|
Aasen, T., and Belmonte, J.C.I. (2010). Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nature Protocols 5, 371-382.
Amici, A.W., Yamato, M., Okano, T., and Kobayashi, K. (2009). The multipotency of adult vibrissa follicle stem cells. Differentiation 77, 317-323.
Anastas, J.N., and Moon, R.T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nature reviews Cancer 13, 11-26.
Andl, T., Reddy, S.T., Gaddapara, T., and Millar, S.E. (2002). WNT signals are required for the initiation of hair follicle development. Developmental Cell 2, 643-653.
Barrandon, Y., and Green, H. (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proceedings of the National Academy of Sciences 84, 2302-2306.
Bejsovec, A. (2000). Wnt signaling: an embarrassment of receptors. Current Biology 10, R919-922.
Bernot, K.M., Coulombe, P.A., and McGowan, K.M. (2002). Keratin 16 expression defines a subset of epithelial cells during skin morphogenesis and the hair cycle. Journal of Investigative Dermatology 119, 1137-1149.
Bhatia, S.N., Balis, U.J., Yarmush, M.L., and Toner, M. (1999). Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 13, 1883-1900.
Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L., and Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635-648.
Blazejewska, E.A., Schlotzer-Schrehardt, U., Zenkel, M., Bachmann, B., Chankiewitz, E., Jacobi, C., and Kruse, F.E. (2009). Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells 27, 642-652.
Bonfanti, P., Claudinot, S., Amici, A.W., Farley, A., Blackburn, C.C., and Barrandon, Y. (2010). Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature 466, 978-982.
Caldelari, R., Suter, M.M., Baumann, D., de Bruin, A., and Muller, E. (2000). Long-term culture of murine epidermal keratinocytes. Journal of Investigative Dermatology 114, 1064-1065.
Cheon, S.S., Nadesan, P., Poon, R., and Alman, B.A. (2004). Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Experimental Cell Research 293, 267-274.
Choi, Y.S., Zhang, Y., Xu, M., Yang, Y., Ito, M., Peng, T., Cui, Z., Nagy, A., Hadjantonakis, A.K., Lang, R.A., Cotsarelis, G., Andl, T., Morrisey, E.E., and Millar, S.E. (2013). Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13, 720-733.
Claudinot, S., Nicolas, M., Oshima, H., Rochat, A., and Barrandon, Y. (2005). Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proceedings of the National Academy of Sciences 102, 14677-14682.
Cotsarelis, G., Sun, T.T., and Lavker, R.M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337.
Dhouailly, D. (1973). Dermo-epidermal interactions between birds and mammals: differentiation of cutaneous appendages. Journal of Embryology & Experimental Morphology 30, 587-603.
Ehama, R., Ishimatsu-Tsuji, Y., Iriyama, S., Ideta, R., Soma, T., Yano, K., Kawasaki, C., Suzuki, S., Shirakata, Y., Hashimoto, K., and Kishimoto, J. (2007). Hair follicle regeneration using grafted rodent and human cells. Journal of Investigative Dermatology 127, 2106-2115. Gat, U., DasGupta, R., Degenstein, L., and Fuchs, E. (1998). De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95, 605-614.
Ghazizadeh, S., and Taichman, L.B. (2001). Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO Journal 20, 1215-1222.
Hardy, M.H. (1992). The secret life of the hair follicle. Trends in Genetics 8, 55-61.
Higgins, C.A., Chen, J.C., Cerise, J.E., Jahoda, C.A., and Christiano, A.M. (2013). Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proceedings of the National Academy of Sciences 110, 19679-19688.
Horne, K.A., Jahoda, C.A., and Oliver, R.F. (1986). Whisker growth induced by implantation of cultured vibrissa dermal papilla cells in the adult rat. Journal of Embryology & Experimental Morphology 97, 111-124.
Huang, Y.C., Chan, C.C., Lin, W.T., Chiu, H.Y., Tsai, R.Y., Tsai, T.H., Chan, J.Y., and Lin, S.J. (2013). Scalable production of controllable dermal papilla spheroids on PVA surfaces and the effects of spheroid size on hair follicle regeneration. Biomaterials 34, 442-451.
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533-545.
Inamatsu, M., Tochio, T., Makabe, A., Endo, T., Oomizu, S., Kobayashi, E., and Yoshizato, K. (2006). Embryonic dermal condensation and adult dermal papilla induce hair follicles in adult glabrous epidermis through different mechanisms. Development, Growth & Differentiation 48, 73-86.
Jahoda, C.A., Horne, K.A., and Oliver, R.F. (1984). Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311, 560-562.
Jahoda, C.A., Reynolds, A.J., and Oliver, R.F. (1993). Induction of hair growth in ear wounds by cultured dermal papilla cells. Journal of Investigative Dermatology 101, 584-590.
Kaufman, K.D., Olsen, E.A., Whiting, D., Savin, R., DeVillez, R., Bergfeld, W., Price, V.H., Van Neste, D., Roberts, J.L., Hordinsky, M., Shapiro, J., Binkowitz, B., and Gormley, G.J. (1998). Finasteride in the treatment of men with androgenetic alopecia. Finasteride Male Pattern Hair Loss Study Group. Journal of the American Academy of Dermatology 39, 578-589.
Kaur, P., and Li, A. (2000). Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells. Journal of Investigative Dermatology 114, 413-420.
Kishimoto, J., Burgeson, R.E., and Morgan, B.A. (2000). Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes & Development 14, 1181-1185.
Langbein (2010). The Keratins of the Human Beard Hair Medulla: The Riddle in the Middle (vol 130, pg 55, 2010). Journal of Investigative Dermatology 130, 1750-1750.
Levy, V., Lindon, C., Harfe, B.D., and Morgan, B.A. (2005). Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Developmental Cell 9, 855-861.
Lichti, U., Anders, J., and Yuspa, S.H. (2008). Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nature Protocols 3, 799-810.
Lichti, U., Weinberg, W.C., Goodman, L., Ledbetter, S., Dooley, T., Morgan, D., and Yuspa, S.H. (1993). In vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice. Journal of Investigative Dermatology 101, 124S-129S.
Lien, W.H., Polak, L., Lin, M., Lay, K., Zheng, D., and Fuchs, E. (2014). In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nature Cell Biology 16, 179-190.
Matsuzaki, T. (2008). [Technologies for hair reconstruction and their applicability for pharmaceutical research]. Yakugaku Zasshi 128, 11-20.
Millar, S.E. (2002). Molecular mechanisms regulating hair follicle development. Journal of Investigative Dermatology 118, 216-225.
Miller, J.R., and Moon, R.T. (1996). Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes & Development 10, 2527-2539.
Morris, R.J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., Lin, J.S., Sawicki, J.A., and Cotsarelis, G. (2004). Capturing and profiling adult hair follicle stem cells. Nature Biotechnology 22, 411-417.
Morris, R.J., and Potten, C.S. (1999). Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. Journal of Investigative Dermatology 112, 470-475.
Nakamura, Y. (1997). Cleaning up on beta-catenin. Nature Medicine 3, 499-500.
Nelson, W.J., and Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483-1487.
Novak, A., and Dedhar, S. (1999). Signaling through beta-catenin and Lef/Tcf. Cellular and Molecular Life Sciences 56, 523-537.
Nowak, J.A., Polak, L., Pasolli, H.A., and Fuchs, E. (2008). Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33-43.
Ohyama, M., Zheng, Y., Paus, R., and Stenn, K.S. (2010). The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Experimental dermatology 19, 89-99.
Oliver, R.F. (1966). Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. Journal of Embryology & Experimental Morphology 15, 331-347.
Osada, A., Iwabuchi, T., Kishimoto, J., Hamazaki, T.S., and Okochi, H. (2007). Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Engineering 13, 975-982.
Panteleyev, A.A., Paus, R., Wanner, R., Nurnberg, W., Eichmuller, S., Thiel, R., Zhang, J., Henz, B.M., and Rosenbach, T. (1997). Keratin 17 gene expression during the murine hair cycle. Journal of Investigative Dermatology 108, 324-329.
Paus, R., and Cotsarelis, G. (1999). The biology of hair follicles. The New England journal of medicine 341, 491-497. Pellegrini, G., Ranno, R., Stracuzzi, G., Bondanza, S., Guerra, L., Zambruno, G., Micali, G., and De Luca, M. (1999). The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 68, 868-879.
Pellegrini, G., Traverso, C.E., Franzi, A.T., Zingirian, M., Cancedda, R., and De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349, 990-993.
Qiao, J., Zawadzka, A., Philips, E., Turetsky, A., Batchelor, S., Peacock, J., Durrant, S., Garlick, D., Kemp, P., and Teumer, J. (2009). Hair follicle neogenesis induced by cultured human scalp dermal papilla cells. Regenerative Medicine 4, 667-676.
Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., and Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. The New England journal of medicine 363, 147-155.
Reynolds, A.J., and Jahoda, C.A. (1992). Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development 115, 587-593.
Reynolds, A.J., and Jahoda, C.A. (1996). Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Development 122, 3085-3094.
Rheinwald, J.G., and Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331-343. Rheinwald, J.G., and Green, H. (1977). Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 265, 421-424.
Rogers, G., Martinet, N., Steinert, P., Wynn, P., Roop, D., Kilkenny, A., Morgan, D., and Yuspa, S.H. (1987). Cultivation of murine hair follicles as organoids in a collagen matrix. Journal of Investigative Dermatology 89, 369-379.
Roh, C., Tao, Q., and Lyle, S. (2004). Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skin. Physiological Genomics 19, 207-217.
Shimizu, H., and Morgan, B.A. (2004). Wnt signaling through the beta-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. Journal of Investigative Dermatology 122, 239-245.
Sneddon, J.B., Borowiak, M., and Melton, D.A. (2012). Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 491, 765-768.
Sohn, K.C., Shi, G., Jang, S., Choi, D.K., Lee, Y., Yoon, T.J., Park, H., Hwang, C., Kim, H.J., Seo, Y.J., Lee, J.H., Park, J.K., and Kim, C.D. (2009). Pitx2, a beta-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro. Journal of Dermatological Science 54, 6-11.
Stenn, K.S., and Cotsarelis, G. (2005). Bioengineering the hair follicle: fringe benefits of stem cell technology. Current Opinion in Biotechnology 16, 493-497.
Stenn, K.S., and Paus, R. (2001). Controls of hair follicle cycling. Physiological reviews 81, 449-494.
Tani, H., Morris, R.J., and Kaur, P. (2000). Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences 97, 10960-10965.
Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T., and Lavker, R.M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451-461.
Tenchini, M.L., Ranzati, C., and Malcovati, M. (1992). Culture techniques for human keratinocytes. Burns : journal of the International Society for Burn Injuries 18 Suppl 1, S11-16.
Toyoshima, K., Asakawa, K., Ishibashi, N., Toki, H., Ogawa, M., Hasegawa, T., Irie, T., Tachikawa, T., Sato, A., Takeda, A., and Tsuji, T. (2012). Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nature Communications 3.
Verheyen, E.M., and Gottardi, C.J. (2010). Regulation of Wnt/beta-catenin signaling by protein kinases. Developmental Dynamics 239, 34-44.
Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041.
Wang, Z.L., Wong, P., Langbein, L., Schweizer, J., and Coulombe, P.A. (2003). Type II epithelial keratin 6hf (K6hf) is expressed in the companion layer, matrix, and medulla in anagen-stage hair follicles. Journal of Investigative Dermatology 121, 1276-1282.
Waters, J.M., Richardson, G.D., and Jahoda, C.A. (2007). Hair follicle stem cells. Seminars in cell & developmental biology 18, 245-254.
Weinberg, W.C., Goodman, L.V., George, C., Morgan, D.L., Ledbetter, S., Yuspa, S.H., and Lichti, U. (1993). Reconstitution of hair follicle development in vivo: determination of follicle formation, hair growth, and hair quality by dermal cells. Journal of Investigative Dermatology 100, 229-236.
Wodarz, A., and Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology 14, 59-88.
Yen, C.M., Chan, C.C., and Lin, S.J. (2010). High-throughput reconstitution of epithelial-mesenchymal interaction in folliculoid microtissues by biomaterial-facilitated self-assembly of dissociated heterotypic adult cells. Biomaterials 31, 4341-4352.
Young, T.H., Lee, C.Y., Chiu, H.C., Hsu, C.J., and Lin, S.J. (2008). Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials 29, 3521-3530.
Young, T.H., Tu, H.R., Chan, C.C., Huang, Y.C., Yen, M.H., Cheng, N.C., Chiu, H.C., and Lin, S.J. (2009). The enhancement of dermal papilla cell aggregation by extracellular matrix proteins through effects on cell-substratum adhesivity and cell motility. Biomaterials 30, 5031-5040.
Zheng, Y., Du, X., Wang, W., Boucher, M., Parimoo, S., and Stenn, K. (2005). Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. Journal of Investigative Dermatology 124, 867-876.
|