|
1.Deanin, R. D., Foamed Plastics. American Chemical Society: p 469-494 (1985) 2.Shin, C.; Chase, G. G., "Nanofibers from recycle waste expanded polystyrene using natural solvent," Polymer Bulletin, Vol. 55, pp. 209-215 (2005) 3.Snyder, R. C., Polyurethane Foam in Furnishings Markets. AMERICAN CHEMICAL SOCIETY: p 25-32 (1981) 4.Francis, R., Recycling of polymers: methods, characterization and applications. John Wiley & Sons: (2016) 5.Verdejo, R.; Mills, N. J., "Heel–shoe interactions and the durability of EVA foam running-shoe midsoles," Journal of Biomechanics, Vol. 37, pp. 1379-1386 (2004) 6.Paiva Junior, C. Z.; Peruchi, R. S.; Fim, F. d. C.; Soares, W. d. O. S.; da Silva, L. B., "Performance of ethylene vinyl acetate waste (EVA-w) when incorporated into expanded EVA foam for footwear," Journal of Cleaner Production, Vol. 317, pp. 128352 (2021) 7.Li, N.; Fan, D.; Shi, Z.; Xie, Y.; Li, M.; Tang, T., "Effect of ion-crosslinking on supercritical CO2 foaming behavior and foam properties of EVA/ZnO composites," Composites Communications, Vol. 25, pp. 100760 (2021) 8.Briand, A.; Leybros, A.; Doucet, O.; Vite, M.; Gasmi, A.; Ruiz, J. C.; Lamadie, F.; Grandjean, A., "Deformation-induced delamination of photovoltaic modules by foaming ethylene-vinyl acetate with supercritical CO2," Journal of CO2 Utilization, Vol. 59, pp. 101933 (2022) 9.Isogai, A.; Bergström, L., "Preparation of cellulose nanofibers using green and sustainable chemistry," Current Opinion in Green and Sustainable Chemistry, Vol. 12, pp. 15-21 (2018) 10.Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D., "Industrial upscaling of electrospinning and applications of polymer nanofibers: a review," Macromolecular materials and engineering, Vol. 298, pp. 504-520 (2013) 11.Sinha, M. K.; Das, B. R.; Bharathi, D.; Prasad, N. E.; Kishore, B.; Raj, P.; Kumar, K., "Electrospun Nanofibrous Materials for Biomedical Textiles," Materials Today: Proceedings, Vol. 21, pp. 1818-1826 (2020) 12.Hamza, R.; Zhang, X. D.; Macosko, C. W.; Stevens, R.; Listemann, M., Imaging Open-Cell Polyurethane Foam via Confocal Microscopy. American Chemical Society: p 165-177 (1997) 13.Zhang, X.; Kim, Y.; Kim, D.; Liu, M.; Erramuspe, I. B. V.; Kaya, G. B.; Wang, X.; Kim, T.; Via, B. K.; Cho, H., "Shape-Stabilized Phase Change Material by a Synthetic/Natural Hybrid Composite Foam with Cell-Wall Pores," ACS Applied Energy Materials, Vol. 4, pp. 416-424 (2021) 14.Kuranchie, C.; Yaya, A.; Bensah, Y. D., "The effect of natural fibre reinforcement on polyurethane composite foams – A review," Scientific African, Vol. 11, pp. e00722 (2021) 15.Tang, M.; Wang, T.-C., "Foaming of poly(vinylidene fluoride-co-hexafluoropropylene) using supercritical carbon dioxide," Journal of the Taiwan Institute of Chemical Engineers, Vol. 73, pp. 146-153 (2017) 16.Liu, Y.; Ye, L.; Shu, Y.; Zhao, X., "In situ preparation of intrinsic flame retardant urea formaldehyde/aramid fiber composite foam: Structure, property and reinforcing mechanism," Composites Part A: Applied Science and Manufacturing, Vol. 115, pp. 274-282 (2018) 17.Lee, J. W. S.; Wang, J.; Yoon, J. D.; Park, C. B., "Strategies to Achieve a Uniform Cell Structure with a High Void Fraction in Advanced Structural Foam Molding," Industrial & Engineering Chemistry Research, Vol. 47, pp. 9457-9464 (2008) 18.Coste, G.; Negrell, C.; Caillol, S., "From gas release to foam synthesis, the second breath of blowing agents," European Polymer Journal, Vol. 140, pp. 110029 (2020) 19.Tsui, A.; Frank, C. W., "Comparison of anhydrous and monohydrated forms of orotic acid as crystal nucleating agents for poly(3-hydroxybutyrate-co-3-hydroxyvalerate)," Polymer, Vol. 55, pp. 6364-6372 (2014) 20.Wypych, A.; Wypych, G., 3 - Nucleating Agents. ChemTec Publishing: p 17-376 (2021) 21.Choi, S.-S.; Chung, Y. Y., "Considering factors for analysis of crosslink density of poly(ethylene-co-vinyl acetate) compounds," Polymer Testing, Vol. 66, pp. 312-318 (2018) 22.Ramesh, M.; Palanikumar, K.; Reddy, K. H., "Plant fibre based bio-composites: Sustainable and renewable green materials," Renewable and Sustainable Energy Reviews, Vol. 79, pp. 558-584 (2017) 23.Sadalage, P. S.; Pawar, K. D., "Production of microcrystalline cellulose and bacterial nanocellulose through biological valorization of lignocellulosic biomass wastes," Journal of Cleaner Production, Vol. 327, pp. 129462 (2021) 24.Siqueira, G.; Oksman, K.; Tadokoro, S. K.; Mathew, A. P., "Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials," Composites Science and Technology, Vol. 123, pp. 49-56 (2016) 25.Zhou, X.; Sethi, J.; Geng, S.; Berglund, L.; Frisk, N.; Aitomäki, Y.; Sain, M. M.; Oksman, K., "Dispersion and reinforcing effect of carrot nanofibers on biopolyurethane foams," Materials & Design, Vol. 110, pp. 526-531 (2016) 26.Ramdhonee, A.; Jeetah, P., "Production of wrapping paper from banana fibres," Journal of Environmental Chemical Engineering, Vol. 5, pp. 4298-4306 (2017) 27.Tan, K.; Heo, S.; Foo, M.; Chew, I. M.; Yoo, C., "An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability," Science of The Total Environment, Vol. 650, pp. 1309-1326 (2019) 28.Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P. T.; Ikkala, O.; Lindström, T., "Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels," Biomacromolecules, Vol. 8, pp. 1934-1941 (2007) 29.Isogai, A.; Saito, T.; Fukuzumi, H., "TEMPO-oxidized cellulose nanofibers," nanoscale, Vol. 3, pp. 71-85 (2011) 30.Isogai, A.; Hänninen, T.; Fujisawa, S.; Saito, T., "Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions," Progress in Polymer Science, Vol. 86, pp. 122-148 (2018) 31.Habibi, Y.; Lucia, L. A.; Rojas, O. J., "Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications," Chemical Reviews, Vol. 110, pp. 3479-3500 (2010) 32.Campano, C.; Balea, A.; Blanco, A.; Negro, C., "Enhancement of the fermentation process and properties of bacterial cellulose: a review," Cellulose, Vol. 23, pp. 57-91 (2016) 33.Lee, H.; Mani, S., "Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method," Industrial Crops and Products, Vol. 104, pp. 179-187 (2017) 34.Zinge, C.; Kandasubramanian, B., "Nanocellulose based biodegradable polymers," European Polymer Journal, Vol. 133, pp. 109758 (2020) 35.Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S., "Commercial application of cellulose nano-composites – A review," Biotechnology Reports, Vol. 21, pp. e00316 (2019) 36.Varanasi, S.; Henzel, L.; Sharman, S.; Batchelor, W.; Garnier, G., "Producing nanofibres from carrots with a chemical-free process," Carbohydrate Polymers, Vol. 184, pp. 307-314 (2018) 37.Meng, F.; Wang, G.; Du, X.; Wang, Z.; Xu, S.; Zhang, Y., "Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue," Composites Part B: Engineering, Vol. 160, pp. 341-347 (2019) 38.Bakar, N.; Chee, C. Y.; Abdullah, L. C.; Ratnam, C. T.; Azowa, N., "Effect of methyl methacrylate grafted kenaf on mechanical properties of polyvinyl chloride/ethylene vinyl acetate composites," Composites Part A: Applied Science and Manufacturing, Vol. 63, pp. 45-50 (2014) 39.Ren, Q.; Wu, M.; Wang, L.; Zheng, W.; Hikima, Y.; Semba, T.; Ohshima, M., "Cellulose nanofiber reinforced poly (lactic acid) with enhanced rheology, crystallization and foaming ability," Carbohydrate Polymers, Vol. 286, pp. 119320 (2022) 40.Wang, L.; Ando, M.; Kubota, M.; Ishihara, S.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Sato, A.; Yano, H., "Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams," Composites Part A: Applied Science and Manufacturing, Vol. 98, pp. 166-173 (2017)
|