跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹智傑
研究生(外文):Chih-Chieh Chan
論文名稱:使用成體培養細胞以發展毛囊器官新生技術
論文名稱(外文):De novo hair formation by cultured adult cells
指導教授:林頌然
口試委員:楊台鴻楊宗霖曹伯年邱顯清
口試日期:2015-09-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:89
中文關鍵詞:共同培養毛囊誘導毛囊再生禿髮角質細胞
外文關鍵詞:coculturefolliculogenictrichogenichair regenerationalopeciakeratinocyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:492
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
皮膚附屬器,特別是毛囊與汗腺,在維持哺乳類個體環境的恆定非常重要。其中毛囊發育及週期生長的調控,與身體諸多組織器官(如角膜、唾腺等)一樣,皆透過上皮(epithelial)與間質(mesenchymal)細胞精密的交互作用來達成。毛囊生成,不管是在胚胎發育時期,還是在出生後,都是經由這種上皮-間質兩個胚層作用發展而出的微器官。這個微器官,會隨著年齡老化而逐漸減少導致禿髮。臨床上最常見的禿髮,是因先天基因與後天環境的影響所導致的雄性禿髮,其毛囊器官逐漸變小,生長期縮短,咸認是一種器官老化的過程,特別是在某些年輕的個體,此老化過程明顯提前;另一類常見禿髮,肇因於發炎性的疾病(如紅斑性狼瘡)所引起毛囊結構纖維化而導致禿髮。不管是哪一種禿髮,對患者的情緒與社交功能都有很大的影響。然而,目前針對禿髮的治療,不管是利用口服或外擦藥物,或是經由手術移植毛囊單位(植髮),都沒有再生「新」的毛囊,也就是說,當前的治療仍舊侷限於挽救或重分佈既有毛囊的框架中,此類治療對於重度禿髮的患者,無法帶來令人滿意的成果。

在毛囊生成的過程中,間質真皮乳突細胞(dermal papilla cells; DP cells)調控毛髮的生長與週期變化,是透過對毛囊上皮角質細胞(keratinocytes)的作用而來。真皮乳突細胞在毛囊再生扮演居中重要的誘導功能,將上皮組織的角質細胞,誘導分化為毛囊型的上皮角質細胞,進一步發展出毛囊結構,並生出終產物:髮幹(hair shaft; HS)。為了增加新生毛囊的數目,目前的發展已經推進到研究者可以在體外透過大量培養成鼠的真皮乳突細胞來誘導上皮角質細胞再生新髮。在動物實驗模型上,一則使用具有高毛囊誘導(folliculogenic)能力的新生鼠表皮細胞,與大量培養的成體真皮乳突細胞作用產生新髮;另一則使用成體誘導幹細胞(induced pluripotent stem cells)分化而成的上皮細胞,與新生鼠的真皮細胞作用生髮。不管是哪一種可用的毛髮再生動物模型,都取巧一端使用新生個體較具有發育潛能的間質或上皮細胞。當前最常使用的組合,是透過培養的成體真皮乳突細胞,混和新生鼠之表皮細胞來再生新髮。這種使用新生鼠的表皮細胞作為毛囊誘導的上皮端,在應用層面並不可行。因為透過毛囊新生治療禿髮,終究是要取得禿髮個體的真皮乳突細胞,與來自同一個體的表皮角質細胞,透過上皮-間質的交互作用,從而再生新髮。

既然來自真皮的乳突細胞已知可經過大量體外培養仍維持其毛囊誘導能力,該解決的部分變成是如何讓成體的表皮細胞也可以大量培養並維持其毛囊生成能力。可惜的是,經過體外培養繼代的成體表皮細胞,很快失去了被誘導長毛的能力。本研究的設計,便是試圖建立一個全部利用成鼠細胞(包括真皮乳突細胞與表皮角質細胞)經過培養增量,來再生新髮的模型,並討論如何讓成鼠的表皮角質細胞變得像新生鼠般,具有高度誘導毛囊化的能力。雖然成體上皮角質細胞經過培養無法被成功誘導再生新髮,但本研究透過直接將體外培養的成體角質細胞與具有毛囊誘導能力的真皮乳突細胞,共置於培養環境中,讓細胞可以直接接觸,重現胚胎發育的過程中,間質-上皮兩個胚層的交互作用。此方法成功地重現成體角質細胞的毛囊化基因標記,且在動物模型確實誘導再生新髮。

本研究的目的,在於使用成鼠細胞來實現毛囊新生,並對於可再度往毛囊分化的成體角質細胞進行功能性分析及其調控機轉探討。希望透過更了解毛囊這個皮膚附屬器的再生科學,建立穩定模型以供未來發展再生新髮的治療模式,帶來更多臨床上應用價值。

Like other organs including cornea and salivary gland, the development and cyclic growth of hair follicle (HF) is also governed by epithelial-mesenchymal interaction. Dermal papilla (DP) cells, the HF mesenchymal cells, have been shown to regulate hair growth and cycles, at least in part through its interaction with follicular epithelial cells or stem cells. Whenever the interaction is interrupted or disturbed, affected individual will develop various hair diseases. The most common hair loss, androgenetic alopecia (AGA), results from follicular miniaturization and shortened growth period in hair cycles. The hair organ miniaturization in AGA is considered to be a normal aging process. However, for those who are young with early development of AGA, the process seems to be “premature” that might have something to do with the follicular environment and hormonal change. What leads to the premature aging is not yet elucidated.

Current therapeutic options for hair loss are either surgical redistribution of scalp hairs, or medical treatments including oral or topical preparations. These clinically available surgical or non-surgical treatments do not increase patient’s follicular units. To ultimately solve the problem of hair loss, the best way is to generate new hair follicles.

Resembling embryonic hair morphogenesis, adult hair neogenesis involves delicate signal reciprocations between follicular epidermal cells and mesenchymal DP cells. New and considerable HFs can be generated by the advances in the techniques to combine inductive cultured DP cells and competent epidermal stem cells. Most regeneration models prefer to use cultured adult DP cells and “newborn” epidermis, taking the advantage of the multipotency of the newborn epidermal cells. This strategy is not applicable in the clinical aspect since the end goal of hair regeneration is to take cells from alopecia individuals who are mostly adult. Current hair regeneration models remain unable to efficiently expand folliculogenic adult epidermal cells. Only with large number of competent adult epidermal cells can we eventually apply the hair regeneration technique to adult individuals.

To study the effect of in vitro epidermal-mesenchymal interaction and its impact on hair follicle regeneration, we cultured keratinocytes and DP cells into the same dish before they are used in further hair regeneration experiments. High passage rat epidermal cells successfully responded and formed hair shafts in the initial experiments. The in vitro epidermal-mesenchymal interaction distinctly changes epidermal cells to express elevated hair-specific genes. Our data showed the cultivated adult cells recapitulate the epidermal-mesenchymal interaction that induces the high passage epidermal cells to adopt the follicular fate and head to hair follicle differentiation. This acquired hair induction ability provides a new field for bioengineered hairs that not only the dermal cells but also the epidermal cells can be taken for population expansion before hair regeneration. This finding simply announces the possibility of removing one single adult hair, separately expanding dermal and epidermal cell numbers, and then coculturing these considerable amounts of cells before finally mixing them to form numerous new hairs. Successful development of this model and clarification of the underlying mechanism may lead to future large-scale hair production by bioengineering these adult follicular cells.

口試委員會審定書.........I
中文摘要.........II
ABSTRACT.........IV
LIST OF ABBREVIATIONS.........VII
CONTENTS.........VIII
LIST OF FIGURES.........XIII
LIST OF TABLE.........XV
Chapter 1 Introduction.........1
1.1 Development of a Hair Follicle.........2
1.1.1 Structure of the Hair Follicle.........4
1.1.1.1 Hair Follicle Epidermal Layers.........4
1.1.1.2 Hair Follicle Bulb.........4
1.1.1.3 Hair Follicle Stem Cell Niche: the Bulge.........5
1.1.1.4 Sebaceous Gland.........5
1.1.1.5 Hair Follicle Dermal Cells.........5
1.1.2 Hair Cycling.........9
1.1.2.1 Anagen.........9
1.1.2.2 Catagen.........9
1.1.2.3 Telogen.........10
1.2 Hair Follicle Formation Mechanisms: Morphogenetic Switch or Neogenesis.........12
1.3 Roles of Epidermal Component in Hair Follicle Induction.........15
1.4 Which Type of Keratinocytes Is the Target in Response to Dermal Signals?.........18
1.4.1 Location of Epidermal Stem Cells.........18
1.4.2 Plasticity of Follicular Epithelial Stem Cells and Interfollicular Epidermis.........19
Chapter 2 Theoretical Basis and Hypothesis.........23
2.1 Tissue Engineering for Hair Follicle Regeneration.........23
2.1.1 Hair Regeneration Model: Patch Model.........24
2.1.2 Hair Regeneration Model: Chamber Model.........24
2.1.3 Hair Regeneration Model: Sandwich Model.........28
2.1.4 Hair Regeneration Model: Wound Model.........28
2.2 Production of Trichogenic Dermal and Epidermal cells.........29
2.2.1 Generation of Trichogenic Dermal cells.........29
2.2.2 Generation of Trichogenic Epidermal cells.........30
2.3 Production of Trichogenic Epidermal cells with Cultured Adult Cells via In Vitro Epithelial-Mesenchymal Interaction: the Hypothesis.........32
2.3.1 Revival of Cellular Ability.........32
2.3.2 In Vitro Epidermal-Mesenchymal Interactions Facilitate Cultured Epidermal Cells to Revive Trichogenicity?.........32
2.4 Production of Trichogenic Epidermal cells with Cultured Adult Cells via Upregulation of Wnt Signaling Pathway: the Hypothesis.........35
2.4.1 The Role of Wnt/β-Catenin in Transdifferentiating Follicular Keratinocytes.........35
2.4.2 Can Upregulation of Wnt Signaling Pathway Facilitate Cultured Epidermal Cells to Revive Trichogenicity?.........36
2.5 Summary of Hypothesis and Goal of the Study.........39
Chapter 3 Materials and Methods.........40
3.1 Animals.........40
3.2 Cell culture and treatments.........40
3.3 Media.........42
3.4 Preparation of cocultured cells.........42
3.5 Patch assay for hair follicle regeneration.........43
3.6 Histology examination.........43
3.7 Immunofluorescence staining and microscopy.........44
3.8 Preparation of cDNA and quantitative PCR.........45
3.9 SDS-PAGE and Western blot analysis.........47
3.10 Statistical analysis.........48
Chapter 4 Results.........49
4.1 High passage adult keratinocytes retained the same morphology and reproductive capacity as primary cells, but not the ability of hair formation.........49
4.2 Coculturing with DP cells enabled high passage adult keratinocytes to regain hair forming ability.........50
4.3 Follicular gene expression was upregulated in cocultured epidermal cells.........52
4.4 Wnt/β-catenin signaling was activated in the cocultured epidermal cells.........53
4.5 Coculture resulted in β-catenin accumulation in adult high passage epidermal cells, and Wnt/β-catenin signaling was upregulated in both mRNA and protein levels.........54
Chapter 5 Discussion.........57
Chapter 6 Conclusions.........62
REFERENCE.........76

Aasen, T., and Belmonte, J.C.I. (2010). Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nature Protocols 5, 371-382.

Amici, A.W., Yamato, M., Okano, T., and Kobayashi, K. (2009). The multipotency of adult vibrissa follicle stem cells. Differentiation 77, 317-323.

Anastas, J.N., and Moon, R.T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nature reviews Cancer 13, 11-26.

Andl, T., Reddy, S.T., Gaddapara, T., and Millar, S.E. (2002). WNT signals are required for the initiation of hair follicle development. Developmental Cell 2, 643-653.

Barrandon, Y., and Green, H. (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proceedings of the National Academy of Sciences 84, 2302-2306.

Bejsovec, A. (2000). Wnt signaling: an embarrassment of receptors. Current Biology 10, R919-922.

Bernot, K.M., Coulombe, P.A., and McGowan, K.M. (2002). Keratin 16 expression defines a subset of epithelial cells during skin morphogenesis and the hair cycle. Journal of Investigative Dermatology 119, 1137-1149.

Bhatia, S.N., Balis, U.J., Yarmush, M.L., and Toner, M. (1999). Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 13, 1883-1900.

Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L., and Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635-648.

Blazejewska, E.A., Schlotzer-Schrehardt, U., Zenkel, M., Bachmann, B., Chankiewitz, E., Jacobi, C., and Kruse, F.E. (2009). Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells 27, 642-652.

Bonfanti, P., Claudinot, S., Amici, A.W., Farley, A., Blackburn, C.C., and Barrandon, Y. (2010). Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature 466, 978-982.

Caldelari, R., Suter, M.M., Baumann, D., de Bruin, A., and Muller, E. (2000). Long-term culture of murine epidermal keratinocytes. Journal of Investigative Dermatology 114, 1064-1065.

Cheon, S.S., Nadesan, P., Poon, R., and Alman, B.A. (2004). Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Experimental Cell Research 293, 267-274.

Choi, Y.S., Zhang, Y., Xu, M., Yang, Y., Ito, M., Peng, T., Cui, Z., Nagy, A., Hadjantonakis, A.K., Lang, R.A., Cotsarelis, G., Andl, T., Morrisey, E.E., and Millar, S.E. (2013). Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13, 720-733.

Claudinot, S., Nicolas, M., Oshima, H., Rochat, A., and Barrandon, Y. (2005). Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proceedings of the National Academy of Sciences 102, 14677-14682.

Cotsarelis, G., Sun, T.T., and Lavker, R.M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337.

Dhouailly, D. (1973). Dermo-epidermal interactions between birds and mammals: differentiation of cutaneous appendages. Journal of Embryology & Experimental Morphology 30, 587-603.

Ehama, R., Ishimatsu-Tsuji, Y., Iriyama, S., Ideta, R., Soma, T., Yano, K., Kawasaki, C., Suzuki, S., Shirakata, Y., Hashimoto, K., and Kishimoto, J. (2007). Hair follicle regeneration using grafted rodent and human cells. Journal of Investigative Dermatology 127, 2106-2115.
Gat, U., DasGupta, R., Degenstein, L., and Fuchs, E. (1998). De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95, 605-614.

Ghazizadeh, S., and Taichman, L.B. (2001). Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO Journal 20, 1215-1222.

Hardy, M.H. (1992). The secret life of the hair follicle. Trends in Genetics 8, 55-61.

Higgins, C.A., Chen, J.C., Cerise, J.E., Jahoda, C.A., and Christiano, A.M. (2013). Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proceedings of the National Academy of Sciences 110, 19679-19688.

Horne, K.A., Jahoda, C.A., and Oliver, R.F. (1986). Whisker growth induced by implantation of cultured vibrissa dermal papilla cells in the adult rat. Journal of Embryology & Experimental Morphology 97, 111-124.

Huang, Y.C., Chan, C.C., Lin, W.T., Chiu, H.Y., Tsai, R.Y., Tsai, T.H., Chan, J.Y., and Lin, S.J. (2013). Scalable production of controllable dermal papilla spheroids on PVA surfaces and the effects of spheroid size on hair follicle regeneration. Biomaterials 34, 442-451.

Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533-545.

Inamatsu, M., Tochio, T., Makabe, A., Endo, T., Oomizu, S., Kobayashi, E., and Yoshizato, K. (2006). Embryonic dermal condensation and adult dermal papilla induce hair follicles in adult glabrous epidermis through different mechanisms. Development, Growth & Differentiation 48, 73-86.

Jahoda, C.A., Horne, K.A., and Oliver, R.F. (1984). Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311, 560-562.

Jahoda, C.A., Reynolds, A.J., and Oliver, R.F. (1993). Induction of hair growth in ear wounds by cultured dermal papilla cells. Journal of Investigative Dermatology 101, 584-590.

Kaufman, K.D., Olsen, E.A., Whiting, D., Savin, R., DeVillez, R., Bergfeld, W., Price, V.H., Van Neste, D., Roberts, J.L., Hordinsky, M., Shapiro, J., Binkowitz, B., and Gormley, G.J. (1998). Finasteride in the treatment of men with androgenetic alopecia. Finasteride Male Pattern Hair Loss Study Group. Journal of the American Academy of Dermatology 39, 578-589.

Kaur, P., and Li, A. (2000). Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells. Journal of Investigative Dermatology 114, 413-420.

Kishimoto, J., Burgeson, R.E., and Morgan, B.A. (2000). Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes & Development 14, 1181-1185.

Langbein (2010). The Keratins of the Human Beard Hair Medulla: The Riddle in the Middle (vol 130, pg 55, 2010). Journal of Investigative Dermatology 130, 1750-1750.

Levy, V., Lindon, C., Harfe, B.D., and Morgan, B.A. (2005). Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Developmental Cell 9, 855-861.

Lichti, U., Anders, J., and Yuspa, S.H. (2008). Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nature Protocols 3, 799-810.

Lichti, U., Weinberg, W.C., Goodman, L., Ledbetter, S., Dooley, T., Morgan, D., and Yuspa, S.H. (1993). In vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice. Journal of Investigative Dermatology 101, 124S-129S.

Lien, W.H., Polak, L., Lin, M., Lay, K., Zheng, D., and Fuchs, E. (2014). In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nature Cell Biology 16, 179-190.

Matsuzaki, T. (2008). [Technologies for hair reconstruction and their applicability for pharmaceutical research]. Yakugaku Zasshi 128, 11-20.

Millar, S.E. (2002). Molecular mechanisms regulating hair follicle development. Journal of Investigative Dermatology 118, 216-225.

Miller, J.R., and Moon, R.T. (1996). Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes & Development 10, 2527-2539.

Morris, R.J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., Lin, J.S., Sawicki, J.A., and Cotsarelis, G. (2004). Capturing and profiling adult hair follicle stem cells. Nature Biotechnology 22, 411-417.

Morris, R.J., and Potten, C.S. (1999). Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. Journal of Investigative Dermatology 112, 470-475.

Nakamura, Y. (1997). Cleaning up on beta-catenin. Nature Medicine 3, 499-500.

Nelson, W.J., and Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483-1487.

Novak, A., and Dedhar, S. (1999). Signaling through beta-catenin and Lef/Tcf. Cellular and Molecular Life Sciences 56, 523-537.

Nowak, J.A., Polak, L., Pasolli, H.A., and Fuchs, E. (2008). Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33-43.

Ohyama, M., Zheng, Y., Paus, R., and Stenn, K.S. (2010). The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Experimental dermatology 19, 89-99.

Oliver, R.F. (1966). Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. Journal of Embryology & Experimental Morphology 15, 331-347.

Osada, A., Iwabuchi, T., Kishimoto, J., Hamazaki, T.S., and Okochi, H. (2007). Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Engineering 13, 975-982.

Panteleyev, A.A., Paus, R., Wanner, R., Nurnberg, W., Eichmuller, S., Thiel, R., Zhang, J., Henz, B.M., and Rosenbach, T. (1997). Keratin 17 gene expression during the murine hair cycle. Journal of Investigative Dermatology 108, 324-329.

Paus, R., and Cotsarelis, G. (1999). The biology of hair follicles. The New England journal of medicine 341, 491-497.
Pellegrini, G., Ranno, R., Stracuzzi, G., Bondanza, S., Guerra, L., Zambruno, G., Micali, G., and De Luca, M. (1999). The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 68, 868-879.

Pellegrini, G., Traverso, C.E., Franzi, A.T., Zingirian, M., Cancedda, R., and De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349, 990-993.

Qiao, J., Zawadzka, A., Philips, E., Turetsky, A., Batchelor, S., Peacock, J., Durrant, S., Garlick, D., Kemp, P., and Teumer, J. (2009). Hair follicle neogenesis induced by cultured human scalp dermal papilla cells. Regenerative Medicine 4, 667-676.

Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., and Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. The New England journal of medicine 363, 147-155.

Reynolds, A.J., and Jahoda, C.A. (1992). Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development 115, 587-593.

Reynolds, A.J., and Jahoda, C.A. (1996). Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Development 122, 3085-3094.

Rheinwald, J.G., and Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331-343.
Rheinwald, J.G., and Green, H. (1977). Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 265, 421-424.

Rogers, G., Martinet, N., Steinert, P., Wynn, P., Roop, D., Kilkenny, A., Morgan, D., and Yuspa, S.H. (1987). Cultivation of murine hair follicles as organoids in a collagen matrix. Journal of Investigative Dermatology 89, 369-379.

Roh, C., Tao, Q., and Lyle, S. (2004). Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skin. Physiological Genomics 19, 207-217.

Shimizu, H., and Morgan, B.A. (2004). Wnt signaling through the beta-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. Journal of Investigative Dermatology 122, 239-245.

Sneddon, J.B., Borowiak, M., and Melton, D.A. (2012). Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 491, 765-768.

Sohn, K.C., Shi, G., Jang, S., Choi, D.K., Lee, Y., Yoon, T.J., Park, H., Hwang, C., Kim, H.J., Seo, Y.J., Lee, J.H., Park, J.K., and Kim, C.D. (2009). Pitx2, a beta-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro. Journal of Dermatological Science 54, 6-11.

Stenn, K.S., and Cotsarelis, G. (2005). Bioengineering the hair follicle: fringe benefits of stem cell technology. Current Opinion in Biotechnology 16, 493-497.

Stenn, K.S., and Paus, R. (2001). Controls of hair follicle cycling. Physiological reviews 81, 449-494.

Tani, H., Morris, R.J., and Kaur, P. (2000). Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences 97, 10960-10965.

Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T., and Lavker, R.M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451-461.

Tenchini, M.L., Ranzati, C., and Malcovati, M. (1992). Culture techniques for human keratinocytes. Burns : journal of the International Society for Burn Injuries 18 Suppl 1, S11-16.

Toyoshima, K., Asakawa, K., Ishibashi, N., Toki, H., Ogawa, M., Hasegawa, T., Irie, T., Tachikawa, T., Sato, A., Takeda, A., and Tsuji, T. (2012). Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nature Communications 3.

Verheyen, E.M., and Gottardi, C.J. (2010). Regulation of Wnt/beta-catenin signaling by protein kinases. Developmental Dynamics 239, 34-44.

Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041.

Wang, Z.L., Wong, P., Langbein, L., Schweizer, J., and Coulombe, P.A. (2003). Type II epithelial keratin 6hf (K6hf) is expressed in the companion layer, matrix, and medulla in anagen-stage hair follicles. Journal of Investigative Dermatology 121, 1276-1282.

Waters, J.M., Richardson, G.D., and Jahoda, C.A. (2007). Hair follicle stem cells. Seminars in cell & developmental biology 18, 245-254.

Weinberg, W.C., Goodman, L.V., George, C., Morgan, D.L., Ledbetter, S., Yuspa, S.H., and Lichti, U. (1993). Reconstitution of hair follicle development in vivo: determination of follicle formation, hair growth, and hair quality by dermal cells. Journal of Investigative Dermatology 100, 229-236.

Wodarz, A., and Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology 14, 59-88.

Yen, C.M., Chan, C.C., and Lin, S.J. (2010). High-throughput reconstitution of epithelial-mesenchymal interaction in folliculoid microtissues by biomaterial-facilitated self-assembly of dissociated heterotypic adult cells. Biomaterials 31, 4341-4352.

Young, T.H., Lee, C.Y., Chiu, H.C., Hsu, C.J., and Lin, S.J. (2008). Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials 29, 3521-3530.

Young, T.H., Tu, H.R., Chan, C.C., Huang, Y.C., Yen, M.H., Cheng, N.C., Chiu, H.C., and Lin, S.J. (2009). The enhancement of dermal papilla cell aggregation by extracellular matrix proteins through effects on cell-substratum adhesivity and cell motility. Biomaterials 30, 5031-5040.

Zheng, Y., Du, X., Wang, W., Boucher, M., Parimoo, S., and Stenn, K. (2005). Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. Journal of Investigative Dermatology 124, 867-876.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊