跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 04:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾丞正
研究生(外文):Cheng-Cheng Tseng
論文名稱:瘤胃真菌菌種的鑑定與木質纖維分解能力的評估
論文名稱(外文):Identification and estimation of fibrolytic ability of the rumen fungi
指導教授:陳又嘉陳又嘉引用關係
指導教授(外文):Yo-Chia Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:88
中文關鍵詞:co-culturedifferent carbon sourcefibrinolytic degradationphylogenetic analycesrumen fungiswollenin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
瘤胃真菌群只占瘤胃微生物族群8%,卻被認為在瘤胃纖維的分解中扮演著重要的角色,主要是因為瘤胃真菌的菌絲可以穿透細胞壁,分解纖維中較堅固頑強的結構。本研究從黃牛瘤胃中分離出瘤胃真菌A10、Á21及水牛瘤胃中分離出瘤胃真菌M08,並研究其分解纖維的能力。在形態鑑定方面,A10具有單鞭毛動孢子、球狀菌體及多中心體,A21具多鞭毛動孢子、絲狀假根及單中心體,M08的單鞭毛動孢子、絲狀假根、及單中心體,此外,再經由核糖體序列親緣關係分析,在形態與親緣關係的雙重結果下,認為A10、A21、M08分別屬於Cyllamyces aberensis、Neocallimastix frontalis、Piromyces 新種的瘤胃真菌。為評估纖維分解能力,將瘤胃真菌培養在粉碎稻草為碳源的培養基,根據養菌前後的稻草,測量NDF(neutral detergent fiber)/ADF(acid detergent fiber)/ADL(acid detergent lignin)變化,以得知瘤胃真菌對稻草中纖維素與半纖維素水解能力,結果顯示A21具有最好的纖維素分解能力,A21與M08對半纖維素的分解則一樣強勢,而A21與M08共培養可以明顯增加纖維素的分解能力,A10與A21共培養則可以明顯增加半纖維素的分解。為了知道A10、A21、M08不同碳原誘導下對不同受質的分解能力,分別以稻草, avicel, CMC作為碳源誘導瘤胃真菌生長後的酵素液,分解β-glucan, avicel, CMC, xylan不同受質的情況,結果顯示利用不同的碳源誘導,確實可以改變瘤胃真菌分泌的酵素活性。為了確定瘤胃真菌是否具有Swollenin蛋白活性,我們以瘤胃真菌Neocallimastix patriciarum W5中所預測Swollenin蛋白的基因設計引子,利用PCR擴增出A21中的Swollenin基因片段,將Swollenin基因片段克隆至pMAL質體再轉殖到表現菌株E. coli-gami表現Swollenin蛋白,Swollenin蛋白純化前後分別與商業酵素Celluclast 1.5L共同反應分解avicel,結果顯示不管純化前後的Swollein蛋白,都沒有增加Celluclast 1.5L分解avicel的能力。
目錄
內容
中文摘要 I
Abstract III
謝誌 V
目錄 VI
圖目錄 X
表目錄 XIII
第一章 前言 1
第二章 文獻回顧 2
2.1 能源的危機與替代能源 2
2.2 生質能源 2
2.2.1 木質纖維的組成 2
2.2.2生物質轉換為生質能源的方法 5
2.2.3木質纖維的水解 6
2.2.4瘤胃與瘤胃微生物 9
2.3 瘤胃真菌 10
2.3.1 瘤胃真菌的生活史 11
2.3.2 瘤胃真菌的鑑別 12
2.3.3瘤胃真菌分解木質纖維素特性 19
2.3.3.1瘤胃真菌分解木質纖維素的評估 20
2.4 瘤胃真菌分解木質纖維的酵素 22
2.5 纖維蓬鬆蛋白 (Swollenin)的發現與其對木質纖維的物理性破壞 23
2.6研究目的 25
第三章 材料與方法 26
3.1 實驗架構 26
3.2 菌株與培養 27
3.2.1 瘤胃真菌分離株來源 27
3.2.2 基礎培養基的置備與培養 27
3.2.3種菌液製備 27
3.3 瘤胃真菌的形態鑑定 27
3.3.1染色與光學顯微鏡的觀察 27
3.3.2螢光染色與光學顯微鏡的觀察 28
3.4 瘤胃真菌的親緣關係 28
3.4.1 Ribosomal DNA的PCR擴增 29
3.4.2 親緣關係的比對 31
3.5 瘤胃真菌在不同碳源下對不同受質的分解能力 31
3.5.1 不同碳源培養基的置備與培養 32
3.5.2 還原醣標準曲線的置備 32
3.5.3在不同受質中反應後的還原醣測定 32
3.6瘤胃真菌分解稻草纖維素與半纖維素的能力 33
3.6.1 纖維素、半纖維素含量的測定 33
3.7瘤胃真菌膨鬆蛋白的基因轉殖、表現、與活性 34
3.7.1瘤胃真菌膨鬆蛋白的基因轉殖 34
3.7.2 瘤胃真菌膨鬆蛋白的誘導與表現 37
3.7.3. 瘤胃真菌膨鬆蛋白的活性測試 40
3.7.4 Swollenin蛋白的純化 42
第四章 結果 44
4.1 瘤胃真菌形態的鑑定與菌親緣關係的分析 44
4.1.1 A10分離株形態特徵觀察結果與親緣關係的分析 47
4.1.2 A21分離株形態特徵觀察結果與親緣關係的分析 51
4.1.3 M08分離株形態特徵觀察結果與親緣關係的分析 54
4.2瘤胃真菌在不同碳源下對不同受質的分解能力 59
4.3瘤胃真菌分解稻草纖維素與半纖維素的能力 61
4.4瘤胃真菌Swollenin蛋白的轉殖與表現 63
4.4.1利用PCR擴增尋找Swollenin基因序列 63
4.4.2Swollenin基因轉型株的確認 64
4.4.3 Swollenin蛋白的最佳誘導條件 65
4.4.4Swollenin粗酵素液的活性測試 66
4.4.5 Swollenin蛋白的純化 67
第五章 討論 72
第六章 結論 75
第七章 參考文獻 76
附註 87
作者簡介 88

第七章 參考文獻
陳又嘉 (2002). 灣地區反芻動物瘤胃真菌分離培養、鑑定與纖維分解酵素基因選殖之研究, 台灣大學農業化學所博士論文.
楊价民 (1997). 瘤胃生態系統與反芻動物對養分的利用.
蔡昇達 (2006). 台灣黃牛瘤胃真菌分離鑑定與聚木醣酶基因選殖之研究, 屏東科技大學生物科技研究所碩士論文.
Akin, D. and R. Benner (1988). Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Applied and Environmental Microbiology 54(5): 1117-1125.
Béguin, P., N. R. Gilkes, D. G. Kilburn, R. C. Miller, G. P. O'neill and R. A. J. Warren (1987). Cloning of cellulase genes. Critical Reviews in Biotechnology 6(2): 129-162.
Bata, J. and C. Gerbi (1997). Glycoside hydrolase production by an anaerobic rumen fungus Caecomyces communis. Research in Microbiology 148(3): 263-269.
Beg, Q., M. Kapoor, L. Mahajan and G. Hoondal (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology 56(3): 326-338.
Bhat, M. and S. Bhat (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances 15(3-4): 583-620.
Bootten, T., K. Joblin, B. McArdle and P. Harris (2011). Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co‐culture. Journal of Applied Microbiology 111(5): 1086-1096.
Borneman, W., D. Akin and L. Ljungdahl (1989). Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Applied and Environmental Microbiology 55(5): 1066-1073.
Boudet, A., C. Lapierre and J. Grima-Pettenati (1995). Tansley review No. 80. Biochemistry and molecular biology of lignification. New Phytologist: 203-236.
Breton, A., A. Bernalier, M. Dusser, G. Fonty, B. Gaillard-Martinie and J. Guillot (1990). Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus. FEMS microbiology letters 70(2): 177-182.
Breton, A., M. Dusser, B. Gaillard-Martine, J. Guillot, L. Millet and G. Prensier (1991). Piromyces rhizinflata nov. sp., a strictly anaerobic fungus from faeces of the Saharian ass: a morphological, metabolic and ultrastructural study. FEMS Microbiology Letters 82(1): 1-8.
Brookman, J., G. Mennim, A. Trinci, M. Theodorou and D. Tuckwell (2000). Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. Microbiology 146(2): 393-403.
Brzostek, E. R. and A. C. Finzi (2011). Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils. Ecology 92(4): 892-902.
Bungay, H. R. (2004). Confessions of a bioenergy advocate. Trends in Biotechnology 22(2): 67-71.
Chen, H., X. L. Li, D. L. Blum and L. G. Ljungdahl (1998). Two genes of the anaerobic fungus Orpinomyces sp. strain PC‐2 encoding cellulases with endoglucanase activities may have arisen by gene duplication. FEMS Microbiology Letters 159(1): 63-68.
Chen, X., N. Ishida, N. Todaka, R. Nakamura, J. Maruyama, H. Takahashi and K. Kitamoto (2010). Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Applied and Environmental Microbiology 76(8): 2556-2561.
Chen, Y. C., S. D. Tsai, H. L. Cheng, C. Y. Chien, C. Y. Hu and T. Y. Cheng (2007). Caecomyces sympodialis sp. nov., a new rumen fungus isolated from Bos indicus. Mycologia 99(1): 125-130.
Cosgrove, D. J. (1998). Cell wall loosening by expansins. Plant Physiology 118(2): 333-339.
Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins. Nature 407(6802): 321-326.
Dashtban, M., H. Schraft and W. Qin (2009). Fungal bioconversion of lignocellulosic residues; opportunities &; perspectives. International Journal of Biological Sciences 5(6): 578.
Denman, S., G. P. Xue and B. Patel (1996). Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Applied and Environmental Microbiology 62(6): 1889-1896.
Dijkerman, R., J. Ledeboer, H. J. M. Op den Camp, R. A. Prins and C. van der Drift (1997). The anaerobic fungus Neocallimastix sp. strain L2: Growth and production of (Hemi) cellulolytic enzymes on a range of carbohydrate substrates. Current Microbiology 34(2): 91-96.
Fischer, G. and L. Schrattenholzer (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy 20(3): 151-159.
Galbe, M., M. Gorwa-Grauslund and G. Zacchi (2006). Bio-ethanol-the fuel of tomorrow from the residues of today. Trends in Biotechnology 24(12): 549-556.
Girio, F., C. Fonseca, F. Carvalheiro, L. Duarte, S. Marques and R. Bogel-Lukasik (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology 101(13): 4775-4800.
Gold, J. J., I. Brent Heath and T. Bauchop (1988). Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae. Biosystems 21(3): 403-415.
Gordon, G. and M. W. Phillips (1989). Degradation and utilization of cellulose and straw by three different anaerobic fungi from the ovine rumen. Applied and Environmental Microbiology 55(7): 1703-1710.
Griffith, G. W., E. Ozkose, M. K. Theodorou and D. R. Davies (2009). Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecology 2(2): 87-97.
Harhangi, H. R., A. S. Akhmanova, R. Emmens, C. van der Drift, W. T. A. M. de Laat, J. P. van Dijken, M. S. M. Jetten, J. T. Pronk and H. J. M. Op den Camp (2003). Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Archives of Microbiology 180(2): 134-141.
Hill, J., E. Nelson, D. Tilman, S. Polasky and D. Tiffany (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences 103(30): 11206-11210.
Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady and T. D. Foust (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813): 804-807.
Ho, Y. and D. Barr (1995). Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia: 655-677.
Ho, Y., D. Barr, N. Abdullah and S. Jalaludin (1993). Anaeromyces, an earlier name for Ruminomyces. Mycotaxon 47: 283.
Howard, R., E. Abotsi, E. Jansen van Rensburg and S. Howard (2004). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology 2(12): 602-619.
Hu, J., H. Qin, F. P. Gao and T. A. Cross (2011). A systematic assessment of mature MBP in membrane protein production: Overexpression, membrane targeting and purification. Protein Expression and Purification 80(1): 34-40.
Jäger, G., M. Girfoglio, F. Dollo, R. Rinaldi, H. Bongard, U. Commandeur, R. Fischer, A. C. Spiess and J. Büchs (2011). How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnology for Biofuels 4(1): 33.
Kapust, R. B. and D. S. Waugh (1999). Escherichia coli maltose‐binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Science 8(8): 1668-1674.
Kim, S. and B. E. Dale (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 26(4): 361-375.
Krishnamoorthy, U., C. Sniffen, M. Stern and P. Van Soest (1983). Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen-undegraded nitrogen content of feedstuffs. British Journal of Nutrition 50(3): 555-568.
Kumar, P., D. M. Barrett, M. J. Delwiche and P. Stroeve (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial &; Engineering Chemistry Research 48(8): 3713-3729.
Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56(1): 1-24.
Leschine, S. B. (1995). Cellulose degradation in anaerobic environments. Annual Reviews in Microbiology 49(1): 399-426.
Liu, J., P. Srinivasan, D. N. Pham and S. Rozovsky (2012). Expression and purification of the membrane enzyme selenoprotein K. Protein Expression and Purification 86(1): 27-34.
Lowe, S. E., G. G. Griffith, A. Milne, M. K. Theodorou and A. P. J. Trinci (1987). The life cycle and growth kinetics of an anaerobic rumen fungus. Journal of General Microbiology 133(7): 1815-1827.
Lowe, S. E., M. Theodorou and A. Trinci (1987). Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development. Applied and Environmental Microbiology 53(6): 1210-1215.
Lu, Y., Y. H. P. Zhang and L. R. Lynd (2006). Enzyme–microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proceedings of the National Academy of Sciences 103(44): 16165-16169.
Lynd, L. R., P. J. Weimer, W. H. Van Zyl and I. S. Pretorius (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66(3): 506-577.
Lynd, L. R., C. E. Wyman and T. U. Gerngross (1999). Biocommodity engineering. Biotechnology Progress 15(5): 777-793.
Marvin-Sikkema, F., A. Richardson, C. Stewart, J. Gottschal and R. Prins (1990). Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Applied and Environmental Microbiology 56(12): 3793-3797.
Miettinen-Oinonen, A., M. Paloheimo, R. Lantto and P. Suominen (2005). Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. Journal of Biotechnology 116(3): 305-317.
Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Lee, M. Holtzapple and M. Ladisch (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96(6): 673-686.
Mountfort, D. O. and C. G. Orpin (1994). Anaerobic Fungi: Biology, ecology, and function, Marcel Dekker.
Nieves, R., C. Ehrman, W. Adney, R. Elander and M. Himmel (1998). Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World Journal of Microbiology and Biotechnology 14(2): 301-304.
Orpin, C. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Journal of General Microbiology 91(2): 249-262.
Orpin, C. (1976). Studies on the rumen flagellate Sphaeromonas communis. Journal of General Microbiology 94(2): 270-280.
Ozkose, E., B. J. Thomas, D. R. Davies, G. W. Griffith and M. K. Theodorou (2001). Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Canadian Journal of Botany 79(6): 666-673.
Polizeli, M., A. Rizzatti, R. Monti, H. Terenzi, J. Jorge and D. Amorim (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology 67(5): 577-591.
Quan, L. H., J. W. Min, S. Sathiyamoorthy, D. U. Yang, Y. J. Kim and D. C. Yang (2012). Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase. Biotechnology Letters: 1-5.
Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances 27(2): 185-194.
Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology &; Biotechnology 30(5): 279-291.
Saitou, N. and M. Nei (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.
Saloheimo, M., M. Paloheimo, S. Hakola, J. Pere, B. Swanson, E. Nyyssönen, A. Bhatia, M. Ward and M. Penttilä (2002). Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. European Journal of Biochemistry 269(17): 4202-4211.
Sambuughin, N., W. Swietnicki, S. Techtmann, V. Matrosova, T. Wallace, L. Goldfarb and E. Maynard (2012). KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. Biochemical and Biophysical Research Communications 421(4): 743-9.
Schiffer, H. W. (2008). WEC energy policy scenarios to 2050. Energy policy 36(7): 2464-2470.
Schilling, J. S., J. P. Tewalt and S. M. Duncan (2009). Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Applied Microbiology and Biotechnology 84(3): 465-475.
Stewart, C. (1997). The rumen microbial ecosystem (pp. 140-184), Springer.
Suto, M. and F. Tomita (2001). Induction and catabolite repression mechanisms of cellulase in fungi. Journal of Bioscience and Bioengineering 92(4): 305-311.
Taiz, L. and E. Zeiger (1998). Cell walls: structure, biogenesis, and expansion (pp. 415-421), Sinauer Associates (Sunderland, Mass.)
Tengborg, C., M. Galbe and G. Zacchi (2008). Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam‐pretreated softwood. Biotechnology Progress 17(1): 110-117.
Theodorou, M. K., G. Mennim, D. R. Davies, W. Y. Zhu, A. P. J. Trinci and J. L. Brookman (1996). Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proceedings of the Nutrition Society 55(03): 913-926.
Trinci, A. P. J., D. R. Davies, K. Gull, M. I. Lawrence, B. Bonde Nielsen, A. Rickers and M. K. Theodorou (1994). Anaerobic fungi in herbivorous animals. Mycological Research 98(2): 129-152.
van Maris, A. J. A., D. A. Abbott, E. Bellissimi, J. van den Brink, M. Kuyper, M. A. H. Luttik, H. W. Wisselink, W. A. Scheffers, J. P. van Dijken and J. T. Pronk (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90(4): 391-418.
Van Soest, P., J. Robertson and B. Lewis (1991). Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Journal of Dairy Science 74(10): 3583-3597.
Varga, G. A. and E. S. Kolver (1997). Microbial and animal limitations to fiber digestion and utilization. The Journal of Nutrition 127(5): 819S-823S.
Wang, A., L. Gao, N. Ren, J. Xu and C. Liu (2009). Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Biotechnology Letters 31(9): 1321-1326.
Wang, Y., R. Tang, J. Tao, G. Gao, X. Wang, Y. Mu and Y. Feng (2011). Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin. Applied Microbiology and Biotechnology 91(5): 1353-1363.
Wood, T. M. (1985). Properties of cellulolytic enzyme systems. Biochemical Society Transactions 13: 407-410.
Wu, D., J. Chu, Y. Y. Hao, Y. H. Wang, Y. P. Zhuang and S. L. Zhang (2012). Incomplete protein disulphide bond conformation and decreased protein expression result from high cell growth during heterologous protein expression in Pichia pastoris. Journal of Biotechnology 157(1): 107-112.
Wubah, D., M. Fuller and D. Akin (1991). Studies on Caecomyces communis: morphology and development. Mycologia: 303-310.
Xiao, B., X. Sun and R. C. Sun (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability 74(2): 307-319.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top