跳到主要內容

臺灣博碩士論文加值系統

訪客IP:216.73.216.176
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯宇謙
研究生(外文):KE,YU-CIAN
論文名稱:奈米纖維素對乙烯/醋酸乙烯酯共聚物機械強度與物理發泡的影響
論文名稱(外文):Effect of Nanocellulose on Mechanical Strength and Physical Foaming of Ethylene/Vinyl Acetate Copolymer
指導教授:石燕鳳石燕鳳引用關係劉銘銳
指導教授(外文):SHIH,YENG-FONGLIOU,MING-RUEI
口試委員:趙英捷莊宗原
口試委員(外文):CHAO,YING-CHIEHJUANG,TZONG-YUAN
口試日期:2022-07-12
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:116
中文關鍵詞:紅蘿蔔香蕉莖乙烯/醋酸乙烯酯共聚物物理發泡奈米纖維
外文關鍵詞:carrotbanana stemnanofiberethylene/vinyl acetate copolymerphysical foaming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用農業廢棄物的胡蘿蔔渣與香蕉莖纖維製備成奈米纖維素,並進一步透過懸浮聚合法來進行表面改質,並將所得奈米纖維素加入乙烯/醋酸乙烯酯共聚物製備成一系列的奈米複合材料,並測試其物理發泡的效果。TEM結果顯示,經2,2,6,6-Tetyamethylpiperidine1oxyl (TEMPO)自由基氧化法後,所得胡蘿蔔渣與香蕉莖奈米纖維的平均直徑為40.02±5.01 nm和44.17±5.73 nm,再經過懸浮聚合法接枝甲基丙烯酸甲酯之奈米紅蘿蔔渣纖維與奈米香蕉莖纖維,平均直徑分別為68.95±6.48 nm和63.55±7.35 nm,證實將纖維成功製備成奈米纖維素。而在FT-IR分析中看到經過一系列的處理,纖維裡的木質素及雜質被漸漸去除,進一步也由官能基分析顯現TEMPO自由基氧化法及懸浮聚合法接枝等反應成功。水接觸角分析結果,奈米纖維素透過懸浮聚合法的表面改質,水接觸角明顯提升,代表纖維的疏水性有所提升,可增進其與乙烯/醋酸乙烯酯共聚物的相容性。機械性質分析中顯示,添加少量奈米纖維素到乙烯/醋酸乙烯酯共聚物中即能夠達到補強效果,而添加經表面改質後奈米纖維素,補強效果優於未改質之奈米纖維素。添加紅蘿蔔渣及香蕉莖奈米纖維可使材料的拉伸強度分別提升29.84% 與24.35%。另外透過不同溫度、壓力、時間觀察其材料物理發泡的泡孔型態,結果發現在添加與未添加奈米纖維素,比重都會隨溫度上升而下降,而有添加奈米纖維素之複合材料,發泡密度會明顯大於未添加奈米纖維素之複合材料,尤其,添加胡蘿蔔渣奈米纖維有更好的效果。在機械性能補強中顯示,添加奈米纖維素有助於增強機械強度,而添加改質奈米纖維素之補強效果更佳,且添加香蕉奈米纖維素效果較胡蘿蔔渣奈米纖維佳。
In this study, nanocellulose was prepared from agricultural waste carrot residue and banana stem fiber, and the surface was further modified by suspension polymerization. The obtained nanocellulose was added to ethylene/vinyl acetate copolymer (EVA) to prepare a series of nanocomposites and tested the effect of physical foaming. TEM results showed that the average diameters of the banana stem and carrot pomace nanofibers obtained by 2,2,6,6 Tetyamethylpiperidine1oxyl (TEMPO) radical oxidation were 40.02±5.01 nm and 44.17±5.73 nm. The average diameters of the nano-carrot residue fibers and nano-banana stem fibers grafted with methyl methacrylate were 68.95±6.48 nm and 63.55±7.35 nm, respectively, which confirmed that the fibers were successfully prepared into nanocellulose. In the FT-IR analysis, it was seen that after a series of treatments, the lignin and impurities in the fibers were gradually removed, and the functional group analysis also showed that the TEMPO radical oxidation method and the suspension polymerization method were successfully reacted. The results of water contact angle analysis show that the surface modification of nanocellulose through suspension polymerization can significantly increase the water contact angle, which means that the hydrophobicity of the fiber has been improved, and then its compatibility with EVA can be improved. The mechanical property analysis shows that adding a small amount of nanocellulose to the EVA can achieve the reinforcement effect. By adding the nanocellulose after surface modification, the reinforcement effect is better than that of the unmodified nanofiber white. The addition of carrot residue and banana stem nanofibers can increase the tensile strength of the material by 29.84% and 24.35%, respectively. In addition, the cell morphology of the material's physical foaming was observed through different temperatures, pressures and times, and it was found that the specific gravity of the foam decreased with the increase of temperature regardless of whether nanocellulose was added. The cell density of the composites is obviously better than that of the pure, especially with the addition of carrot residue nanocellulose. The enhanced mechanical properties indicated that the addition of nanocellulose helped to improve the mechanical strength of EVA, and the improvement by the addition of modified nanocellulose is more significant, especially the banana nanocellulose.
目錄
摘要…………………………………………………………………………….I
Abstract…………………………………………………….…….……………III
致謝………………………………………………………………….………..IV
目錄……………………………….……………………………………………V
圖目錄………………………………………………………… ……………...IX
表目錄…………………………………………………………… …………..XV
第一章 緒論……………………………………………………………………1
1-1前言………………………………………………………………………1
1-2發泡材料之介紹…………………………………………………………3
1-3發泡種類…………………………………………………………………4
1-3.1物理法……………………………………………………….……..4
1-3.2機械法…...…………………………………………………………5
1-3.3化學法……………………………………………………….……..5
1-4添加劑……………………………………………………………………6
1-4.1發泡劑……………………………………………………………...6
1-4.2成核劑……………...………………………………………………7
1-5乙烯/醋酸乙烯酯共聚物(Ethylene vinyl acetate,EVA)…….…………9
1-6天然植物纖維之介紹…………………..………………………………12
1-6.1紅蘿蔔纖維……………………………………………..…………15
1-6.2香蕉莖纖維……………………………………………..…………16
1-7奈米纖維素……………………………………………………………...17
1-7.1奈米纖維素種類…………………………………………………..19
1-7.2奈米纖維素製備…………………………………………………..22
1-8懸浮聚合法改質纖維表面………………………………………..…….26
第二章 文獻回顧………………………………………………………..…….27
2-1紅蘿蔔奈纖維素………………………………………….……………..27
2-2香蕉莖奈米纖維素…………………………………………….………..29
2-3利用奈米纖維高機械性能和補強能力應用於複合材料……………...31
2-4表面改質紅麻對聚氯乙烯/乙烯醋酸乙烯酯複合材料的影響……..…34
2-5奈米纖維增強聚乳酸(PLA)的流變性、結晶和發泡能力………….…37
2-6奈米纖維對聚丙烯發泡泡孔形態和力學性能之影響…………...……39
2-7研究動機…………………………………………………………...……41
第三章 實驗內容………...……………………………………………………43
3-1實驗藥品………………………………………………...………………43
3-2儀器設備……………………………………………………………...…49
3-3儀器測試條件與方法…………………………………………………...51
3-4實驗概述…………………………………………………………….…..56
3-5實驗流程…………………………………………………………...……57
3-4.1紅蘿蔔渣與香蕉莖纖維預處理…………………………………..57
3-4.2改良之TEMPO自由基氧化法製備紅蘿蔔渣與香蕉莖奈米纖維
…………………………………………………..……………………….57
3-4.3懸浮聚合法改質奈米纖維……………………………..…………59
3-4.4奈米纖維製備……………………………………………………..59
3-4.5奈米紅蘿蔔渣/香蕉莖纖維與乙烯/醋酸乙烯酯共聚物複合材料
…………………………………………………………………………...60
第四章 結果與討論…………………………………………………………...62
4-1紅蘿蔔渣與香蕉莖纖維分析……………………….…………………..62
4-1.1傅立葉轉換紅外光譜儀(FT-IR)分析…………………………….62
4-1.2穿透式電子顯微鏡(TEM)分析…………………………….…….65
4-1.3 X光繞射儀……………………………………………………….68
4-1.4熱重分析儀(TGA)分析…………………………………………..71
4-1.5水接觸角(WCA)分析…………………………………………….77
4-2乙烯/醋酸乙烯酯共聚物奈米複合材料分析………………………….79
4-2.1透明度測試……………………………………………………….79
4-2.2奈米纖維素於溶劑中之分散性………………………………….81
4-2.3拉伸強度測試…………………………………………………….82
4-2.4動態機械分析儀(DMA) …………………………………………86
4-3乙烯/醋酸乙烯酯共聚物奈米複合材料發泡分析………….………….89
4-3.1材料發泡前後外觀…………………………………….………….89
4-3.2純 EVA 發泡條件分析…………………………………………..90
4-3.3 EVA複合材料發泡條件分析………………………………….…95
4.5.4發泡複合材料拉伸強度…………………………………………108
第五章 結論……………………………………………………………….....109
第六章 參考文獻………………………………….…………………………113

圖目錄
圖1-1材料發泡目前常用的種類………………………………………………2
圖1-2物理發泡過程……………………………………………………………4
圖1-3機械法發泡過程…………………………………………………………5
圖1-4化學法發泡過程…………………………………………………………6
圖1-5 EVA化學式…………………………...…………………………………9
圖1-6透過交聯密度的測量和計算EVA含量之流程圖………………...….10
圖1-7添加紅蘿蔔奈米纖維對聚氨酯發泡的分散和增強(a)泡沫外觀(b)純
BPU (c) 0.25 phr CNF…………………………………….……………15
圖1-8不同比例混合香蕉莖纖維(A) 20% (B) 40% (C) 60% (D) 80%製成香蕉
紙……………………………………………………………...………..16
圖1-9從原料纖維素纖維材料生產奈米纖維素……………………………..17
圖1-10奈米纖維素在各領域的應用…………………………………………18
圖1-11纖維素奈米纖維網絡與TEMPO氧化纖維素奈米纖維型態............19
圖1-12酸水解所得之纖維素奈米晶鬚………………………………………20
圖1-13 (a) 原稻秸(b) 原稻殼(c) 原小麥殼 (d) 原玉米芯(e)~(h) 草秸、草
殼、小麥殼及玉米芯細菌奈米纖維素之SEM圖…………………...21
圖1-14透過預處理提高纖維素含量…………………………………………22
圖1-15使用剪切力粉碎纖維流程圖…………………………………………23
圖1-16 TEMPO自由基氧化法之反應圖…………………………………….24
圖1-17改良TEMPO自由基氧化法之反應圖………………………………25
圖1-18奈米纖維素表面改質種類…………………………………………...26
圖2-1 (a)紅蘿蔔NF樣品的SEM圖(b)胡蘿蔔和漂白桉樹漿(BEK)中NF的
直徑分佈……………………………………………………………......28
圖2-2 (a)胡蘿蔔和BEK NF薄膜的透光率(b) CNF薄膜帶固定在“BioPRIA”
上,顯示半透明特性…………………………………………………..28
圖2-3不同階段處理後纖維之SEM圖……………………………………..29
圖2-4通過TEM測量獲得的CNF(a, b)和CNC(c, d)的長寬分佈直方圖...30
圖2-5不同階段纖維之XRD圖……………………………………………..30
圖2-6紅蘿蔔奈米纖維分散性之AFM及SEM圖…………………………32
圖2-7奈米複合材料之拉伸強度圖………………………………………….32
圖2-8添加不同比例奈米纖維/複合材料之DMA圖……………………….33
圖2-9添加不同比例奈米纖維/複合材料之SEM圖………………………..33
圖2-10未接枝MMA和接枝MMA紅麻之FT-IR光譜圖…………………35
圖2-11為(a)未接枝MMA和(b)接枝MMA紅麻之SEM圖……………….35
圖2-12 PVC/EVA 複合材料機械性質(a)拉伸強度(b)拉伸模數………...….36
圖2-13 PVC/EVA 複合材料機械性質(a)斷裂伸長率(b)彎曲模數…………36
圖2-14 PVC/EVA 複合材料機械性質(a)衝擊強度(b)硬度…………………36
圖2-15純PLA和PLA/CNF動態黏度……………………………………....37
圖2-16在120℃下觀察材料結晶過程之POM圖…………………………..38
圖2-17材料在不同溫度下發泡之SEM圖………………………………….38
圖2-18不同 CNF 含量的PP/CNF複合發泡之SEM圖……………..……39
圖2-19 iPP和CNF-5的發泡樣品(a)泡孔密度(b)平均泡孔直徑隨空隙率的
變化…………………………………………………………………….40
圖2-20 CNF含量對(a)彎曲模數(b)彎曲強度的影響………………………..40
圖3-1紅蘿蔔渣與香蕉莖纖維鹼處理及酸處理之反應機制………………..57
圖3-2改良之TEMPO自由基氧化法………………………………………..58
圖3-3懸浮聚合法改質奈米纖維表面之反應流程…………………………..59
圖3-4奈米纖維製備流程圖…………………………………………………..60
圖3-5奈米紅蘿蔔渣與香蕉莖纖維補強乙烯/醋酸乙烯酯共聚物複合材料製
備與分析流程…………………………………………………………...61
圖4-1紅蘿蔔渣纖維(C)、紅蘿蔔渣奈米纖維(CT)、改質紅蘿蔔渣奈米纖維
(CM)之FT-IR…………………………………..………………………..63
圖4-2香蕉莖纖維(B)、香蕉莖纖維奈米纖維(BT)、改質香蕉莖纖維奈米纖
維(BM)之FT-IR…………………………………..…………………..…64
圖4-3奈米紅蘿蔔渣纖維之TEM圖...............................................................66
圖4-4經MMA表面改質奈米紅蘿蔔渣纖維之TEM圖……….…………..66
圖4-5奈米香蕉莖纖維之TEM圖……………………………………….…..67
圖4-6經MMA表面改質奈米香蕉莖纖維之TEM圖……………………...67
圖4-7奈米紅蘿蔔渣纖維各階段之XRD圖……………………………...…69
圖4-8奈米香蕉莖纖維各階段之XRD圖…………………………………...70
圖4-9紅蘿蔔渣纖維(C)、奈米紅蘿蔔渣纖維(CT)、MMA改質奈米紅蘿蔔
渣纖維 (CM) 在N2環境下之TGA分析圖………………………….74
圖4-10紅蘿蔔渣纖維(C)、奈米紅蘿蔔渣纖維(CT)、MMA改質奈米紅蘿蔔
渣纖維(CM)之DTG分析圖……………………………………………74
圖4-11香蕉莖纖維(B)、奈米香蕉莖纖維(BT)、MMA改質奈米香蕉莖纖維
(BM) 在N2環境下之TGA分析圖……………………………………75
圖4-12香蕉莖纖維(B)、奈米香蕉莖纖維(BT)、MMA改質奈米香蕉莖纖維
(BM)之DTA分析圖……………………………………………………75
圖4-13接觸角分析(a)奈米紅蘿蔔渣纖維(CT)、(b) MMA改質奈米紅蘿蔔
渣纖維(CM)、(c)奈米香蕉莖纖維(BT)、(d) MMA改質奈米香蕉莖
纖維(BM)………………………………………………………………78
圖4-14奈米複合材料薄膜的透光率…………………………………………79
圖4-15奈米複合材料薄膜可見光範圍之透光率……………………………80
圖4-16奈米複合材料薄膜在“校徽”上,顯示透明特性…………………80
圖4-17奈米纖維素於Dimethylformamide (DMF) 之分散性……………....81
圖4-18乙烯/醋酸乙烯酯共聚物/奈米紅蘿蔔渣纖維複合材料之拉伸強度..84
圖4-19乙烯/醋酸乙烯酯共聚物/奈米香蕉莖纖維複合材料之拉伸強度…..85
圖4-20乙烯/醋酸乙烯酯共聚物/奈米纖維複合材料DMA分析之儲能模與
溫度關係圖…………………………………………………………….87
圖4-21乙烯/醋酸乙烯酯共聚物/奈米纖維複合材料DMA分析之損失模數
與溫度關係圖………………………………………………………….87
圖4-22乙烯/醋酸乙烯酯共聚物/奈米纖維複合材料分析DMA之tanδ與溫
度關係圖……………………………………………………………….88
圖4-23奈米纖維素複合材料之發泡前外觀…………………………………89
圖4-24奈米纖維素複合材料之發泡外觀……………………………………89
圖4-25各不同溫度、壓力、時間條件下發泡之SEM圖..………………....92
圖4-26 EVA同壓同時不同溫度之發泡密度柱狀圖…………………………93
圖4-27 EVA同時同溫不同壓力之發泡密度柱狀圖…………………………93
圖4-28 EVA同溫同壓不同時間之發泡密度柱狀圖…………………………93
圖4-29 CT0.1各不同溫度、壓力、時間條件下發泡之SEM圖……………98
圖4-31 CT同壓同時不同溫度之發泡密度柱狀圖…………………………..99
圖4-32 CT同時同溫不同壓力之發泡密度柱狀圖…………………………..99
圖4-33 CT同溫同壓不同時間之發泡密度柱狀圖…………………………..99
圖4-30 CM0.1各不同溫度、壓力、時間條件下發泡之SEM圖………...100
圖4-34 CM同壓同時不同溫度之發泡密度柱狀圖………………………...101
圖4-35 CM同時同溫不同壓力之發泡密度柱狀圖………………………...101
圖4-36 CM同溫同壓不同時間之發泡密度柱狀圖………………………...101
圖4-37 BT0.1各不同溫度、壓力、時間條件下發泡之SEM圖………….103
圖4-39 BT同壓同時不同溫度之發泡密度柱狀圖…………………………104
圖4-40 BT同時同溫不同壓力之發泡密度柱狀圖…………………………104
圖4-41 BT同溫同壓不同時間之發泡密度柱狀圖…………………………104
圖4-38 BM0.1各不同溫度、壓力、時間條件下發泡之SEM圖………...105
圖4-42 BM同壓同時不同溫度之發泡密度柱狀圖………………………...106
圖4-43 BM同時同溫不同壓力之發泡密度柱狀圖………………………...106
圖4-44 BM同溫同壓不同時間之發泡密度柱狀圖………………………...106
圖4-45乙烯/醋酸乙烯酯共聚物/奈米纖維複合材料發泡後之拉伸強度…108

表目錄
表1-1三種依硬度分類之發泡塑膠……………………………………………3
表1-2不同種類成核劑…………………………………………………………8
表1-3植物纖維的分類………………………………………………………..12
表1-4植物纖維的化學成分…………………………………………………..14
表2-1新鮮紅蘿蔔奈米纖維製備的質量平衡和能耗………………………..27
表3-1複合材料各組成比例與代號…………………………………………..56
表4-1奈米紅蘿蔔渣纖維各階段之結晶度(CrI)數據表……………………..69
表4-2奈米香蕉莖纖維各階段之結晶度(CrI)數據表………………………..70
表4-3紅蘿蔔渣與香蕉莖纖維各階段在(N2)環境下之TGA數據表……….76
表4-4紅蘿蔔渣各階段之DTG數據表………………………………………76
表4-5香蕉莖纖維各階段之DTG數據表……………………………………76
表4-6奈米纖維與MMA改質纖維之水接處角數據表……………………..78
表4-7乙烯/醋酸乙烯酯共聚物/奈米紅蘿蔔渣纖維複合材料之拉伸強度數據
表………………………………………………………………………...84
表4-8乙烯/醋酸乙烯酯共聚物/奈米香蕉莖纖維複合材料之拉伸強度數據
表……………………………………………………………………….85
表4-9為乙烯/醋酸乙烯酯共聚物/奈米纖維複合材料分析DMA之tanδ與
溫度數據表……………………………………………………………...88
表4-10不同溫度、壓力、時間的條件下進行發泡的參數表………………91
表4-11純EVA不同溫度、壓力、時間發泡樣品的比重、發泡尺寸、發泡
密度…………………………………………………………………….94
表4-12 CT0.1在不同溫度、壓力、時間樣品的比重、發泡尺寸、發泡密度
………………………………………………………………………...102
表4-13 CM0.1在不同溫度、壓力、時間樣品的比重、發泡尺寸、發泡密度
………………………………………………………………………...102
表4-14 BT0.1在不同溫度、壓力、時間樣品的比重、發泡尺寸、發泡密度
………………………………………………………………………...107
表4-15 BM0.1在不同溫度、壓力、時間樣品的比重、發泡尺寸、發泡密度
………………………………………………………………………...107

1.Deanin, R. D., Foamed Plastics. American Chemical Society: p 469-494 (1985)
2.Shin, C.; Chase, G. G., "Nanofibers from recycle waste expanded polystyrene using natural solvent," Polymer Bulletin, Vol. 55, pp. 209-215 (2005)
3.Snyder, R. C., Polyurethane Foam in Furnishings Markets. AMERICAN CHEMICAL SOCIETY: p 25-32 (1981)
4.Francis, R., Recycling of polymers: methods, characterization and applications. John Wiley & Sons: (2016)
5.Verdejo, R.; Mills, N. J., "Heel–shoe interactions and the durability of EVA foam running-shoe midsoles," Journal of Biomechanics, Vol. 37, pp. 1379-1386 (2004)
6.Paiva Junior, C. Z.; Peruchi, R. S.; Fim, F. d. C.; Soares, W. d. O. S.; da Silva, L. B., "Performance of ethylene vinyl acetate waste (EVA-w) when incorporated into expanded EVA foam for footwear," Journal of Cleaner Production, Vol. 317, pp. 128352 (2021)
7.Li, N.; Fan, D.; Shi, Z.; Xie, Y.; Li, M.; Tang, T., "Effect of ion-crosslinking on supercritical CO2 foaming behavior and foam properties of EVA/ZnO composites," Composites Communications, Vol. 25, pp. 100760 (2021)
8.Briand, A.; Leybros, A.; Doucet, O.; Vite, M.; Gasmi, A.; Ruiz, J. C.; Lamadie, F.; Grandjean, A., "Deformation-induced delamination of photovoltaic modules by foaming ethylene-vinyl acetate with supercritical CO2," Journal of CO2 Utilization, Vol. 59, pp. 101933 (2022)
9.Isogai, A.; Bergström, L., "Preparation of cellulose nanofibers using green and sustainable chemistry," Current Opinion in Green and Sustainable Chemistry, Vol. 12, pp. 15-21 (2018)
10.Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D., "Industrial upscaling of electrospinning and applications of polymer nanofibers: a review," Macromolecular materials and engineering, Vol. 298, pp. 504-520 (2013)
11.Sinha, M. K.; Das, B. R.; Bharathi, D.; Prasad, N. E.; Kishore, B.; Raj, P.; Kumar, K., "Electrospun Nanofibrous Materials for Biomedical Textiles," Materials Today: Proceedings, Vol. 21, pp. 1818-1826 (2020)
12.Hamza, R.; Zhang, X. D.; Macosko, C. W.; Stevens, R.; Listemann, M., Imaging Open-Cell Polyurethane Foam via Confocal Microscopy. American Chemical Society: p 165-177 (1997)
13.Zhang, X.; Kim, Y.; Kim, D.; Liu, M.; Erramuspe, I. B. V.; Kaya, G. B.; Wang, X.; Kim, T.; Via, B. K.; Cho, H., "Shape-Stabilized Phase Change Material by a Synthetic/Natural Hybrid Composite Foam with Cell-Wall Pores," ACS Applied Energy Materials, Vol. 4, pp. 416-424 (2021)
14.Kuranchie, C.; Yaya, A.; Bensah, Y. D., "The effect of natural fibre reinforcement on polyurethane composite foams – A review," Scientific African, Vol. 11, pp. e00722 (2021)
15.Tang, M.; Wang, T.-C., "Foaming of poly(vinylidene fluoride-co-hexafluoropropylene) using supercritical carbon dioxide," Journal of the Taiwan Institute of Chemical Engineers, Vol. 73, pp. 146-153 (2017)
16.Liu, Y.; Ye, L.; Shu, Y.; Zhao, X., "In situ preparation of intrinsic flame retardant urea formaldehyde/aramid fiber composite foam: Structure, property and reinforcing mechanism," Composites Part A: Applied Science and Manufacturing, Vol. 115, pp. 274-282 (2018)
17.Lee, J. W. S.; Wang, J.; Yoon, J. D.; Park, C. B., "Strategies to Achieve a Uniform Cell Structure with a High Void Fraction in Advanced Structural Foam Molding," Industrial & Engineering Chemistry Research, Vol. 47, pp. 9457-9464 (2008)
18.Coste, G.; Negrell, C.; Caillol, S., "From gas release to foam synthesis, the second breath of blowing agents," European Polymer Journal, Vol. 140, pp. 110029 (2020)
19.Tsui, A.; Frank, C. W., "Comparison of anhydrous and monohydrated forms of orotic acid as crystal nucleating agents for poly(3-hydroxybutyrate-co-3-hydroxyvalerate)," Polymer, Vol. 55, pp. 6364-6372 (2014)
20.Wypych, A.; Wypych, G., 3 - Nucleating Agents. ChemTec Publishing: p 17-376 (2021)
21.Choi, S.-S.; Chung, Y. Y., "Considering factors for analysis of crosslink density of poly(ethylene-co-vinyl acetate) compounds," Polymer Testing, Vol. 66, pp. 312-318 (2018)
22.Ramesh, M.; Palanikumar, K.; Reddy, K. H., "Plant fibre based bio-composites: Sustainable and renewable green materials," Renewable and Sustainable Energy Reviews, Vol. 79, pp. 558-584 (2017)
23.Sadalage, P. S.; Pawar, K. D., "Production of microcrystalline cellulose and bacterial nanocellulose through biological valorization of lignocellulosic biomass wastes," Journal of Cleaner Production, Vol. 327, pp. 129462 (2021)
24.Siqueira, G.; Oksman, K.; Tadokoro, S. K.; Mathew, A. P., "Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials," Composites Science and Technology, Vol. 123, pp. 49-56 (2016)
25.Zhou, X.; Sethi, J.; Geng, S.; Berglund, L.; Frisk, N.; Aitomäki, Y.; Sain, M. M.; Oksman, K., "Dispersion and reinforcing effect of carrot nanofibers on biopolyurethane foams," Materials & Design, Vol. 110, pp. 526-531 (2016)
26.Ramdhonee, A.; Jeetah, P., "Production of wrapping paper from banana fibres," Journal of Environmental Chemical Engineering, Vol. 5, pp. 4298-4306 (2017)
27.Tan, K.; Heo, S.; Foo, M.; Chew, I. M.; Yoo, C., "An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability," Science of The Total Environment, Vol. 650, pp. 1309-1326 (2019)
28.Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P. T.; Ikkala, O.; Lindström, T., "Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels," Biomacromolecules, Vol. 8, pp. 1934-1941 (2007)
29.Isogai, A.; Saito, T.; Fukuzumi, H., "TEMPO-oxidized cellulose nanofibers," nanoscale, Vol. 3, pp. 71-85 (2011)
30.Isogai, A.; Hänninen, T.; Fujisawa, S.; Saito, T., "Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions," Progress in Polymer Science, Vol. 86, pp. 122-148 (2018)
31.Habibi, Y.; Lucia, L. A.; Rojas, O. J., "Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications," Chemical Reviews, Vol. 110, pp. 3479-3500 (2010)
32.Campano, C.; Balea, A.; Blanco, A.; Negro, C., "Enhancement of the fermentation process and properties of bacterial cellulose: a review," Cellulose, Vol. 23, pp. 57-91 (2016)
33.Lee, H.; Mani, S., "Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method," Industrial Crops and Products, Vol. 104, pp. 179-187 (2017)
34.Zinge, C.; Kandasubramanian, B., "Nanocellulose based biodegradable polymers," European Polymer Journal, Vol. 133, pp. 109758 (2020)
35.Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S., "Commercial application of cellulose nano-composites – A review," Biotechnology Reports, Vol. 21, pp. e00316 (2019)
36.Varanasi, S.; Henzel, L.; Sharman, S.; Batchelor, W.; Garnier, G., "Producing nanofibres from carrots with a chemical-free process," Carbohydrate Polymers, Vol. 184, pp. 307-314 (2018)
37.Meng, F.; Wang, G.; Du, X.; Wang, Z.; Xu, S.; Zhang, Y., "Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue," Composites Part B: Engineering, Vol. 160, pp. 341-347 (2019)
38.Bakar, N.; Chee, C. Y.; Abdullah, L. C.; Ratnam, C. T.; Azowa, N., "Effect of methyl methacrylate grafted kenaf on mechanical properties of polyvinyl chloride/ethylene vinyl acetate composites," Composites Part A: Applied Science and Manufacturing, Vol. 63, pp. 45-50 (2014)
39.Ren, Q.; Wu, M.; Wang, L.; Zheng, W.; Hikima, Y.; Semba, T.; Ohshima, M., "Cellulose nanofiber reinforced poly (lactic acid) with enhanced rheology, crystallization and foaming ability," Carbohydrate Polymers, Vol. 286, pp. 119320 (2022)
40.Wang, L.; Ando, M.; Kubota, M.; Ishihara, S.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Sato, A.; Yano, H., "Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams," Composites Part A: Applied Science and Manufacturing, Vol. 98, pp. 166-173 (2017)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top