跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉愷
研究生(外文):Kai Liu
論文名稱:電氣連接器之雙接觸彈片之振動分析
論文名稱(外文):Analysis of Dynamic Behavior of Two Mated Contacts of Electrical Connectors
指導教授:李維楨李維楨引用關係
指導教授(外文):Wei-chen Lee
口試委員:李維楨
口試委員(外文):Wei-chen Lee
口試日期:2013-07-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:73
中文關鍵詞:電氣連接器振動兩自由度模型接觸模型
外文關鍵詞:electrical connectorvibration2-degree-of-freedom modelcontact model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子科技的蓬勃發展,電氣連接器被廣泛應用在汽車、通訊、電腦等行業中。考慮到汽車在行駛或通訊產品在使用過程中,不可避免地會遇到振動和碰撞等一系列外界激勵,其內部連接器的接觸彈片也會出現振動情況,導致兩原先彼此相連的彈片分離影響資料傳輸。爲了了解連接器在振動下是否能正常運行,我們需要求得連接器在外界激勵下的振動情況。我們將兩互相接觸的連接器的彈片簡化成一個兩自由度彈簧-質量系統,於此兩自由度之質量塊間即靠著基於線性彈簧模型或赫茲接觸模型之彈簧連接。當彈簧壓縮量為零時,即代表兩質量塊即將分離。藉由微分方程的解析方法和數值方法,我們預測出此模型在理想狀態下的運動情況,並且提出其接觸和分離條件。此外,我們還探討了一系列代表性的力學模型參數設計,發現了不同參數設計的模型在其振動情況中表現的差異性。在連接器的設計過程中,本論文研究結果可以用於提高其可靠度以獲得更好的產品表現。
Electrical connectors are used for data transmission. The objective of this research was to understand whether two mated contacts of electrical connectors are separated under vibration. If the separation happens, then the signals cannot be transmitted through the connectors and then it will cause communication problem. A 2-degree-of-freedom mass-spring system was used to model two mated contacts of connectors. The two separable masses in the model are connected by a spring based on two contact models, linear spring model and Hertz contact model. If there is no compression of the spring, then the two contacts are about to separate. By means of both analytical and numerical methods to solve for the compression of the spring, we can understand whether the two mated contacts are in separation or not. Several examples are discussed to demonstrate how to use the methods mentioned in the paper to obtain the dynamic behavior for two mated contacts. The results show that the dynamic behavior is closely related to the geometrical parameters as well as the mechanical properties of connectors. This study can be used to improve connector design and ensure better performance and reliability of connectors.
摘要 I
ABSTRACT II
誌謝 III
CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLES VIII
1. Introduction 1
1.1. Background 1
1.2. Model description 2
1.3. Literature review 2
1.4. Objective 4
2. Theoretical Model 5
2.1. Contact model 5
2.2. Linked spring model 6
2.3. No-linked spring model 10
2.4. Contact & separate conditions 11
2.5. The vibration equations of entire operation 13
3. Analytical Solution 14
3.1. Same stiffness-mass ratio 14
3.1.1. Linear spring model 15
3.1.2. Hertz contact model 17
3.1.3. The periodicity of the vibration 26
3.2. Different stiffness-mass ratio 27
3.2.1. Linear spring model 27
3.2.2. Hertz contact model 33
4. Numerical Methods and ANSYS Simulation 34
4.1. Numerical Methods 34
4.1.1. Runge-Kutta methods 34
4.1.2. Numerical simulation for case 1 35
4.1.3. Accuracy of Hermite interpolation methods 38
4.1.4. Numerical simulation for general case of case 2 40
4.2. ANSYS simulation 44
4.2.1. Same stiffness-mass ratio 45
4.2.2. Different stiffness-mass ratio 46
5. Connector Design 48
5.1. Application 48
5.1.1. Procedure of model transform 48
5.1.2. Equivalent parameters by using Finite Element Method 50
5.1.3. Example 53
5.2. Contact & Separate Analysis 56
5.2.1. Same stiffness-mass ratio 57
5.2.2. Different stiffness-mass ratio 60
5.3. Multi-parameter designs 61
5.3.1. First design 1 61
5.3.2. Second design 2 63
5.3.3. Third design 3 65
6. Conclusions and Future Work 66
6.1. Conclusions 66
6.2. Future Work 66
REFERENCES 68
APPENDIX 70
[1]D. Skinner, "Intermittent Opens in Electrical Contacts Caused by Mechanically Induced Contact Motion," Parts, Hybrids, and Packaging, IEEE Transactions on, vol. 11, pp. 72-76, 1975.
[2]S. Muthukumar and R. DesRoches, "A Hertz contact model with non-linear damping for pounding simulation," Earthquake Engineering and Structural Dynamics, vol. 35, pp. 811-828, 2006.
[3]C. Rajalingham and S. Rakheja, "Analysis of impact force variation during collision of two bodies using a single-degree-of-freedom system model," Journal of Sound and Vibration, vol. 229, pp. 823-835, 2000.
[4]R. S. Langley, "The analysis of impact forces in randomly vibrating elastic systems," Journal of Sound and Vibration, vol. 331, pp. 3738-3750, 2012.
[5]Y. Z. Liu and L. Q. Chen, Nonlinear Vibration. Beijing: Higher Eduation Press, 2001.
[6]A. F. Vakakis and R. H. Rand, "Normal modes and global dynamics of a two-degree-of-freedom non-linear system-I. Low energies," International Journal of Non-Linear Mechanics, vol. 27, pp. 861-874, 1992.
[7]A. F. Vakakis and R. H. Rand, "Normal modes and global dynamics of a two-degree-of-freedom non-linear system-II. High energies," International Journal of Non-Linear Mechanics, vol. 27, pp. 875-888, 1992.
[8]S. Bravo Yuste and J. Diaz Bejarano, "Improvement of a Krylov-Bogoliubov method that uses Jacobi elliptic functions," Journal of Sound and Vibration, vol. 139, pp. 151-163, 1990.
[9]J. H. He, "Variational approach for nonlinear oscillators," Chaos, Solitons and Fractals, vol. 34, pp. 1430-1439, 2007.
[10]A. Yildirim, H. Askari, K. M. Yazdi, and Y. Khane, "A relationship between three analytical approaches to nonlinear problems," Applied Mathematics Letters, vol. 25, pp. 1729-1733, 2012.
[11]V. Marinca and N. Herişanu, "Optimal variational method for truly nonlinear oscillators," Journal of Applied Mathematics, vol. 2013, 2013.
[12]L. Cveticanin, "Vibrations of a coupled two-degree-of-freedom system," Journal of Sound and Vibration, vol. 247, pp. 279-292, 2001.
[13]L. Cveticanin, "The motion of a two-mass system with non-linear connection," Journal of Sound and Vibration, vol. 252, pp. 361-369, 2002.
[14]L. Cveticanin, M. Kalamiyazdi, H. Askari, and Z. Saadatnia, "Vibration of a two-mass system with non-integer order nonlinear connection," Mechanics Research Communications, vol. 43, pp. 22-28, 2012.
[15]B. C. Wen, Y. N. Li, and H. Q. Kai., Analytical Methods and Engineering Applications of Nonlinear vibration, 1 ed. Shen Yang: Northeastern University Press, 2001.
[16]J. W. Zhu and D. Q. Yang, "A study of a velocity-dependent-frequency nonlinear oscillator with cubic restoring force," Journal of Vibration and Shock, 2013.
[17]M. I. Qaisi, "A power series approach for the study of periodic motion," Journal of Sound and Vibration, vol. 196, pp. 401-406, 1996.
[18]L. Meirovitch, Analytical Methods in Vibrations. New York: Macmillan, 1967.
[19]S. C. Chapra and R. P. Canale, Numerical Methods for Engineers. New York: McGraw-Hill, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top