跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊士正
研究生(外文):Shih-Cheng Yang
論文名稱:氮摻雜對鈦金屬閘極費米能階之研究
論文名稱(外文):Nitrogen Incorporation Effects on Fermi-Level Pinning of Titanium Nitride (TiNx)
指導教授:賴朝松
指導教授(外文):Chao-Sung Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:63
中文關鍵詞:氮化鈦金屬費米能階
外文關鍵詞:Titanium nitrideFermi-level Pinng effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:860
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統電晶體,當通道長度與閘極厚度不斷的持續微縮,將面臨到多晶矽的空乏層效應、高閘極電阻值、硼的穿隧效應………等問題。近年來,許多學者研究利用耐火金屬和金屬氮化物來取代傳統的多晶矽,金屬閘極有下列幾項需求(1)適合的功函數(2)低電阻值(3)高熱穩定性(4)製程整合與高介電材料的相容性。然而金屬化合物的功函數與材料本身晶格結構、結晶相、應力及最近很熱門的Fermi level pinning effect息息相關,所以公函數的調整將是一個很重要的課題。
此論文,將使用DC sputter系統,利用氮(Nitrogen)來調整鈦(Titanium)金屬的功函數。除了氮化鈦(TiNx)熱穩定性的研究外,我們也確實看到不同比例(0%~12%)的氮(Nitrogen)可調變鈦(Titanium)金屬的功函數(4.0eV~4.95eV),而這功函數調變範圍涵蓋了整個矽能帶(Silicon bandgap),使氮化鈦(TiNx)閘極能夠應用於NMOS與PMOS兩種元件上。
另外我們進而對氮化鈦(TiNx) Fermi level pinning effect進行探討。我們發現氮化鈦(TiNx)在二氧化矽(Silicon dioxide) 的Fermi level pinning effect上有兩種機制。首先,當氮化鈦(TiNx)的氮(Nitrogen)含量於2%~6%時,其金屬公函數pinned在約4.8eV;可是當氮化鈦(TiNx)的氮(Nitrogen)含量在10%~12%時,其金屬公函數是pinned約4.3eV。再者,我們第一次發現氮化鈦(TiNx)在二氧化鉿(Hafnium dioxide)介電層上並無Fermi level pinning effect。
As scaling of channel length and gate oxide thickness in conventional transistor, the refractory metal and metal nitride gates are used to replace the polysilicon gate due to poly-depletion effects, high gate resistance, and boron penetration. The requirements of metal gate are as following: (1)favorable workfunction (2)low sheet resistance (3)high thermal stability (4)compatibility with high-k dielectric and integration technology. However, the work function of materials are depends on crystal-orientation, stress and Fermi level pinning effect.
In this work, the work function of titanium (Ti) was modified by nitrogen (N2) in dc reactive sputtering system. The thermal stability of TiN was systematic investigated. With increasing N2 flow ratio from 0% to 12%, the work function of TiN was tuned from conduction band (4.0eV) to near valence band (4.95eV). It suggest that TiN films have tunable effective work functions appropriate for both NMOS and PMOS device.
In addition, we discuss the Fermi-level pinning effect of TiN/SiO2 and TiN/HfO2 gate stacks. For TiN/SiO2 gate stacks, we observe that the Fermi-level pinning effect is quite different for low and high nitrogen ratio. The work function for low N2 flow ratio of TiNx (2%~6%) was pinned at about 4.8eV, while pinned at about 4.3eV for the high one (10%-12%). For TiNx (2%~6%), there are extrinsic states between TiN and SiO2 interface after post metal anneal (PMA). For TiNx (10%~12%), we suggested that some nitrogen induced extrinsic states (NIES) near the silicon conduction band. Nevertheless, we did not observe any pinning effect at TiNx/HfO2 gate stacks.
Contents
Acknowledgment i
Chinese Abstract ii
English Abstract iii
Contents iv
Content of Figures vi
List of Tables ix
Chapter 1 Introduction……………………………….……………………….1
1.1 Background………………………………………………………1
1.2 The motivation in this study………………..……………………3
1.3 Thesis Organization………………………...……………………3
Chapter 2 The Characterization of Titanium Nitride Thin Film…….…..6
2.1 Introduction……………………………………………….……...6
2.2 Experiments……………………………………….……………..7
2.3 Results and Discussion…………………….…………………….8
2.3.1 N2 flow ratio effects on TiN thin films……………………8
2.3.2 The influence of RTA treatment………….………………...8
2.4 Summary……………………………………….………………..9
Chapter 3 The characterization of Titanium Nitride Metal Gate…….…20
3.1 Introduction……………………………………………….…….20
3.2 Experiments………………………………………….…………21
3.3 Results and Discussion………………………….……………...21
3.3.1 Nitrogen effect on work function modification……….….21
3.3.2 Crystal orientation effect on work function………………22
3.4 Summary………………………………………………….…….23
Chapter 4 The Fermi-level Pinning Effect of TiN Metal Gate……..……34
4.1 Introduction……………………………………………….…….34
4.2 Experiments………………………………………….…………35
4.3 Results and Discussion………………………….……………...36
4.3.1 Nitrogen Incorporation Effects on Fermi-Level Pinning…36
4.4 Summary………………………………………………….…….38
Chapter 5 Conclusions and Future Works....................................................59
5.1 Conclusions……………………………………….…………….59
5.1.1 TiN thin film……………………………………………..59
5.1.2 TiN gate electrode………………………….…………….59
5.1.3 The Fermi-level pinning effect of TiN gate electrode……60
5.3 Future works…………………
[1] Semiconductor Industry Association (SIA), The National Technology
Roadmap for Semiconductos.[Online.] Availible WWW:
http://www.sematech.org/public/roadmap/index.him.
[2] A. Chatterjee, R. Chapman, K. Joyner, M. Yang, Q. He, D. Rogers, S.
Fang, et al., in IEDM Tech. Dig., p777, 1998.
[3] Jorgen Westliinder et al., “Variable work function in MOS capacitors utilizing nitrogen-controlled TiNx gate electrodes” Solid-state electronics, p389, 2004.
[4] H. Y. Yu et al., “Fermi Pinning-Induced Thermal Instability of Metal-Gate Work Function” IEEE Electron Device Letters, vol. 25, p337, May 2004.
[5] C. Ren et al., “Fermi Pinning-Induced Thermal Instability in the Effective Work Function of TaN in TaN/SiO2 gate stack” IEEE Electron Device Letters , vol. 25, p123, March 2004.
[6] Yee-Chia Yeo et al., “Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology” J. Appl. Phys., vol. 92, p7266, 2002.
[7] Yee-Chia Yeo et al., “Effects of High-k Gate Dielectric Materials on Metal and Silicon Gate Workfunctions” IEEE Electron Device Letters , vol. 23, p342, June 2002.
[8] Christopher C. Hobbs et al., “Fermi-Level Pinning at the Polysilicon/Metal Oxide Interface-Part I”, IEEE Transactions on Electron Devices, vol. 51, p971, June 2004.
[9] J. Westlinder et al., “On the Thermal Stability of Atomic Layer Deposited TiN as Gate Electrode in MOS Devices”, vol. 24, September 2003. IEEE Electron Device Letters , vol. 24, p550, September 2002.
[10] M. Wittmer, “Properties and microelectronic applications of thin films f
refractory metal nitrides” J. Vac. Sci. Technol. A. 3, p661, 1941.
[11] M. Kawamura et al., “Characterization of TiN films prepared by a conventional magnetron sputtering system: influence of nitrogen flow percentage and electrical properties” Solid-state electronics, p115, 1996.
[12] Dae-Gyu Park et al.,“Impact of atomic-layer-deposited TiN on the gate oxide quality of W/TiN/SiO2/Si metal -oxide-semiconductor structures” Applied Physics Letters, vol. 80, p2514, April 2002.
[13] K. Nakajima et al., “Work Function Controlled Metal Gate Electrode on Ultrathin Gate Insulators” VLSI, p95, 1999.
[14] Atsushi Yagishita et al., “Improvement of Threshold Voltage Deviation in Damascene Metal Gate Transistors” IEEE Transactions on Electron Devices, vol. 48, p1604, August 2001.
[15] Atsushi Yagishita et al., “High Performance Metal Gate MOSFETs Fabricated by CMP for 0.1μm Regime” IEEE IEDM, p29.3.1, 1998.
[16] Yoshinori Tsuchiya et al., “Physical Mechanism of Work Function Modulation due to Impurity Pileup at Ni-FUSI/SiO(N) Interface” IEEE IEDM, 2005.
[17] “International Technology Roadmap for Semiconductors” 2005 update,
published by the Semiconductor Industry Association.
[18] T. Hori, Gate Dielectric and MOS VLSIs (Springer, Berlin, 1997), p55.
[19] H. B. Michaelson, “The work function of the elements and its
periodicity” J. Appl. Phys. Vol. 48, p4729, 1977.
[20] P. Ranade et al., “Tunable Work Function Molybdenum Gate
Technology for FDSPI-CMOS” IEDM Tech. Dig., 2002.
[21] X. R. Cheng et al., “Nitridation-enhanced conductivity behavior and current transport mechanism in thin thermally nitrided SiO2” J. Appl. Phys., vol. 63, p797, February 1988.
[22] S. M. Sze, Physics of Semiconductors Devices, p., 403, Wiley, New York (1981).
[23] H. Jiang et al. “Structure of TiNx (0 < x < 1.1) films prepared by ion beam assisted-deposition” Thin solid film, 258 (1995) 51..
[24] L. Porte et al. “Vacancy effects in the x-ray photoelectron spectra of TiNx” Phys. Rev. B, 28 (1983) 3214.
[25] H. Hochst et al. “Photoemission study of the electronic structure of stoichiometric and substoichiometric TiN and ZrN” Phys. Rev. B, 25 (1982) 7183.
[26] J. K. Schaeffer, S. B. Samavedam, D. C. Gilmer, V. Dhandapani, P. J.Tobin, J. Mogab, B.-Y. Nguyen, B. E. White, Jr., S. Dakshina-Murthy, R. S. Rai, Z.-X. Jiang, R. Martin, M.V. Raymond, M. Zavala, L. B. La, J. A. Smith, R. Garcia, D. Roan, M. Kottke, and R. B. Gregory, “Physical and electrical properties of metal gate electrodes on HfO gate dielectrics,”J. Vac. Sci. Technol. B, vol. 21, no. 1, pp. 11–17, Jan./Feb. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top