第七章 參考文獻
陳又嘉 (2002). 灣地區反芻動物瘤胃真菌分離培養、鑑定與纖維分解酵素基因選殖之研究, 台灣大學農業化學所博士論文.楊价民 (1997). 瘤胃生態系統與反芻動物對養分的利用.
蔡昇達 (2006). 台灣黃牛瘤胃真菌分離鑑定與聚木醣酶基因選殖之研究, 屏東科技大學生物科技研究所碩士論文.Akin, D. and R. Benner (1988). Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Applied and Environmental Microbiology 54(5): 1117-1125.
Béguin, P., N. R. Gilkes, D. G. Kilburn, R. C. Miller, G. P. O'neill and R. A. J. Warren (1987). Cloning of cellulase genes. Critical Reviews in Biotechnology 6(2): 129-162.
Bata, J. and C. Gerbi (1997). Glycoside hydrolase production by an anaerobic rumen fungus Caecomyces communis. Research in Microbiology 148(3): 263-269.
Beg, Q., M. Kapoor, L. Mahajan and G. Hoondal (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology 56(3): 326-338.
Bhat, M. and S. Bhat (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances 15(3-4): 583-620.
Bootten, T., K. Joblin, B. McArdle and P. Harris (2011). Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co‐culture. Journal of Applied Microbiology 111(5): 1086-1096.
Borneman, W., D. Akin and L. Ljungdahl (1989). Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Applied and Environmental Microbiology 55(5): 1066-1073.
Boudet, A., C. Lapierre and J. Grima-Pettenati (1995). Tansley review No. 80. Biochemistry and molecular biology of lignification. New Phytologist: 203-236.
Breton, A., A. Bernalier, M. Dusser, G. Fonty, B. Gaillard-Martinie and J. Guillot (1990). Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus. FEMS microbiology letters 70(2): 177-182.
Breton, A., M. Dusser, B. Gaillard-Martine, J. Guillot, L. Millet and G. Prensier (1991). Piromyces rhizinflata nov. sp., a strictly anaerobic fungus from faeces of the Saharian ass: a morphological, metabolic and ultrastructural study. FEMS Microbiology Letters 82(1): 1-8.
Brookman, J., G. Mennim, A. Trinci, M. Theodorou and D. Tuckwell (2000). Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. Microbiology 146(2): 393-403.
Brzostek, E. R. and A. C. Finzi (2011). Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils. Ecology 92(4): 892-902.
Bungay, H. R. (2004). Confessions of a bioenergy advocate. Trends in Biotechnology 22(2): 67-71.
Chen, H., X. L. Li, D. L. Blum and L. G. Ljungdahl (1998). Two genes of the anaerobic fungus Orpinomyces sp. strain PC‐2 encoding cellulases with endoglucanase activities may have arisen by gene duplication. FEMS Microbiology Letters 159(1): 63-68.
Chen, X., N. Ishida, N. Todaka, R. Nakamura, J. Maruyama, H. Takahashi and K. Kitamoto (2010). Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Applied and Environmental Microbiology 76(8): 2556-2561.
Chen, Y. C., S. D. Tsai, H. L. Cheng, C. Y. Chien, C. Y. Hu and T. Y. Cheng (2007). Caecomyces sympodialis sp. nov., a new rumen fungus isolated from Bos indicus. Mycologia 99(1): 125-130.
Cosgrove, D. J. (1998). Cell wall loosening by expansins. Plant Physiology 118(2): 333-339.
Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins. Nature 407(6802): 321-326.
Dashtban, M., H. Schraft and W. Qin (2009). Fungal bioconversion of lignocellulosic residues; opportunities &; perspectives. International Journal of Biological Sciences 5(6): 578.
Denman, S., G. P. Xue and B. Patel (1996). Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Applied and Environmental Microbiology 62(6): 1889-1896.
Dijkerman, R., J. Ledeboer, H. J. M. Op den Camp, R. A. Prins and C. van der Drift (1997). The anaerobic fungus Neocallimastix sp. strain L2: Growth and production of (Hemi) cellulolytic enzymes on a range of carbohydrate substrates. Current Microbiology 34(2): 91-96.
Fischer, G. and L. Schrattenholzer (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy 20(3): 151-159.
Galbe, M., M. Gorwa-Grauslund and G. Zacchi (2006). Bio-ethanol-the fuel of tomorrow from the residues of today. Trends in Biotechnology 24(12): 549-556.
Girio, F., C. Fonseca, F. Carvalheiro, L. Duarte, S. Marques and R. Bogel-Lukasik (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology 101(13): 4775-4800.
Gold, J. J., I. Brent Heath and T. Bauchop (1988). Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae. Biosystems 21(3): 403-415.
Gordon, G. and M. W. Phillips (1989). Degradation and utilization of cellulose and straw by three different anaerobic fungi from the ovine rumen. Applied and Environmental Microbiology 55(7): 1703-1710.
Griffith, G. W., E. Ozkose, M. K. Theodorou and D. R. Davies (2009). Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecology 2(2): 87-97.
Harhangi, H. R., A. S. Akhmanova, R. Emmens, C. van der Drift, W. T. A. M. de Laat, J. P. van Dijken, M. S. M. Jetten, J. T. Pronk and H. J. M. Op den Camp (2003). Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Archives of Microbiology 180(2): 134-141.
Hill, J., E. Nelson, D. Tilman, S. Polasky and D. Tiffany (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences 103(30): 11206-11210.
Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady and T. D. Foust (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813): 804-807.
Ho, Y. and D. Barr (1995). Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia: 655-677.
Ho, Y., D. Barr, N. Abdullah and S. Jalaludin (1993). Anaeromyces, an earlier name for Ruminomyces. Mycotaxon 47: 283.
Howard, R., E. Abotsi, E. Jansen van Rensburg and S. Howard (2004). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology 2(12): 602-619.
Hu, J., H. Qin, F. P. Gao and T. A. Cross (2011). A systematic assessment of mature MBP in membrane protein production: Overexpression, membrane targeting and purification. Protein Expression and Purification 80(1): 34-40.
Jäger, G., M. Girfoglio, F. Dollo, R. Rinaldi, H. Bongard, U. Commandeur, R. Fischer, A. C. Spiess and J. Büchs (2011). How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnology for Biofuels 4(1): 33.
Kapust, R. B. and D. S. Waugh (1999). Escherichia coli maltose‐binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Science 8(8): 1668-1674.
Kim, S. and B. E. Dale (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 26(4): 361-375.
Krishnamoorthy, U., C. Sniffen, M. Stern and P. Van Soest (1983). Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen-undegraded nitrogen content of feedstuffs. British Journal of Nutrition 50(3): 555-568.
Kumar, P., D. M. Barrett, M. J. Delwiche and P. Stroeve (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial &; Engineering Chemistry Research 48(8): 3713-3729.
Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56(1): 1-24.
Leschine, S. B. (1995). Cellulose degradation in anaerobic environments. Annual Reviews in Microbiology 49(1): 399-426.
Liu, J., P. Srinivasan, D. N. Pham and S. Rozovsky (2012). Expression and purification of the membrane enzyme selenoprotein K. Protein Expression and Purification 86(1): 27-34.
Lowe, S. E., G. G. Griffith, A. Milne, M. K. Theodorou and A. P. J. Trinci (1987). The life cycle and growth kinetics of an anaerobic rumen fungus. Journal of General Microbiology 133(7): 1815-1827.
Lowe, S. E., M. Theodorou and A. Trinci (1987). Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development. Applied and Environmental Microbiology 53(6): 1210-1215.
Lu, Y., Y. H. P. Zhang and L. R. Lynd (2006). Enzyme–microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proceedings of the National Academy of Sciences 103(44): 16165-16169.
Lynd, L. R., P. J. Weimer, W. H. Van Zyl and I. S. Pretorius (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66(3): 506-577.
Lynd, L. R., C. E. Wyman and T. U. Gerngross (1999). Biocommodity engineering. Biotechnology Progress 15(5): 777-793.
Marvin-Sikkema, F., A. Richardson, C. Stewart, J. Gottschal and R. Prins (1990). Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Applied and Environmental Microbiology 56(12): 3793-3797.
Miettinen-Oinonen, A., M. Paloheimo, R. Lantto and P. Suominen (2005). Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. Journal of Biotechnology 116(3): 305-317.
Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Lee, M. Holtzapple and M. Ladisch (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96(6): 673-686.
Mountfort, D. O. and C. G. Orpin (1994). Anaerobic Fungi: Biology, ecology, and function, Marcel Dekker.
Nieves, R., C. Ehrman, W. Adney, R. Elander and M. Himmel (1998). Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World Journal of Microbiology and Biotechnology 14(2): 301-304.
Orpin, C. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Journal of General Microbiology 91(2): 249-262.
Orpin, C. (1976). Studies on the rumen flagellate Sphaeromonas communis. Journal of General Microbiology 94(2): 270-280.
Ozkose, E., B. J. Thomas, D. R. Davies, G. W. Griffith and M. K. Theodorou (2001). Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Canadian Journal of Botany 79(6): 666-673.
Polizeli, M., A. Rizzatti, R. Monti, H. Terenzi, J. Jorge and D. Amorim (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology 67(5): 577-591.
Quan, L. H., J. W. Min, S. Sathiyamoorthy, D. U. Yang, Y. J. Kim and D. C. Yang (2012). Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase. Biotechnology Letters: 1-5.
Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances 27(2): 185-194.
Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology &; Biotechnology 30(5): 279-291.
Saitou, N. and M. Nei (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.
Saloheimo, M., M. Paloheimo, S. Hakola, J. Pere, B. Swanson, E. Nyyssönen, A. Bhatia, M. Ward and M. Penttilä (2002). Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. European Journal of Biochemistry 269(17): 4202-4211.
Sambuughin, N., W. Swietnicki, S. Techtmann, V. Matrosova, T. Wallace, L. Goldfarb and E. Maynard (2012). KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. Biochemical and Biophysical Research Communications 421(4): 743-9.
Schiffer, H. W. (2008). WEC energy policy scenarios to 2050. Energy policy 36(7): 2464-2470.
Schilling, J. S., J. P. Tewalt and S. M. Duncan (2009). Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Applied Microbiology and Biotechnology 84(3): 465-475.
Stewart, C. (1997). The rumen microbial ecosystem (pp. 140-184), Springer.
Suto, M. and F. Tomita (2001). Induction and catabolite repression mechanisms of cellulase in fungi. Journal of Bioscience and Bioengineering 92(4): 305-311.
Taiz, L. and E. Zeiger (1998). Cell walls: structure, biogenesis, and expansion (pp. 415-421), Sinauer Associates (Sunderland, Mass.)
Tengborg, C., M. Galbe and G. Zacchi (2008). Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam‐pretreated softwood. Biotechnology Progress 17(1): 110-117.
Theodorou, M. K., G. Mennim, D. R. Davies, W. Y. Zhu, A. P. J. Trinci and J. L. Brookman (1996). Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proceedings of the Nutrition Society 55(03): 913-926.
Trinci, A. P. J., D. R. Davies, K. Gull, M. I. Lawrence, B. Bonde Nielsen, A. Rickers and M. K. Theodorou (1994). Anaerobic fungi in herbivorous animals. Mycological Research 98(2): 129-152.
van Maris, A. J. A., D. A. Abbott, E. Bellissimi, J. van den Brink, M. Kuyper, M. A. H. Luttik, H. W. Wisselink, W. A. Scheffers, J. P. van Dijken and J. T. Pronk (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90(4): 391-418.
Van Soest, P., J. Robertson and B. Lewis (1991). Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Journal of Dairy Science 74(10): 3583-3597.
Varga, G. A. and E. S. Kolver (1997). Microbial and animal limitations to fiber digestion and utilization. The Journal of Nutrition 127(5): 819S-823S.
Wang, A., L. Gao, N. Ren, J. Xu and C. Liu (2009). Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Biotechnology Letters 31(9): 1321-1326.
Wang, Y., R. Tang, J. Tao, G. Gao, X. Wang, Y. Mu and Y. Feng (2011). Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin. Applied Microbiology and Biotechnology 91(5): 1353-1363.
Wood, T. M. (1985). Properties of cellulolytic enzyme systems. Biochemical Society Transactions 13: 407-410.
Wu, D., J. Chu, Y. Y. Hao, Y. H. Wang, Y. P. Zhuang and S. L. Zhang (2012). Incomplete protein disulphide bond conformation and decreased protein expression result from high cell growth during heterologous protein expression in Pichia pastoris. Journal of Biotechnology 157(1): 107-112.
Wubah, D., M. Fuller and D. Akin (1991). Studies on Caecomyces communis: morphology and development. Mycologia: 303-310.
Xiao, B., X. Sun and R. C. Sun (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability 74(2): 307-319.