跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡傑筆
研究生(外文):Hu, Jie-Bi
論文名稱:微米級尺寸生物樣品之質譜化學分析方法開發
論文名稱(外文):Development of mass spectrometric methods for chemical analysis of biological samples at microscale
指導教授:帕偉鄂本陳月枝陳月枝引用關係
指導教授(外文):Pawel L. UrbanChen, Yu-Chie
口試委員:余艇王亦生吳君泰
口試委員(外文):Yu TingWang, Yi-ShengWu, June-Tai
口試日期:2014-09-12
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:105
中文關鍵詞:質譜微尺度分析
外文關鍵詞:Mass spectrometryMicroscale analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:745
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多化學及生化過程無論是尺寸或時間皆發生於微米級尺寸。因此,適用於微米級尺寸之生物樣品分析方法可幫助科學家解決過往無法解決的問題,而進一步幫助我們對於理解生命的現象。質譜為21世紀最重要的分析技術之一,其具有相當卓越的速度、靈敏度及選擇性。因此在本論文中將以質譜為主要化學分析平台,嘗試開發數種可用於分析微米級尺寸生物樣品之策略。在論文(第二章) 的第一部分,微米級尺寸的分析平台成功被開發,其採用同位素標記策略(結合基質輔助雷射脫附/游離質譜及螢光顯微鏡) 觀察真菌菌絲之生長及代謝。基質輔助雷射脫附/游離質譜的主要缺點為所謂的"最佳點效應" - 在樣品沉澱物上含有濃度升高的分析物分子分布於微米級尺寸區域。因此,在第三章我研究雷射脫附/游離質譜樣品製備中,樣品沉澱物內代謝體和有機/無機化合物分布不均勻之現象,其在樣品點發生的"咖啡環" 現象藉由影像質譜進行研究。基質輔助雷射脫附/游離質譜適合用於微米級尺寸之化學分析,當使用質譜分析複雜的生物樣品時,適當的樣品處理也具有其重要性。在第四章,我開發一自動微萃取系統結合質譜及螢光顯微鏡。此開發平台可使生物樣品(單一果蠅及茶葉的碎片) 在被萃取當下同時被螢光顯微鏡及質譜分析。而在第五章,我提出一種分析方法其可用於了解含有各種微生物(如酵母菌) 之益生菌飲料之代謝體的時間分布。此研究使用多種不同的技術,諸如氣相層析及液相層析結合質譜。總括來說,四種以質譜為分析平台用於微米級尺寸樣品的化學分析方法已成功被開發。於第二章及第三章所呈現的方法可針對微米級尺寸生物樣品之生化分析提供高空間解析度。除可用於監測生物合成幾丁質過程中之中間物並擁有單菌絲之解析度(~ 10 微米) 外,也針對咖啡環現象進行探討,此研究之結果可幫助防止基質輔助雷射脫附/游離質譜影像於樣品製備過程中因人為所產生的干擾。而於第四章及第五章所提出則可適用於不同種類的樣品分析。其中一個方法可使複雜的生物樣品直接進行分析且無需任何樣品前處理,而另一種則可針對微生物豐富的益生菌飲料以適當的時間解析度進行代謝體變化之研究。最後,我希望於此篇論文中所提出之方法可於生物科學領域上有所貢獻。
Many chemical and biochemical processes occur on the microscale level with respect to both dimension and time scale. Analytical methods targeting microscale biological samples can improve our understanding of life, by helping scientists to solve the problems which could not be solved before. Mass spectrometry (MS) is one of the leading analytical techniques in the 21st century. It features superior speed, sensitivity, and selectivity. Hence, in this thesis, I attempted to develop strategies for chemical analysis of biological samples at microscale based on the use of MS. In the first part of the thesis (Chapter 2), a microscale analytical platform was established, which uses isotope-labeling strategy (combing with matrix-assisted laser desorption/ionization (MALDI)-MS with fluorescence microscopy) for monitoring metabolism of fungal mycelium. One of the main disadvantages of MALDI-MS is the so-called “sweet-spot effect” – occurrence of microscale sites within the sample deposits that contain an elevated concentration of analyte molecules. Therefore, in Chapter 3, I studied heterogeneous distribution of metabolites and inorganic/organic compounds within dry deposits of samples preparated for laser desorption/ionization MS. The occurrence of “coffee rings” in sample spots was investigated by means of mass spectrometric imaging. While, MALDI-MS is suitable for chemical analysis at microscale, adequate sample preparation is very important when employing it in the analyses of complex biological matrices. In Chapter 4, an automated microextraction system – combined with MS and fluorescence microscopy – was developed. The proposed platform enables disruption/extraction of biological samples (individual fruit flies and fragments of tea leaves), and simultaneous analysis by fluorescence microscopy and MS. Chapter 5 presents an analytical approach to reveal temporal profiles of metabolites in probiotic drinks, which contain various microorganisms (e.g. yeast). This study was possible thanks to application of several techniques, including gas chromatography and liquid chromatography hyphenated with MS. In conclusion, four MS-based analytical platforms have been developed for chemical analysis of biological samples at microscale. The approaches presented in Chapters 2 and 3 provide high spatial resolution for biochemical analysis of microscale samples. Monitoring of an intermediate in the biosynthesis of chitin with single hypha resolution (~ 10 μm) was possible. The phenomenon of coffee-ring formation was studied. The outcome of this study may help to prevent the occurrence of artifacts during sample preparation for MALDI-MS imaging. The methods presented in Chapters 4 and 5 are suitable for analysis of different kinds of samples. One of those methods enabled analysis of complex microscale biological samples without any sample pretreatment. The other one provided sufficient temporal resolution to reveal metabolic changes in microorganism-rich probiotic drinks. I hope that the methods developed in this project can contribute to new discoveries in bioscience.
中文摘要 ....................................................................................................................................................................... i
Abstract ........................................................................................................................................................................ ii
謝誌.............................................................................................................................................................................. iv
Table of contents ........................................................................................................................................................... v
List of abbreviations ................................................................................................................................................... viii
List of figures ................................................................................................................................................................. x
List of tables ............................................................................................................................................................... xvi
Chapter 1: Introduction ................................................................................................................................................ 1
1.1 Motivation .............................................................................................................................................................. 1
1.2 Model organisms in biology ................................................................................................................................... 1
1.3 Metabolomics ......................................................................................................................................................... 2
1.4 Mass spectrometry ................................................................................................................................................. 3
1.4.1 Ionization techniques ......................................................................................................................................... 3
1.4.2 Mass analyzer ..................................................................................................................................................... 8
1.5 Mass spectrometry imaging ................................................................................................................................. 10
1.5.1 Matrix-assisted laser desorption ionization imaging ........................................................................................ 11
1.5.2 Secondary ion mass spectrometry imaging ...................................................................................................... 12
1.5.3 Desorption electrospray ionization imaging ..................................................................................................... 13
1.6 Preparation of biological samples ........................................................................................................................ 14
1.7 Research goals ...................................................................................................................................................... 15
Chapter 2: On-target labeling of intracellular metabolites combined with chemical mapping of individual hyphae revealing cytoplasmic relocation of isotopologues ......................................................................................................16
2.1 Introduction .......................................................................................................................................................... 16
2.2 Experimental section ............................................................................................................................................ 17
2.2.1 Fabrication of chips .......................................................................................................................................... 17
2.2.2 On-chip culture ................................................................................................................................................. 18
2.2.3 Preparation of samples..................................................................................................................................... 18
2.2.4 Mass spectrometry ........................................................................................................................................... 19
2.2.5 Extraction of metabolites from mycelium ........................................................................................................ 19
2.3 Results and discussion .......................................................................................................................................... 20
2.3.1 On-chip labeling ............................................................................................................................................... 20
2.3.2 Single-cell imaging ............................................................................................................................................ 24
2.3.3 Control experiments ......................................................................................................................................... 25
2.4 Concluding remarks .............................................................................................................................................. 29
Chapter 3: Coffee-ring effects in laser desorption/ionization mass spectrometry ........................................................31
3.1 Introduction .......................................................................................................................................................... 31
3.2 Experimental section ............................................................................................................................................ 33
3.2.1 Sample preparation .......................................................................................................................................... 33
3.2.2 Synthesis and purification of fluorescent platinum nanoclusters .................................................................... 34
3.2.3 MALDI/SALDI imaging....................................................................................................................................... 34
3.3 Results and discussion .......................................................................................................................................... 34
3.3.1 Coffee rings in SALDI spots ............................................................................................................................... 34
3.3.2 Coffee rings in MALDI spots ............................................................................................................................. 39
3.3.3 An attempt to suppress coffee-ring effect in Laser desorption ionization-mass spectrometry ....................... 42
3.4 Concluding remarks .............................................................................................................................................. 43
Chapter 4: Automated system for extraction and instantaneous analysis of millimeter-sized samples ........................44
4.1 Introduction .......................................................................................................................................................... 44
4.2 Experimental section ............................................................................................................................................ 46
4.2.1 Materials........................................................................................................................................................... 46
4.2.2 Sample preparation device ............................................................................................................................... 46
4.2.3 Electronic microcontroller ................................................................................................................................ 49
4.2.4 Mass spectrometry ........................................................................................................................................... 51
4.2.5 Samples ............................................................................................................................................................ 51
4.2.6 Data treatment ................................................................................................................................................. 52
4.3 Results and discussion .......................................................................................................................................... 54
4.3.1 Analysis of single fruit flies ............................................................................................................................... 55
4.3.2 Matching metabolic profiles with gender ........................................................................................................ 63
4.3.3 Analysis of individual fragments of commercial tea leaves .............................................................................. 65
4.3.4 Analysis of trace amounts of powdered drugs ................................................................................................. 69
4.4 Concluding remarks .............................................................................................................................................. 70
Chapter 5: On the dynamics of kefir volatome .............................................................................................................72
5.1 Introduction .......................................................................................................................................................... 72
5.2 Experimental section ............................................................................................................................................ 73
5.2.1 Materials........................................................................................................................................................... 73
5.2.2 Samples and microbial cultures ........................................................................................................................ 74
5.2.3 Analysis of volatile secondary metabolites by GC-MS ...................................................................................... 74
5.2.4 Analysis by matrix-assisted laser desorption/ionisation mass spectrometry ................................................... 75
5.2.5 Analysis by liquid chromatography coupled to mass spectrometry ................................................................. 76
5.2.6 Glucose assay ................................................................................................................................................... 76
5.2.7 Ethanol assay .................................................................................................................................................... 77
5.2.8 Instruments ...................................................................................................................................................... 77
5.2.9 Data treatment ................................................................................................................................................. 77
5.3 Results and discussion .......................................................................................................................................... 78
5.3.1 Build-up of volatile extracellular metabolites in probiotic drinks during secondary fermentation .................. 78
5.3.2 Yeast culture as a simple metabolic model of kefir .......................................................................................... 84
5.3.3 Analysis by matrix-assisted laser desorption/ionisation mass spectrometry ................................................... 87
5.3.4 Analysis by liquid chromatography coupled to mass spectrometry ................................................................. 89
5.4 Concluding remarks .............................................................................................................................................. 90
Chapter 6: Conclusions and Perspectives .....................................................................................................................91

[1] Chen, G. Y.; Ewing, A. G., Critical Reviews in Neurobiology 1997, 11, 59-90.
[2] Cluzel, P.; Surette, M.; Leibler, S., Science 2000, 287, 1652-1655.
[3] Amatore, C.; Arbault, S.; Guille, M.; Lemaitre, F., Chemical Reviews 2008, 108, 2585-2621.
[4] Andersson, H.; van den Berg, A., Current Opinion in Biotechnology 2004, 15, 44-49.
[5] Li, L. J.; Garden, R. W.; Sweedler, J. V., Trends in Biotechnology 2000, 18, 151-160.
[6] Fletcher, J. S.; Rabbani, S.; Henderson, A.; Blenkinsopp, P.; Thompson, S. P.; Lockyer, N. P.; Vickerman, J. C., Analytical Chemistry 2008, 80, 9058-9064.
[7] Chen, Y.-C.; Urban, P. L., Trac-Trends in Analytical Chemistry 2013, 44, 106-120.
[8] Kandiah, M.; Urban, P. L., Chemical Society Reviews 2013, 42, 5299-5322.
[9] Marshall, A. G.; Hendrickson, C. L., Annual Review of Analytical Chemistry 2008, 1, 579-599.
[10] Ankeny, R. A.; Leonelli, S., Studies in History and Philosophy of Science 2011, 42, 313-323.
[11] Adams, M. D.; Celniker, S. E.; Holt, R. A.; Evans, C. A.; Gocayne, J. D.; Amanatides, P. G.; Scherer, S. E.; Li, P. W.; Hoskins, R. A.; Galle, R. F.; George, R. A.; Lewis, S. E.; Richards, S.; Ashburner, M.; Henderson, S. N.; Sutton, G. G.; Wortman, J. R.; Yandell, M. D.; Zhang, Q.; Chen, L. X.; Brandon, R. C.; Rogers, Y. H. C.; Blazej, R. G.; Champe, M.; Pfeiffer, B. D.; Wan, K. H.; Doyle, C.; Baxter, E. G.; Helt, G.; Nelson, C. R.; Miklos, G. L. G.; Abril, J. F.; Agbayani, A.; An, H. J.; Andrews-Pfannkoch, C.; Baldwin, D.; Ballew, R. M.; Basu, A.; Baxendale, J.; Bayraktaroglu, L.; Beasley, E. M.; Beeson, K. Y.; Benos, P. V.; Berman, B. P.; Bhandari, D.; Bolshakov, S.; Borkova, D.; Botchan, M. R.; Bouck, J.; Brokstein, P.; Brottier, P.; Burtis, K. C.; Busam, D. A.; Butler, H.; Cadieu, E.; Center, A.; Chandra, I.; Cherry, J. M.; Cawley, S.; Dahlke, C.; Davenport, L. B.; Davies, A.; de Pablos, B.; Delcher, A.; Deng, Z. M.; Mays, A. D.; Dew, I.; Dietz, S. M.; Dodson, K.; Doup, L. E.; Downes, M.; Dugan-Rocha, S.; Dunkov, B. C.; Dunn, P.; Durbin, K. J.; Evangelista, C. C.; Ferraz, C.; Ferriera, S.; Fleischmann, W.; Fosler, C.; Gabrielian, A. E.; Garg, N. S.; Gelbart, W. M.; Glasser, K.; Glodek, A.; Gong, F. C.; Gorrell, J. H.; Gu, Z. P.; Guan, P.; Harris, M.; Harris, N. L.; Harvey, D.; Heiman, T. J.; Hernandez, J. R.; Houck, J.; Hostin, D.; Houston, D. A.; Howland, T. J.; Wei, M. H.; Ibegwam, C.; Jalali, M.; Kalush, F.; Karpen, G. H.; Ke, Z. X.; Kennison, J. A.; Ketchum, K. A.; Kimmel, B. E.; Kodira, C. D.; Kraft, C.; Kravitz, S.; Kulp, D.; Lai, Z. W.; Lasko, P.; Lei, Y. D.; Levitsky, A. A.; Li, J. Y.; Li, Z. Y.; Liang, Y.; Lin, X. Y.; Liu, X. J.; Mattei, B.; McIntosh, T. C.; McLeod, M. P.; McPherson, D.; Merkulov, G.; Milshina, N. V.; Mobarry, C.; Morris, J.; Moshrefi, A.; Mount, S. M.; Moy, M.; Murphy, B.; Murphy, L.; Muzny, D. M.; Nelson, D. L.; Nelson, D. R.; Nelson, K. A.; Nixon, K.; Nusskern, D. R.; Pacleb, J. M.; Palazzolo, M.; Pittman, G. S.; Pan, S.; Pollard,J.; Puri, V.; Reese, M. G.; Reinert, K.; Remington, K.; Saunders, R. D. C.; Scheeler, F.; Shen, H.; Shue, B. C.; Siden-Kiamos, I.; Simpson, M.; Skupski, M. P.; Smith, T.; Spier, E.; Spradling, A. C.; Stapleton, M.; Strong, R.; Sun, E.; Svirskas, R.; Tector, C.; Turner, R.; Venter, E.; Wang, A. H. H.; Wang, X.; Wang, Z. Y.; Wassarman, D. A.; Weinstock, G. M.; Weissenbach, J.; Williams, S. M.; Woodage, T.; Worley, K. C.; Wu, D.; Yang, S.; Yao, Q. A.; Ye, J.; Yeh, R. F.; Zaveri, J. S.; Zhan, M.; Zhang, G. G.; Zhao, Q.; Zheng, L. S.; Zheng, X. Q. H.; Zhong, F. N.; Zhong, W. Y.; Zhou, X. J.; Zhu, S. P.; Zhu, X. H.; Smith, H. O.; Gibbs, R. A.; Myers, E. W.; Rubin, G. M.; Venter, J. C., Science 2000, 287, 2185-2195.
[12] Bollard, M. E.; Stanley, E. G.; Lindon, J. C.; Nicholson, J. K.; Holmes, E., NMR in Biomedicine 2005, 18, 143-162.
[13] Dettmer, K.; Aronov, P. A.; Hammock, B. D., Mass Spectrometry Reviews 2007, 26, 51-78.
[14] Goodacre, R.; Vaidyanathan, S.; Dunn, W. B.; Harrigan, G. G.; Kell, D. B., Trends in Biotechnology 2004, 22, 245-252.
[15] Dunn, W. B.; Bailey, N. J. C.; Johnson, H. E., Analyst 2005, 130, 606-625.
[16] De Hoffmann, E.; Stroobant, V., Mass Spectrometry Principles and Applications. 3 ed.; John Wiley &; Sons: England, 2007.
[17] Dempster, A. J., Physical Review 1918, 11, 316-325.
[18] Bleakney, W., Physical Review 1929, 34, 157-160.
[19] Nier, A. O., Review of Scientific Instruments 1947, 18, 398-411.
[20] Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Science 1989, 246, 64-71.
[21] Fenn, J. B., Electrospray Wings for Molecular Elephants. Nobel Lecture, 2002.
[22] Yamashita, M.; Fenn, J. B., Journal of Physical Chemistry 1984, 88, 4451-4459.
[23] Yamashita, M.; Fenn, J. B., Journal of Physical Chemistry 1984, 88, 4671-4675.
[24] Cotter, R. J., Analytical Chemistry 1984, 56, 485A-504A.
[25] Karas, M.; Bachmann, D.; Hillenkamp, F., Analytical Chemistry 1985, 57, 2935-2939.
[26] Karas, M.; Hillenkamp, F., Analytical Chemistry 1988, 60, 2299-2301.
[27] Doktycz, S. J.; Savickas, P. J.; Krueger, D. A., Rapid Communications in Mass Spectrometry 1991, 5, 145-148.
[28] Strupat, K.; Karas, M.; Hillenkamp, F., International Journal of Mass Spectrometry and Ion Processes 1991, 111, 89-102.
[29] Beavis, R. C.; Chaudhary, T.; Chait, B. T., Organic Mass Spectrometry 1992, 27,156-158.
[30] Vermillion-Salsbury, R. L.; Hercules, D. M., Rapid Communications in Mass Spectrometry 2002, 16, 1575-1581.
[31] Amantonico, A.; Oh, J. Y.; Sobek, J.; Heinemann, M.; Zenobi, R., Angewandte Chemie-International Edition 2008, 47, 5382-5385.
[32] Sun, G.; Yang, K.; Zhao, Z. D.; Guan, S. P.; Han, X. L.; Gross, R. W., Analytical Chemistry 2007, 79, 6629-6640.
[33] Amantonico, A.; Urban, P. L.; Fagerer, S. R.; Balabin, R. M.; Zenobi, R., Analytical Chemistry 2010, 82, 7394-7400.
[34] Chang, W. C.; Huang, L. C. L.; Wang, Y. S.; Peng, W. P.; Chang, H. C.; Hsu, N. Y.; Yang, W. B.; Chen, C. H., Analytica Chimica Acta 2007, 582, 1-9.
[35] Hillenkamp, F.; Peter-Katalinić, J., MALDI MS: A Practical Guide to Instrumentation, Methods and Applications. Wiley–VCH: Germany, 2007.
[36] Sunner, J.; Dratz, E.; Chen, Y. C., Analytical Chemistry 1995, 67, 4335-4342.
[37] Chen, W. Y.; Wang, L. S.; Chiu, H. T.; Chen, Y. C.; Lee, C. Y., Journal of the American Society for Mass Spectrometry 2004, 15, 1629-1635.
[38] Wei, J.; Buriak, J. M.; Siuzdak, G., Nature 1999, 399, 243-246.
[39] Huang, Y.-F.; Chang, H.-T., Analytical Chemistry 2007, 79, 4852-4859.
[40] Arakawa, R.; Kawasaki, H., Analytical Sciences 2010, 26, 1229-1240.
[41] Chiang, C.-K.; Chen, W.-T.; Chang, H.-T., Chemical Society Reviews 2011, 40, 1269-1281.
[42] Santos, V. G.; Regiani, T.; Dias, F. F. G.; Romao, W.; Jara, J. L. P.; Klitzke, C. F.; Coelho, F.; Eberlins, M. N., Analytical Chemistry 2011, 83, 1375-1380.
[43] Schwab, N. V.; Porcari, A. M.; Coelho, M. B.; Schmidt, E. M.; Jara, J. L.; Visentainer, J. V.; Eberlin, M. N., Analyst 2012, 137, 2537-2540.
[44] Stephens, W. E., Physical Review 1946, 69, 674.
[45] Paul, W., Zeitschrift für Naturforschung 1953, 8, 448-450.
[46] Dawson, P. H., Mass Spectrometry Reviews 1986, 5, 1-37.
[47] Paul, W.; Reinhard, H. P.; von Zahn, U., Zeitschrift für Physik 1958, 152, 143-182.
[48] Wolfgang, P., Electromagnetic traps for charged and neutral particles. Nobel Lecture,1989.
[49] Schwamborn, K.; Caprioli, R. M., Nature Reviews Cancer 2010, 10, 639-646.
[50] Chughtai, K.; Heeren, R. M. A., Chemical Reviews 2010, 110, 3237-3277.
[51] Caprioli, R. M.; Farmer, T. B.; Gile, J., Analytical Chemistry 1997, 69, 4751-4760.
[52] Schwartz, S. A.; Reyzer, M. L.; Caprioli, R. M., Journal of Mass Spectrometry 2003, 38, 699-708.
[53] McCombie, G.; Knochenmuss, R., Journal of the American Society for Mass Spectrometry 2006, 17, 737-745.
[54] Armstrong, D. W.; Zhang, L. K.; He, L. F.; Gross, M. L., Analytical Chemistry 2001, 73, 3679-3686.
[55] Tholey, A., Rapid Communications in Mass Spectrometry 2006, 20, 1761-1768.
[56] Lemaire, R.; Tabet, J. C.; Ducoroy, P.; Hendra, J. B.; Salzet, M.; Fournier, I., Analytical Chemistry 2006, 78, 809-819.
[57] Hanton, S. D.; Parees, D. M., Journal of the American Society for Mass Spectrometry 2005, 16, 90-93.
[58] Trimpin, S.; Herath, T. N.; Inutan, E. D.; Wager-Miller, J.; Kowalski, P.; Claude, E.; Walker, J. M.; Mackie, K., Analytical Chemistry 2010, 82, 359-367.
[59] McDonnell, L. A.; Heeren, R. M. A., Mass Spectrometry Reviews 2007, 26, 606-643.
[60] Herzog, R. F. K.; Viehböck, F. P., Physical Review 1946, 76, 855.
[61] Todd, P. J.; McMahon, J. M.; Short, R. T.; McCandlish, C. A., Analytical Chemistry 1997, 69, A529-A535.
[62] Winograd, N., Analytical Chemistry 2005, 77, 142A-149A.
[63] Parry, S.; Winograd, N., Analytical Chemistry 2005, 77, 7950-7957.
[64] Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G., Science 2004, 306, 471-473.
[65] Ifa, D. R.; Gumaelius, L. M.; Eberlin, L. S.; Manicke, N. E.; Cooks, R. G., Analyst 2007, 132, 461-467.
[66] Kertesz, V.; Ford, M. J.; Van Berkel, G. J., Analytical Chemistry 2005, 77, 7183-7189.
[67] van Hove, E. R. A.; Smith, D. F.; Heeren, R. M. A., Journal of Chromatography A 2010, 1217, 3946-3954.
[68] Pawliszym, J., Solid Phase Microextraction: Theory and Practice. Wiley–VCH: New York, 1997.
[69] Kavaler, D., Mushrooms, Molds, and Miracles. The New American Library: New York,1966.
[70] Read, N. D.; Lichius, A.; Shoji, J.-y.; Goryachev, A. B., Current Opinion in Microbiology 2009, 12, 608-615.
[71] Vickerman, J. C., Analyst 2011, 136, 2199-2217.
[72] Chaurand, P. C., D. S.; Angel, P. M.; Caprioli, R. M., Molecular &; Cellular Proteomics 2011, 10, 1-11.
[73] Svatos, A., Trends in Biotechnology 2010, 28, 425-434.
[74] Cornett, D. S.; Frappier, S. L.; Caprioli, R. M., Analytical Chemistry 2008, 80, 5648-5653.
[75] Burnum, K. E.; Frappier, S. L.; Caprioli, R. M., Annual Review of Analytical Chemistry 2008, 1, 689-705.
[76] Cornett, D. S.; Reyzer, M. L.; Chaurand, P.; Caprioli, R. M., Nature Methods 2007, 4, 828-833.
[77] Reyzer, M. L.; Caprioli, R. M., Current Opinion in Chemical Biology 2007, 11, 29-35.
[78] Esquenazi, E.; Yang, Y.-L.; Watrous, J.; Gerwick, W. H.; Dorrestein, P. C., Natural Product Reports 2009, 26, 1521-1534.
[79] Yang, Y.-L.; Xu, Y.; Straight, P.; Dorrestein, P. C., Nature Chemical Biology 2009, 5, 885-887.
[80] Yang, Y.-L.; Xu, Y.; Kersten, R. D.; Liu, W.-T.; Meehan, M. J.; Moore, B. S.; Bandeira, N.; Dorrestein, P. C., Angewandte Chemie-International Edition 2011, 50, 5839-5842.
[81] Phelan, V. V.; Liu, W.-T.; Pogliano, K.; Dorrestein, P. C., Nature Chemical Biology 2012, 8, 26-35.
[82] Rubakhin, S. S.; Romanova, E. V.; Nemes, P.; Sweedler, J. V., Nature Methods 2011, 8, S20-S29.
[83] Svatos, A., Analytical Chemistry 2011, 83, 5037-5044.
[84] Rubakhin, S. S.; Greenough, W. T.; Sweedler, J. V., Analytical Chemistry 2003, 75, 5374-5380.
[85] Hoelscher, D.; Shroff, R.; Knop, K.; Gottschaldt, M.; Crecelius, A.; Schneider, B.; Heckel, D. G.; Schubert, U. S.; Svatos, A., Plant Journal 2009, 60, 907-918.
[86] Urban, P. L.; Chang, C.-H.; Wu, J.-T.; Chen, Y.-C., Analytical Chemistry 2011, 83, 3918-3925.
[87] Urban, P. L.; Schmidt, A. M.; Fagerer, S. R.; Amantonico, A.; Ibanez, A.; Jefimovs, K.; Heinemann, M.; Zenobi, R., Molecular Biosystems 2011, 7, 2837-2840.
[88] Steinhauser, M. L.; Bailey, A. P.; Senyo, S. E.; Guillermier, C.; Perlstein, T. S.; Gould, A. P.; Lee, R. T.; Lechene, C. P., Nature 2012, 481, 516-U131.
[89] Galagan, J. E.; Calvo, S. E.; Borkovich, K. A.; Selker, E. U.; Read, N. D.; Jaffe, D.; FitzHugh, W.; Ma, L. J.; Smirnov, S.; Purcell, S.; Rehman, B.; Elkins, T.; Engels, R.; Wang, S. G.; Nielsen, C. B.; Butler, J.; Endrizzi, M.; Qui, D. Y.; Ianakiev, P.; Pedersen, D. B.; Nelson, M. A.; Werner-Washburne, M.; Selitrennikoff, C. P.; Kinsey, J. A.; Braun, E. L.; Zelter, A.; Schulte, U.; Kothe, G. O.; Jedd, G.; Mewes, W.; Staben, C.; Marcotte, E.; Greenberg, D.; Roy, A.; Foley, K.; Naylor, J.; Stabge-Thomann, N.; Barrett, R.; Gnerre, S.; Kamal, M.; Kamvysselis, M.; Mauceli, E.; Bielke, C.; Rudd, S.; Frishman, D.; Krystofova, S.; Rasmussen, C.; Metzenberg, R. L.; Perkins, D. D.; Kroken, S.; Cogoni, C.; Macino, G.; Catcheside, D.; Li, W. X.; Pratt, R. J.; Osmani, S. A.; DeSouza, C. P. C.; Glass, L.; Orbach, M. J.; Berglund, J. A.; Voelker, R.; Yarden, O.; Plamann, M.; Seiler, S.; Dunlap, J.; Radford, A.; Aramayo, R.; Natvig, D. O.; Alex, L. A.; Mannhaupt, G.; Ebbole, D. J.; Freitag, M.; Paulsen, I.; Sachs, M. S.; Lander, E. S.; Nusbaum, C.; Birren, B., Nature 2003, 422, 859-868.
[90] Sun, G.; Yang, K.; Zhao, Z.; Guan, S.; Han, X.; Gross, R. W., Analytical Chemistry 2007, 79, 6629-6640.
[91] Edwards, J. L.; Kennedy, R. T., Analytical Chemistry 2005, 77, 2201-2209.
[92] Miguelez, E. M.; Garcia, M.; Hardisson, C.; Manzanal, M. B., Journal of Bacteriology 1994, 176, 2105-2107.
[93] Zimmerman, T. A.; Rubakhin, S. S.; Romanova, E. V.; Tucker, K. R.; Sweedler, J. V., Analytical Chemistry 2009, 81, 9402-9409.
[94] Vrkoslav, V.; Muck, A.; Cvacka, J.; Svatos, A., Journal of the American Society for Mass Spectrometry 2010, 21, 220-231.
[95] Yang, J.; Caprioli, R. M., Analytical Chemistry 2011, 83, 5728-5734.
[96] Thomas, A.; Charbonneau, J. L.; Fournaise, E.; Chaurand, P., Analytical Chemistry 2012, 84, 2048-2054.
[97] Jurchen, J. C.; Rubakhin, S. S.; Sweedler, J. V., Journal of the American Society for Mass Spectrometry 2005, 16, 1654-1659.
[98] Roempp, A.; Guenther, S.; Schober, Y.; Schulz, O.; Takats, Z.; Kummer, W.; Spengler, B., Angewandte Chemie-International Edition 2010, 49, 3834-3838.
[99] Radford, A., Advances in Genetics 2004, 52, 165-207.
[100] Milewski, S.; Gabriel, L.; Olchowy, J., Yeast 2006, 23, 1-14.
[101] Nielen, M. W. F., Mass Spectrometry Reviews 1999, 18, 309-344.
[102] Burlingame, A. L.; Boyd, R. K.; Gaskell, S. J., Analytical Chemistry 1998, 70, 647-716.
[103] Vorm, O.; Roepstorff, P.; Mann, M., Analytical Chemistry 1994, 66, 3281-3287.
[104] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Nature 1997, 389, 827-829.
[105] Han, W.; Lin, Z., Angewandte Chemie-International Edition 2012, 51, 1534-1546.
[106] Schirmer, N. C.; Stroehle, S.; Tiwari, M. K.; Poulikakos, D., Advanced Functional Materials 2011, 21, 388-395.
[107] Gans, B.-J.; Schubert, U. S., Langmuir 2004, 20, 7789-7793.
[108] Blossey, R.; Bosio, A., Langmuir 2002, 18, 2952-2954.
[109] Wong, T.-S.; Chen, T.-H.; Shen, X.; Ho, C.-M., Analytical Chemistry 2011, 83, 1871-1873.
[110] Monteux, C.; Lequeux, F., Langmuir 2011, 27, 2917-2922.
[111] Uetani, K.; Yano, H., ACS Macro Letters 2012, 1, 651-655.
[112] Chen, Y. C.; Wu, J. Y., Rapid Communications in Mass Spectrometry 2001, 15, 1899-1903.
[113] Chen, Y. C.; Sun, M. C., Rapid Communications in Mass Spectrometry 2002, 16, 1243-1247.
[114] Kinumi, T.; Saisu, T.; Takayama, M.; Niwa, H., Journal of Mass Spectrometry 2000, 35, 417-422.
[115] Chen, W.-Y.; Chen, Y.-C., Analytical and Bioanalytical Chemistry 2006, 386, 699-704.
[116] Chiu, Y.-C.; Chen, Y.-C., Analytical Letters 2008, 41, 260-267.
[117] Watanabe, T.; Kawasaki, H.; Yonezawa, T.; Arakawa, R., Journal of Mass Spectrometry 2008, 43, 1063-1071.
[118] Chen, Y. C.; Shiea, J.; Sunner, J., Rapid Communications in Mass Spectrometry 2000, 14, 86-90.
[119] Chen, Y. C.; Tsai, M. F., Rapid Communications in Mass Spectrometry 2000, 14, 2300-2304.
[120] Chen, Y. C.; Sun, M. C., Rapid Communications in Mass Spectrometry 2001, 15, 2521-2525.
[121] Chen, C. T.; Chen, Y. C., Analytical Chemistry 2005, 77, 5912-5919.
[122] Kong, X. L.; Huang, L. C. L.; Hsu, C. M.; Chen, W. H.; Han, C. C.; Chang, H. C., Analytical Chemistry 2005, 77, 259-265.
[123] Ugarov, M. V.; Egan, T.; Khabashesku, D. V.; Schultz, J. A.; Peng, H. Q.; Khabashesku, V. N.; Furutani, H.; Prather, K. S.; Wang, H. W. J.; Jackson, S. N.; Woods, A. S., Analytical Chemistry 2004, 76, 6734-6742.
[124] Okuno, S.; Arakawa, R.; Okamoto, K.; Matsui, Y.; Seki, S.; Kozawa, T.; Tagawa, S.; Wada, Y., Analytical Chemistry 2005, 77, 5364-5369.
[125] Chen, C. T.; Chen, Y. C., Rapid Communications in Mass Spectrometry 2004, 18, 1956-1964.
[126] Chen, C. T.; Chen, Y. C., Analytical Chemistry 2004, 76, 1453-1457.
[127] Lee, K.-H.; Chiang, C.-K.; Lin, Z.-H.; Chang, H.-T., Rapid Communications in Mass Spectrometry 2007, 21, 2023-2030.
[128] Huang, Y. F.; Chang, H. T., Analytical Chemistry 2006, 78, 1485-1493.
[129] Kawasaki, H.; Sugitani, T.; Watanabe, T.; Yonezawa, T.; Moriwaki, H.; Arakawa, R., Analytical Chemistry 2008, 80, 7524-7533.
[130] Lin, Y. S.; Chen, Y. C., Analytical Chemistry 2002, 74, 5793-5798.
[131] Ho, K. C.; Lin, Y. S.; Chen, Y. C., Rapid Communications in Mass Spectrometry 2003, 17, 2683-2687.
[132] Chen, W. Y.; Chen, Y. C., Analytical Chemistry 2003, 75, 4223-4228.
[133] Teng, C. H.; Chen, Y. C., Rapid Communications in Mass Spectrometry 2003, 17, 1092-1094.
[134] Luxembourg, S. L.; McDonnell, L. A.; Duursma, M. C.; Guo, X. H.; Heeren, R. M. A., Analytical Chemistry 2003, 75, 2333-2341.
[135] Bouschen, W.; Spengler, B., International Journal of Mass Spectrometry 2007, 266, 129-137.
[136] Bhardwaj, R.; Fang, X.; Somasundaran, P.; Attinger, D., Langmuir 2010, 26, 7833-7842.
[137] Kawasaki, H.; Yamamoto, H.; Fujimori, H.; Arakawa, R.; Inada, M.; Iwasaki, Y., Chemical Communications 2010, 46, 3759-3761.
[138] Wu, J. Y.; Chen, Y. C., Journal of Mass Spectrometry 2002, 37, 85-90.
[139] Zhang, J.; Li, Z.; Zhang, C.; Feng, B.; Zhou, Z.; Bai, Y.; Liu, H., Analytical Chemistry 2012, 84, 3296-3301.
[140] Tang, H.-W.; Ng, K.-M.; Lu, W.; Che, C.-M., Analytical Chemistry 2009, 81, 4720-4729.
[141] Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.;Golledge, S. L.; Nordstrom, A.; Siuzdak, G., Nature 2007, 449, 1033-1037.
[142] Hu, H.; Larson, R. G., Journal of Physical Chemistry B 2006, 110, 7090-7094.
[143] Park, J.; Moon, J., Langmuir 2006, 22, 3506-3513.
[144] Kim, D.; Jeong, S.; Park, B. K.; Moon, J., Applied Physics Letters 2006, 89.
[145] Soltman, D.; Subramanian, V., Langmuir 2008, 24, 2224-2231.
[146] Fan, F. Q.; Stebe, K. J., Langmuir 2004, 20, 3062-3067.
[147] Ko, H. Y.; Park, J.; Shin, H.; Moon, J., Chemistry of Materials 2004, 16, 4212-4215.
[148] Mampallil, D.; Eral, H. B.; van den Ende, D.; Mugele, F., Soft Matter 2012, 8, 10614-10617.
[149] Bjork, M. K.; Simonsen, K. W.; Andersen, D. W.; Dalsgaard, P. W.; Siguroardottir, S. R.; Linnet, K.; Rasmussen, B. S., Analytical and Bioanalytical Chemistry 2013, 405, 2607-2617.
[150] Northen, T. R.; Lee, J.-C.; Hoang, L.; Raymond, J.; Hwang, D.-R.; Yannone, S. M.; Wong, C.-H.; Siuzdak, G., Proceedings of the National Academy of Sciences of the United States of America 2008, 105, 3678-3683.
[151] Pawliszyn, P., Comprehensive Sampling and Sample Preparation. Academic Press: Oxford, 2012.
[152] Pawliszyn, P.; Lord, H. L., Handbook of Sample Preparation. John Wiley &; Sons: Hoboken, 2010.
[153] Ridgway, K.; Lalljie, S. P. D.; Smith, R. M., Journal of Chromatography A 2007, 1153, 36-53.
[154] Trojanowicz, M., Modern Chemistry &; Applications 2013, 1, 1000e1113.
[155] Whitesides, G. M., Nature 2006, 442, 368-373.
[156] Hennion, M. C., Journal of Chromatography A 1999, 856, 3-54.
[157] Kataoka, H., Analytical and Bioanalytical Chemistry 2002, 373, 31-45.
[158] Jemal, M., Biomedical Chromatography 2000, 14, 422-429.
[159] Shih, S. C. C.; Yang, H.; Jebrail, M. J.; Fobel, R.; McIntosh, N.; Al-Dirbashi, O. Y.; Chakraborty, P.; Wheeler, A. R., Analytical Chemistry 2012, 84, 3731-3738.
[160] Popov, I. A.; Chen, H.; Kharybin, O. N.; Nikolaev, E. N.; Cooks, R. G., Chemical Communications 2005, 1953-1955.
[161] Squires, T. M.; Quake, S. R., Reviews of Modern Physics 2005, 77, 977-1026.
[162] Slaney, T. R.; Nie, J.; Hershey, N. D.; Thwar, P. K.; Linderman, J.; Burns, M. A.; Kennedy, R. T., Analytical Chemistry 2011, 83, 5207-5213.
[163] Li, P.-H.; Ting, H.; Chen, Y.-C.; Urban, P. L., RSC Advances 2012, 2, 12431-12437.
[164] Xiao, Z.; Niu, M.; Zhang, B., Journal of Separation Science 2012, 35, 1284-1293.
[165] Berglund, E. C.; Kuklinski, N. J.; Karagunduz, E.; Ucar, K.; Hanrieder, J.; Ewing, A. G., Analytical Chemistry 2013, 85, 2841-2846.
[166] Dahmann, D., Drosophila: Methods and Protocols. Humana Press: Totowa, 2010.
[167] Menter, J. M., Photochemical &; Photobiological Sciences 2006, 5, 403-410.
[168] Georgakoudi, I.; Jacobson, B. C.; Muller, M. G.; Sheets, E. E.; Badizadegan, K.; Carr-Locke, D. L.; Crum, C. P.; Boone, C. W.; Dasari, R. R.; Van Dam, J.; Feld, M. S., Cancer Research 2002, 62, 682-687.
[169] Zipfel, W. R.; Williams, R. M.; Christie, R.; Nikitin, A. Y.; Hyman, B. T.; Webb, W. W., Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 7075-7080.
[170] Shroff, R.; Rulisek, L.; Doubsky, J.; Svatos, A., Proceedings of the National Academy of Sciences of the United States of America 2009, 106, 10092-10096.
[171] Parisi, M.; Li, R.; Oliver, B., BMC Res. Notes 2011, 4, 198.
[172] Scheitz, C. J. F.; Guo, Y.; Early, A. M.; Harshman, L. G.; Clark, A. G., PLOS ONE 2013, 8, e72726.
[173] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in C: The Art of Scientific Computting. Cambridge University Press: Cambridge, 1992.
[174] Carvalho, M.; Sampaio, J. L.; Palm, W.; Brankatschk, M.; Eaton, S.; Shevchenko, A., Molecular Systems Biology 2012, 8.
[175] Wang, D.; Lu, J.; Miao, A.; Xie, Z.; Yang, D., Journal of Food Composition and Analysis 2008, 21, 361-369.
[176] Rio, D. D.; Stewart, A. J.; Mullen, W.; Burns, J.; Lean, M. E. J.; Brighenti, F.; Crozier, A., Journal of Agricultural and Food Chemistry 2004, 52, 2807-2815.
[177] Lee, B. L.; Ong, C. N., Journal of Chromatography A 2000, 881, 439-447.
[178] Dalluge, J. J.; Nelson, B. C., Journal of Chromatography A 2000, 881, 411-424.
[179] Fuller, R., Journal of Applied Bacteriology 1989, 66, 365-378.
[180] Farnworth, E. R., Handbook of Fermented Functional Foods. 2 ed.; CRC Press: Boca Raton, 2008.
[181] Gill, H. S.; Guarner, F., Postgraduate Medical Journal 2004, 80, 516-526.
[182] Adolfsson, O.; Meydani, S. N.; Russell, R. M., American Journal of Clinical Nutrition 2004, 80, 245-256.
[183] Tamime, A. Y.; Robinson, R. K., Yogurt Science and Technology. 2 ed.; CRC Press: Boca Raton, 1999.
[184] Cheng, H. F., Critical Reviews in Food Science and Nutrition 2010, 50, 938-950.
[185] Guzel-Seydim, Z. B.; Kok-Tas, T.; Greene, A. K.; Seydim, A. C., Critical Reviews in Food Science and Nutrition 2011, 51, 261-268.
[186] Kwak, H. S.; Park, S. K.; Kim, D. S., Journal of Dairy Science 1996, 79, 937-942.
[187] Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Conte, F., International Dairy Journal 2008, 18, 819-825.
[188] Viljoen, B. C., International Journal of Food Microbiology 2001, 69, 37-44.
[189] Zampar, G. G.; Kummel, A.; Ewald, J.; Jol, S.; Niebel, B.; Picotti, P.; Aebersold, R.; Sauer, U.; Zamboni, N.; Heinemann, M., Molecular Systems Biology 2013, 9.
[190] Patkova, J.; Smogrovicova, D.; Bafrncova, P.; Domeny, Z., Folia Microbiologica 2000, 45, 335-338.
[191] Hu, J. B.; Chen, Y. C.; Urban, P. L., Analytical Chemistry 2012, 84, 5110-5116.
[192] Ibañez, A. J.; Fagerer, S. R.; Schmidt, A. M.; Urban, P. L.; Jefimovs, K.; Geiger, P.; Dechant, R.; Heinemann, M.; Zenobi, R., Proceedings of the National Academy of Sciences of the United States of America 2013, 110, 8790-8794.
[193] Ligor, M.; Jarmalaviciene, R.; Szumski, M.; Maruska, A.; Buszewski, B., Journal of Separation Science 2008, 31, 2707-2713.
[194] Aghlara, A.; Mustafa, S.; Manap, Y. A.; Mohamad, R., International Journal of Food Properties 2009, 12, 808-818.
[195] Irigoyen, A.; Ortigosa, M.; Garcia, S.; Ibanez, F. C.; Torre, P., International Journal of Dairy Technology 2012, 65, 578-584.
[196] Cimander, C.; Carlsson, M.; Mandenius, C. F., Journal of Biotechnology 2002, 99, 237-248.
[197] Navratil, M.; Cimander, C.; Mandenius, C. F., Journal of Agricultural and Food Chemistry 2004, 52, 415-420.
[198] Soukoulis, C.; Aprea, E.; Biasioli, F.; Cappellin, L.; Schuhfried, E.; Mark, T. D.; Gasperi, F., Rapid Communications in Mass Spectrometry 2010, 24, 2127-2134.
[199] Soukoulis, C.; Biasioli, F.; Aprea, E.; Schuhfried, E.; Cappellin, L.; Mark, T. D.;Gasperi, F., Food and Bioprocess Technology 2012, 5, 2085-2097.
[200] Vinderola, C. G.; Costa, G. A.; Regenhardt, S.; Reinheimer, J. A., International Dairy Journal 2002, 12, 579-589.
[201] Boylston, T. D.; Vinderola, C. G.; Ghoddusi, H. B.; Reinheimer, J. A., International Dairy Journal 2004, 14, 375-387.
[202] Liu, S. Q.; Holland, R.; Crow, V. L., International Dairy Journal 2004, 14, 923-945.
[203] Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R., Applied and Environmental Microbiology 2008, 74, 454-461.
[204] Procopio, S.; Qian, F.; Becker, T., European Food Research and Technology 2011, 233, 721-729.
[205] Styger, G.; Prior, B.; Bauer, F. F., Journal of Industrial Microbiology &; Biotechnology 2011, 38, 1145-1159.
[206] Saerens, S. M. G.; Verbelen, P. J.; Vanbeneden, N.; Thevelein, J. M.; Delvaux, F. R., Applied Microbiology and Biotechnology 2008, 80, 1039-1051.
[207] Saerens, S. M. G.; Verstrepen, K. J.; Van Laere, S. D. M.; Voet, A. R. D.; Van Dijck, P.; Delvaux, F. R.; Thevelein, J. M., Journal of Biological Chemistry 2006, 281, 4446-4456.
[208] Chapman, A. G.; Fall, L.; Atkinson, D. E., Journal of Bacteriology 1971, 108, 1072-1086.
[209] Atkinson, D. E., Biochemistry 1968, 7, 4030-4034.
[210] Parrou, J. L.; Teste, M. A.; Francois, J., Microbiology 1997, 143, 1891-1900.
[211] Gasch, A. P.; Spellman, P. T.; Kao, C. M.; Carmel-Harel, O.; Eisen, M. B.; Storz, G.; Botstein, D.; Brown, P. O., Molecular Biology of the Cell 2000, 11, 4241-4257.
[212] Brauer, M. J.; Huttenhower, C.; Airoldi, E. M.; Rosenstein, R.; Matese, J. C.; Gresham, D.; Boer, V. M.; Troyanskaya, O. G.; Botstein, D., Molecular Biology of the Cell 2008, 19, 352-367.
[213] Boer, V. M.; Crutchfield, C. A.; Bradley, P. H.; Botstein, D.; Rabinowitz, J. D., Molecular Biology of the Cell 2010, 21, 198-211.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top