跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:岑尚仁
研究生(外文):Sun-Zen Chen
論文名稱:石墨、鋁及製程參數對燒結銅基摩擦材料磨潤性質影響之研究
論文名稱(外文):Effects of Graphite, Aluminum and Process Parameters on Tribological Properties of Sintered Copper Based Friction Materials
指導教授:陳瑾惠朱建平朱建平引用關係
指導教授(外文):Jiin-Huey Chern LinChien-Ping Ju
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:195
中文關鍵詞:摩擦材料磨耗磨潤
外文關鍵詞:friction materialweartribology
相關次數:
  • 被引用被引用:8
  • 點閱點閱:647
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬基摩擦材料因其在高溫時仍能維持一定的摩擦係數,而不產生高溫退化的現象,因而可以使用的範圍較為寬廣、較不會因環境的不同而造成摩擦特性的改變。然而,金屬基摩擦材料因為製程比半金屬基摩擦材料複雜,因而限制了金屬基摩擦材料的發展。本論文的一大重點即在討論銅基摩擦材料製程、成分對其性質的影響,期能藉由改變製程條件,而製出低成本、高性能的金屬基摩擦材料。
研究結果顯示,本研究所提出之大氣燒結銅基摩擦料不論在摩擦係數或磨耗量、及其熱穩定性方面,均比商用者具有較佳的性質,而且在連續多次的模擬煞車的測試上,本銅基摩擦材料也表現出極高的穩定性及再現性,這證明了大氣燒結的可行性。本研究所提出之製程,較一般高溫真空爐、保護氣氛控制之粉末冶金製程,可大幅地降低投資及生產成本,同時也比商用者具有更穩定的摩擦係數及較低摩擦厚度損失。
實驗的第二階段即著重於碳、鋁含量的變化以及製程參數對燒結銅基摩擦材料的性質影響。燒結後銅基摩擦材料的密度皆下降,這可能是因為燒結過程中產生氧化物及孔隙率的增加。使用較低的壓模壓力(394 MPa)及較慢的升溫速率(0.5 0C/min),可以降低20 vol%碳+10 vol%鋁試片燒結後的孔隙度,而且使得其密度由高壓(590 MPa)、快速(10 0C/min)製程中的3.93 g/cm3提高至4.26 g/cm3。在等速摩擦測試中,隨著試片碳含量的增加,摩擦係數與摩擦溫度都會上升,雖然,20 vol%碳+10 vol%鋁的試片在利用高壓、快速的製程燒結後會得到高且穩定的摩擦係數(m= 0.5~0.6),但是磨耗量卻過大(0.178 g),而利用較低壓模壓力及較慢的燒結速度,可以使得相同的試片的磨耗量大幅下降(0.006 g),同時也能維持相當的摩擦係數(m= 0.4~0.5)。摩擦測試的結果發現,不添加鋁及添加20 vol%的鋁都會對摩擦測試有負面的效果,因此,最佳的組合為添加10 vol%的鋁。EDS及磨面觀察分析結果顯示,在試片上形成一層轉移層,可以保護試片,而降低摩擦所造成的摩擦重量損失。50次模擬煞車結果顯示,20 vol%碳+10 vol%鋁的試片擁有高的摩擦係數(m= 0.55~0.65)及低磨耗量(0.023 g),因此,適合作為一煞車摩擦材料。
本研究的結果顯示,大氣下燒結的銅基試片能具有良好的摩擦特性。利用較低壓模壓力及較慢的升溫速率燒結20 vol%的碳+10 vol%鋁的試片,擁有高摩擦係數低磨耗量,是一良好的金屬基摩擦材料。
Metallic friction materials are used for their high thermal resistance. They are usually used in sever environments or in heavy-duty conditions. Although the friction behaviors of metallic friction materials are better than semi-metallic materials, the complex manufacture process constrains the usage of metallic friction materials. The first part of this study was to sinter friction material in air.
It may be understood from the data of the tests that friction materials of the present works have very high thermal and tribological stability. Further, the air-sintered process reduces largely the investment and productive cost compared to the conventional power metallurgy methods using a high temperature vacuum/inert furnace under a protective atmosphere, and at the same time the products of the present work has a higher friction coefficient and better wear characteristics than the commercial products.
In the second part, the focus of the study has been placed on the effect of graphite, aluminum content and process parameters on tribological behavior of a Cu-based friction material sliding against FC30 cast iron. Experimental results indicated that the densities of the Cu-based specimens sintered in air were decreased, and the oxygen contents were increased. Althlough 20 vol% C +10 vol% Al specimen (by compacted at 590 MPa and treated with 10 0C/min heating rate) possessed highest friction coefficient (m= 0.5~0.6), its weight loss was too large (0.178 g). After choosing lower compaction pressure (394 MPa) and lower heating rate (0.5 0C/min), 20 vol% C +10 vol% Al specimen had high enough friction coefficient (m= 0.4~0.5) and low weight loss (0.006 g). The results of wear tests indicated that samples with the 20 vol% or 0 vol% Al contents were not desirable. The observation of the worn surfaces showed that the transfer film can protect the specimens. The simulation data indicated that 20 vol% C +10 vol% Al specimen (by compacted at 394 MPa and treated with 0.5 0C/min heating rate) had a high friction coefficient (m= 0.55~0.65) and a low weight loss (0.023 g).
It was concluded that the addition of 20 vol% graphite and 10 vol% aluminum by using lower compaction pressure and lower heating rate was beneficial to improve the properties of air-sintered Cu-based friction materials.
中文摘要Ⅰ
英文摘要Ⅲ
致謝Ⅴ
總目錄Ⅶ
表目錄XII
圖目錄XIII
第一章 前言1
1.1 摩擦簡介1
1.1.1 摩擦、磨潤、摩擦力以及磨耗1
1.1.2 摩擦的種類及方式2
1.2 摩擦材料簡介4
1.2.1 摩擦材料與煞車、離合器4
1.2.2 煞車系統的構造與分類7
1.2.3 摩擦材料的要求11
1.2.4 摩擦材料的發展與分類12
1.3複合材料簡介16
1.3.1 何謂複合材料16
1.3.2 複合材料的優勢17
1.4 粉末冶金與燒結金屬基複合材料18
1.4.1 粉末冶金及其發展歷史18
1.4.2 粉末冶金的優勢19
1.4.3 粉末冶金的製程22
1.4.4 燒結金屬基複合材料24
1.5 燒結金屬基摩擦材料24
1.5.1 金屬基地與合金元素24
1.5.2 潤滑劑25
1.5.3 摩擦調整劑25
1.5.4 燒結金屬基摩擦材料之比較26
1.5.5 燒結金屬基摩擦材料之優缺點28
1.5.6 燒結金屬基摩擦材料未來之發展與展望28
第二章 與研究相關之理論背景31
2.1 粉末冶金技術31
2.1.1 粉末的特性與混合31
2.1.2 壓製生胚31
2.1.3 燒結34
2.2 硬度的標準與測試方式40
2.2.1 硬度測試40
2.2.2洛氏硬度測試法41
2.3 磨潤學45
2.3.1 摩擦理論45
2.3.2 金屬磨耗行為47
2.3.3 金屬的磨耗機制47
2.3.4 磨耗的測量49
2.4 速度及溫度對摩擦係數與磨耗的影響50
2.4.1 溫度的影響50
2.4.2速度的影響50
2.5 複合材料的強化機制51
2.5.1 強化相的分類51
2.5.2 層狀複合材料54
第三章 研究目的與方法56
3.1 研究動機與目的56
3.1.1 空氣中燒結製程之可行性56
3.1.2成分及製程參數對銅基摩擦材料性質之影響57
3.2 實驗流程59
3.2.1 秤取粉末與混合粉末61
3.2.2 壓製生胚61
3.2.3 量測密度64
3.2.4 燒結試片64
3.2.5 後處理加工66
3.2.6 燒結體的性質測試67
3.3 摩擦測試與磨耗試驗機70
3.3.1 標準摩擦試驗機與摩擦測試方式70
3.3.2 盤對盤(disk-on-disk)摩擦試驗機及其測試方法75
第四章 結果與討論85
4.1 大氣燒結製程可行性之評估85
4.1.1 成分與製程參數的設定85
4.1.2 等速摩擦測試86
4.1.3 模擬煞車測試90
4.2 試片與對磨材的準備93
4.2.1 試片成分、編號與製程參數93
4.2.2 對磨材的成分97
4.3 銅基摩擦材料之密度變化97
4.3.1 生胚密度的變化97
4.3.2 燒結體的密度變化101
4.4 銅基摩擦材料之硬度變化102
4.4.1 燒結前生胚硬度變化102
4.4.2 燒結後銅基摩擦材料之硬度變化106
4.5 銅基摩擦材料之孔隙度108
4.6 相成分的分析111
4.6.1 生胚的XRD分析結果111
4.6.2 燒結體的XRD分析結果111
4.6.3 燒結體之EDS分析123
4.7 碳含量對等速摩擦測試的影響125
4.7.1 摩擦係數的變化126
4.7.2 摩擦溫度的變化131
4.7.3 碳含量對磨耗量的影響135
4.8 不同碳含量試片的等速磨擦表面分析與觀察138
4.8.1 摩擦表面的觀察138
4.8.2 摩擦表面之EDS分析與粗糙度量測153
4.9 鋁含量對等速摩擦測試的影響157
4.9.1 摩擦係數的變化157
4.9.2 摩擦溫度的變化159
4.9.3 鋁含量對磨耗量的影響159
4.10 不同鋁含量試片的磨擦表面分析與觀察163
4.10.1 摩擦表面的觀察163
4.10.2 摩擦表面之EDS分析與粗糙度量測168
4.11 模擬煞車測試172
4.11.1 摩擦係數172
4.11.2 摩擦溫度175
4.11.3 摩擦重量損失176
第五章 結論182
第六章 參考文獻186
論文相關著作194

表目錄
表1-1 因界面摩擦所引起的能源浪費18
表1-2適用於乾式摩擦條件之金屬基摩擦材料28
表1-3 燒結銅基金屬基摩擦材料成分29
表2-1 壓胚密度與加壓壓力實驗式33
表2-2 燒結的基本機構39
表2-3 洛氏硬度試驗機之尺度選用表43
表4-1 試片編號及各成分之體積百分率94
表4-2 試片編號及各成分之重量百分率95
表4-3 製程參數代碼之比較96
表4-4 對磨材(FC30)之各元素重量百分比99
表4-5 燒結銅基摩擦材料燒結後EDS分析之元素重量百分比124
表4-6 不同碳含量之銅基摩擦材料等速摩擦後EDS分析之元素重量百分比154
表4-7 不同碳含量之銅基摩擦材料等速摩擦後表面粗糙度之量測155
表4-8 不同鋁含量之燒結銅基摩擦材料等速摩擦後EDS分析之元素重量百分比170
表4--9 不同鋁含量之銅基摩擦材料等速摩擦後表面粗糙度之量測171

圖目錄
圖1-1 典型的摩擦方式:(a)滾動摩擦 (b)滑動摩擦5
圖1-2 兩種不同的摩擦接觸面:(a)保形的 (b)非保形的6
圖1-3 (a)鼓式煞車及(b)碟式煞車剖面圖8
圖1-4 煞車操作示意圖(a)鼓式煞車及(b)碟式煞車9
圖1-5 煞車來令片與煞車蹄片組裝示意圖(a)鼓式(b)碟式10
圖1-6 各式材料摩擦特性與溫度關係圖(a)摩擦係數與溫度(b)磨耗量與溫度14
圖1-7 鐵粉與粉末冶金之發展20
圖1-8 銅粉與粉末冶金之發展21
圖2-1 (a)固相(b)液相燒結35
圖2-2 複合材料的分類52
圖2-3 各種強化方式示意圖53
圖3-1 實驗流程圖60
圖3-2 斜式雙錐混粉機構造示意圖62
圖3-3 方形、圓形模具形狀示意圖63
圖3-4 填粉及壓製生胚等步驟示意圖65
圖3-5 標準摩擦試驗機示意圖72
圖3-6 Disk-on-disk摩擦試驗機76
圖3-7 摩擦試片與治具組合示意圖77
圖4-1 新式製程之燒結銅基摩擦材料之標準摩擦測試87
圖4-2 新式製程之燒結銅基摩擦材料與商用來令片之摩擦係數比較圖88
圖4-3 新式製程之燒結銅基摩擦材料與商用來令片之摩擦前後厚度損失89
圖4-4 新式製程之燒結銅基摩擦材料之模擬煞車測試91
圖4-5 試片熱處理流程示意圖98
圖4-6 銅基燒結摩擦材料之密度變化100
圖4-7 20A10H與C20A10L試片之外觀比較103
圖4-8 銅基摩擦材料燒結前後硬度(HRS)變化104
圖4-9 銅基摩擦材料燒結前後硬度(HRR)變化105
圖4-10 銅基摩擦材料燒結後之孔隙度比較109
圖4-11 碳含量變化與生胚之XRD繞射圖形112
圖4-12 鋁含量變化與生胚之XRD繞射圖形113
圖4-13 不同碳含量之銅基摩擦材料燒結後之表面XRD繞射圖形(H製程)115
圖4-14 不同碳含量之銅基摩擦材料燒結後之內部XRD繞射圖形(H製程)116
圖4-15 不同碳含量之銅基摩擦材料燒結後之內部XRD繞射圖形(L製程119
圖4-16 不同鋁含量之銅基摩擦材料燒結後之XRD繞射圖形121
圖4-17 燒結銅基摩擦材料之碳含量對等速煞車測試之摩擦係數的影響(H製程)127
圖4-18 燒結銅基摩擦材料之碳含量對等速煞車測試之摩擦係數的影響(L製程)129
圖4-19 燒結銅基摩擦材料之碳含量對等速煞車測試之摩擦溫度的影響(H製程)132
圖4-20 燒結銅基摩擦材料之碳含量對等速煞車測試之摩擦溫度的影響(L製程)134
圖4-21 燒結銅基摩擦材料之碳含量對等速煞車測試之重量損失的影響136
圖4-22 C00A10H等速摩擦測試後之磨面觀察139
圖4-23 FC30 (vs C00A10H)等速摩擦測試後之磨面觀察140
圖4-24 C10A10H等速摩擦測試後之磨面觀察141
圖4-25 FC30 (vs C10A10H)等速摩擦測試後之磨面觀察142
圖4-26 C20A10H等速摩擦測試後之磨面觀察143
圖4-27 FC30 (vs C20A10H)等速摩擦測試後之磨面觀察144
圖4-28 C00A10L等速摩擦測試後之磨面觀145
圖4-29 FC30 (vs C00A10L)等速摩擦測試後之磨面觀察146
圖4-30 C10A10L等速摩擦測試後之磨面觀察147
圖4-31 FC30 (vs C10A10L)等速摩擦測試後之磨面觀察148
圖4-32 C20A10L等速摩擦測試後之磨面觀察149
圖4-33 FC30 (vs C20A10L)等速摩擦測試後之磨面觀察150
圖4-34 燒結銅基摩擦材料之鋁含量對等速煞車測試之摩擦係數的影響158
圖4-35 燒結銅基摩擦材料之鋁含量對等速煞車測試之摩擦溫度的影響160
圖4-36 燒結銅基摩擦材料之鋁含量對等速煞車測試之重量損失的影響161
圖4-37 C20A00L等速摩擦測試後之磨面觀察164
圖4-38 FC30 (vs C20A00L)等速摩擦測試後之磨面觀察165
圖4-39 C20A20L等速摩擦測試後之磨面觀察166
圖4-40 FC30 (vs C20A20L)等速摩擦測試後之磨面觀察167
圖4-41 燒結銅基摩擦材料之碳含量對模擬煞車之摩擦係數的影響173
圖4-42 燒結銅基摩擦材料之鋁含量對模擬煞車之摩擦係數的影響174
圖4-43 燒結銅基摩擦材料之碳含量對模擬煞車之摩擦溫度的影響177
圖4-44 燒結銅基摩擦材料之鋁含量對模擬煞車之摩擦溫度的影響178
圖4-45 燒結銅基摩擦材料之碳含量對模擬煞車之重量損失的影響179
圖4-46 燒結銅基摩擦材料之鋁含量對模擬煞車之重量損失的影響180
Anderson A.E.: “Friction and wear of automotive brakes” in ASM handbook, vol.18, 1992, p569-577.
Ashby M.F.: Materials Selection in Mechanical Design, 1992, Pergamon, Oxford, Chapter 1, Chapter 4.
Awasthi S. and Wood J.L.: C/C composite material for aircraft brakes, Ceramic Engineering and Science Proceedings, 1988, vol.9, p553-560.
Baker R. and Foulkes S.N.: U.S. Patent 4,871,394, 1989.
Bauer H.: Automotive brake systems, 1995, Robert Bosch, Stuttgart, p4-8.
Bickle W., Funke R. and Pfoh R.: Composite material for sliding surface bearings, U.S. Patent 4,394,275, 1983.
Blau P.J.: “Glossary of terms” in ASM handbook, vol.18, 1992, p1-24.
Blau P.J.: Friction science and technology, 1996, Marcel Dekker, New York, Chapter 1, Chapter 3, Chapter 7.
Bowden F.P. and Tabor D.: Friction: An Introduction to Tribology, 1973, Robert E. Krieger Publishing Company, Malabar, Chapter I.
Coultas D.B. and Samet J.M.: Occupational lung cancer, Clinics in Chest Medicine, 1992, vol.13, no.2, p351-354.
Cui M., Kang S.B. and Lee J.M.: Wear of spray deposited Al-6Cu-Mn alloy under dry sliding conditions, Wear, 2000, vol.240, no.1-2, p186-198.
Danninger H.: Pore formation during sintering of Fe-Cu and its effects on mechanical properties, Powder Metallurgy International, 1987, vol.19, no.1, p19-23.
Datta P. and Upadhaya G.S.: Copper enhances the sintering of duplex PM stainless steels, Metal Powder Report, 1999, Jan, p26-29.
DeHoff R.T.: Thermodynamics in materials science, 1993, McGraw-Hill, New York, Chapter 11.
Dowson G.: Powder Metallurgy The Process and its Products, 1990, Adam Hilger, Bristol, p1-9.
Dudrová E., Kabátová M., Molnár F. and Bureš R.: Direct vacuum sintering behaviour of M2 high speed steel powder with copper and graphite additions, Powder Metallurgy, 1994, vol.37, no.3, p206-211.
Filip P., Wright M.A. and Marx D.T.: On-highway brake characterization and performance evaluation, Materially Speaking, 1997, vol.11, no.1, p2-7.
Fuller D.D.: Theory and practice of lubrication for engineers, 1956, Wiley, New York.
Garbar I.I.: Formation and separation of the fragmented surface structure of low-carbon steel and copper under friction, Wear, 1996, vol.198, p86-92.
Gaskell D.R.: Introduction to metallurgical thermodynamics, 1981, McGraw-Hill, New York, Chapter 10.
Hutchings I.M.: Tribology: Friction and wear of engineering materials, 1992, CRC, Boca Raton, Chapter 1, Chapter 3.
Imada Y., Ito H. and Nakajima K.: Effect of adding Sn to graphite on electrical contact resistance between sliding surfaces of graphite and Cu, IEEE Transaction on Components, Hybrids and Manufacturing Technology, 1992, vol.15, no.1, p126-132.
Jacko M.G. and Rhee S.K.: Brake linings and clutch facings, p144~154.
Jacko M.G., DuCharme R.T. and Somers J.H.: Brake and clutch emissions generated during vehicle operation, SAE Transactions, 1973, vol.82, p1813-1831.
Jamil S.J. and Chadwick G.A.: Investigation and analysis of liquid phase sintering of Fe-Cu and Fe-Cu-C compacts, Powder Metallurgy, 1985, vol.28, no.2, p65-71.
Ju C.P. and Chern Lin J.H.: Auger electron microscopy study of transfer film induced in an aircraft braking tribosystem, Materials Chemistry and Physics, 1996, vol.44, p30-36.
Kang S.: A study of friction and wear characteristics of copper- and iron- based sintered materials, Wear, 1993, vol.162, part B, p1123-1128.
Kim J.W., Kang B.S., Kang S.S. and Kang S.-J.L.: Effect of sintering temperature and pressure on sintered and friction properties of a Cu based friction material, Powder Metallurgy International, 1988, vol.20, no.3, p32-34.
Kondoh K. and Takano Y.: Sintered contact component, U.S. Patent 5,518,519, 1996.
Kondoh K.: Method of making sintered contact component, U.S. Patent 5,501,833, 1996.
Krentscher B.: Copper-based sintered material, its use, and method of producing molded parts from the sintered material, U.S. Patent 5,125,962, 1992.
Kwolek J.P., Urso W.G. and Jones T.D.: Method of welding a friction material to a reinforcing member, U.S. Patent 4,050,620, 1977.
Lenel F.V.: Powder Metallurgy Principles and Applications, 1980, Metal Powder Industries Federation, Princeton.
Marx G., Bach J. and Lorenz J.: Wear disks for crimping machines, U.S. Patent 5,105,513, 1992.
Matthews F.L. and Rawlings R.D.: Composite materials: engineering and science, 1994, Chapman & Hall, London, Chapter 1.
Molinari A. and Straffelini G.: Surface durability of steam tread sintered iron alloys, Wear, 1995, vol.181, iss.1, p334-341.
Moshksar M.M.: Mechanical and metallurgical properties of P/M porous materials, Journal of Materials Processing Technology, 1993, vol.38, p483-490.
Newman L.B.: Friction materials recent advances, 1978, Noyes Data Corporation, New Jersey, Introduction.
Nichols S.: Aluminum by Design, 2000, Carnegie Museum of Art, New York, p13-57.
Orthwein W.C.: Clutches and brakes design and selection, 1986, Marcel Dekker, New York, Chapter 2, Chapter 5, Chapter 6.
Quinn T.F.J.: Review of oxidation wear part I: The oringins of oxidational wear, Tribology International, 1983, vol.16, no.5, p257-271
Rabinowicz E.: “The tribology of magnetic recording systems -an overview” in Tribology and mechanics of magnetic storage systems, vol.Ⅲ, 1986, ASME, New York.
Ruppe J.P.: Today and the future in aircraft wheel and brake development, Canadian Aeronautics and Space Journal, 1980, vol.26, p209-216.
Shima S., Isonishi K. and Tokizane M.:粉体成形技術の現狀と動向,日本塑性加工學會誌 (Journal of the Japan Society Technology of Plasticity),1991,第32卷,p1055-1059.
Stanton G.E.: New designs for commercial aircraft wheels and brakes, Journal of Aircraft, 1968, vol.5, p73-77.
Stott F.H.: The role of oxidation in the wear of alloys, Tribology international, 1998, vol.31, no.1-3, p61-p71.
Szeri A.Z.: Tribology Friction, Lubrication and Wear, 1980, Hemisphere Publishing Corporation, Washington, Chapter 1.
Van Horn K.R.: Aluminum vol.II Design and Application, 1971, Chapter 25, p643-662.
Venkatu D.A.: Brake friction material with reinforcement material, U.S. Patent 4,278,153, 1981.
Ward M.: Friction element and method of manufacture thereof, U.S. Patent 4,576,872, 1986.
Weaver J.V.: Advanced materials for aircraft brakes, Aeronotical Journal, 1972, p695-698.
Webster J.: Automotive suspension, steering and brakes, 1987, Delmar Publishers, New York, Unit 12.
White D.G.: “What’s ahead for P/M?” in P/M Materials: Advances in Powder Metallurgy —1991 vol.5, 1991, Metal Powder Industries Federation (MPIF) and American Powder Metallurgy Institute (APMI), New Jersey.
Yamaguchi K., Takakura N. and Imatani S.: Compaction and sintering characteristics of composite metal powders, Journal of Materials Processing Technology, 1997, vol.63, p364-369.
Zhang Y., Chen Y., He R. and Shen B.: Investigation of tribological properties of brake shoe materials phosphorous cast irons with different graphite morphologies, Wear, 1993, vol.166, iss.2, p179-186.
王遐,“粉體混合與造粒”粉末冶金技術手冊,1994,中華民國產業科技發展協進會等,p97-133。
世界字典百科大圖鑑,凱信出版事業有限公司,1997全球中文版,p432。
白同慶、李東生,添加微量錫對銅基摩擦材料性能的影響,材料工程,1998,10期,p30-32。
早坂中郎、山口守衛,構造用粉末冶金製品の開發,特殊鋼,1987,36卷6號。
行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石綿暴露防制研究,1996,勞工衛生組,台北。
何信威、陳豐彥,“燒結摩擦材料”,粉末冶金技術手冊,1994,中華民國產業科技發展協進會等,p445-457。
汪建民,“粉末冶金導論”,粉末冶金技術手冊,1994,中華民國產業科技發展協進會等,p3-17。
汽車用煞車襯,中國國家標準(CNS)第2586號,1966年3月1日公布,1985年6月27日修訂,經濟部中央標準局。
卲荷生、曲敬信、許小棣、陳華輝,摩擦與磨損,1992,煤炭工業出版社,北京,第五章。
林群新,行車安全的秘密武器-制動系統材料,工業材料,1994,88期,p89-95。
段維新,“燒結理論”粉末冶金技術手冊,1994,中華民國產業科技發展協進會等,p199-215。
陳剛毅,含鈀牙科汞齊合金之性質及微結構研究,1999,材料科學及工程學系,國立成功大學博士論文,第三章。
楊春欽,磨潤學原理與運用,科技圖書股份有限公司,1986,第三章,第九章。
燒結機械部品─その設計と製造,1987,日本粉末冶金工業,技術書院。
電子全文 電子全文(限國圖所屬電腦使用)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top