory Integrative and Comparative Physiology 44):R418-425.
McArdle, A., Vasilaki, A., & Jackson, M. (2002). Exercise and skeletal muscle ageing: cellular and molecular mechanisms, Ageing Research Reviews, 1:79-93,.
Ji, L.L. (1993). Antioxidant enzyme response to exercise and aging, Medicine and Science in Sport and Exercise, 25(2):225-231.
Anonymous, (2002). Yoga may offer benefits to patients with cancer, Clinical Journal of Oncology Nursing, 6(5):253.
Collins, C. (1998). Yoga: intuition, preventive medicine, and treatment, Journal of Obstetric, Gynecologic, and Neonatal Nursing, 27(5):563-8.
Itoh, H., Ohkuwa, T., Yamamoyo, T., Sato, Y., Miyamura, M., & Naoi, M. (1998). Effect of endurance physical training on hydroxyl radical generation in rat tissues, Life Sciences, 63(21):1921-1929.
McBride, J.M., Kraemer, W.J., Triplett-McBride T., & Sebastianelli, W. (1998). Effect of resistance exercise on free radical production, Medicine and Science in Sport and Exercise, 30(1):67-72.
Konig, D., & Berg, A. (2002). Exercise and oxidative stress: is there a need for additional antioxidants, Osterreichisches Journal Sportmedizin, 3:6-15.
Suzuki, K., Naganuma, S., Totsuka, M., Suzuki, K.J., Mochizuki, M., Shiraiahi, M., Nakaji, S., & Sugawara, K. (1996). Effects of exhaustive endurance exercise and its one-week daily repetition on neutrophil count and functional status in untrained men, International Journal Sport Medicine, 17(3):205-212.
Witt, E.H., Reznick, A.Z., Viguie, C.A., Starke-Reed, P., & Packer, L. (1992). Exercise, oxidative damage and effects of antioxidant manipulation, Symposium: Nutrition and Exercise, 122:766-773.
Wilson, D.O., & Johnson, P. (2000). Exercise modulates antioxidant enzyme gene expression in rat myocardium and liver, Journal of Applied Physiology, 88: 1791-1796.
Rush, J.W., & Sandiford, S.D. (2003). Plasma glutathione peroxidase in healthy young adults: influence of gender and physical activity, Clinical Biochemistry, 36:345-351.
Hollander, J., Fiebig, R., Gore, M., Bejma, J., Ookawara, T., Ohno, H., & Ji, L.L. (1999). Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training, American Journal Physiological, 277(Regulatory Integrative and Comparative Physiology 46):R856-862.
Brites, F.D., Evelson, P.A., Christiansen, M.G., Nicol, M.F., Basilico, M.J., Wikinski, R.W., & Llesuy, S.F. (1999). Soccer players under regular training show oxidative stress but an improved plasma antioxidant status, Clinical Science, 96:381-385.
Oh-Ishi, S., Kizaki, T., Ookawara, T., Sakurai, T., Izawa, T., Nagata, N., & Ohno, H. (1997). Endurance training improves the resistance of rat diaphragm to exercise-induced oxidative stress, American Journal of Respiratory and Critical Care Medicine, 156:1579-1585.
Dawson, K.D., Howarth, K.R., Tarnopolsky, M.A., Wong, N.D., & Gibala, M.J. (2003). Short-term training attenuates muscle TCA cycle expansion during exercise in women, Journal of Applied Physiology, 95(3):999-1004.
Evans, W.J. (2000). Vitamin E, vitamin C, and exercise, American Journal Clinical Nutrition, 72(suppl):647S-652S.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top