跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許靜慈
研究生(外文):Ching-Tzu Hsu
論文名稱:新型V奈米聚集體之開發: 組成對其物理性質、氣/液界面混合單分子層行為及皮膚穿透效能的影響
論文名稱(外文):The Development of Novel V Nanoaggregates: The Effect of Composition on The Physical Characteristics, Behavior of Mixed Monolayers at The Air/Liquid Interface, And Skin Penetration Ability
指導教授:周宗翰
指導教授(外文):Tzung-Han Chou
口試委員:林智汶張鑑祥郭勇志
口試委員(外文):Chi-Wen LinChien-Hsiang ChangYung-Chih Kuo
口試日期:2015-06-23
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:144
中文關鍵詞:奈米聚集體T乙醇物理特徵皮膚滲透
外文關鍵詞:NanoaggregatesTenthanolphysical characteristicsskin permeation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用穿透式電子顯微鏡(Transmission electron microscope, TEM)、動態光散射粒徑分析儀(Dynamic Light Scattering, DLS)、螢光光譜儀 (Fluorescence Spectroscopy, FL)以及微分式掃描熱卡計(Differential Scanning Calorimetry, DSC)來探討Compound T (T)及乙醇含量對V(V)奈米聚集體物理性質的影響。且藉由Franz擴散槽進行體外滲透效能評估。此外,在25℃下,使用技術與螢光顯微鏡,探討氣/液界面上混合V/T單分子層行為與觀察單分子層型態變化。結果顯示,隨T含量增加V奈米聚集體粒徑下降、界面電位上升,且改變型態。添加T會使V聚集體膜呈現多重相態,隨著T含量增加膜主相變溫度下降轉為更鬆散的相態。在25℃下,添加少量T能使脂雙層疏水及親水頭基區域分子流動性下降。T的添加使緊密的V單分子層轉變為較鬆散的單分子層,並可壓縮至更高表面壓。混合V/T 8/2單分子層具有熱力學上的最佳穩定性。乙醇濃度2-20% (v/v)範圍內,隨乙醇含量增加使聚集體粒徑先下降後上升、界面電位越趨電中性。混合V/T的主相變溫度隨乙醇含量增加而下降,使分子間作用力降低排列更凌亂。在含有T的組成中,當乙醇含量達20% (v/v)時,脂雙層疏水及親水頭基區域分子流動性高於在其它乙醇濃度下的分子間流動性。比較V-T與V-α-Tocopherol (VE)奈米聚集體的物理性質結果,可得知PEG側鏈為導致V奈米聚集體膜曲率上升、界面電位上升、膜流動性下降、主相變溫度下降以及穩定天數上升的主要因素。體外滲透結果得知,V滲透量隨T含量增加而下降,可能是PEG側鏈降低V穿透角質層的能力。總累積於皮膚的V含量隨乙醇濃度增加而上升。本研究已經發現最適化的奈米聚集體組成為V/T莫耳比為8/2。
In this study, effects Compound T (T) and ethanol concentration on physical properties of V (V) nanoaggregates were investigated by using transmission electron microscopy (TEM), dynamic light scattering (DLS), fluorescence spectroscopy (FL), and differential scanning calorimetry (DSC). The Franz diffusion cell was used to evaluate in vitro skin permeation ability of V nanoaggregates. Furthermore, the behavior of mixed V/T monolayers at the air/water interface at 25℃ was studied by Langmuir trough technology combined with fluorescence microscopy. Results showed that size and the zeta potential of V nanoaggregates reduced and the morphology of V nanoaggregates changed with increasing amount of T. Addition of T into V nanoaggregates resulted in the occurrence of multiple phase transitions of membrane. When the amount of T increased in V nanoaggregates, temperature of main phase transition (Tm) of V nanoaggregates decreased and fluidity of V membrane increased. Adding small amount of T into V nanoaggregates decreased the molecular mobility in hydrocarbon chain region and interfacial region of membrane at 25℃. As T was incorporated into V monolayer, the mixed monolayer became expended and could be compressed to the high surface pressure. Mixed V/T 8/2 monolyer was more thermodynamically stable than other compositions. When the ethanol concentration increased from 2 to 5% (v/v), the size of V nanoaggregates decreased. The zeta potential was changed from slightly negative into almost neutral value with increasing ethanol concentration (2-20%). When the ethanol concentration increased in V/T nanoaggregates, main phase transition temperature (Tm) of nanoaggregates decreased and fluidity of membrane increased. The molecular mobility increased in hydrocarbon chain and interfacial region of membrane, as the ethanol content reached to 20% in V nanoaggregates. By comparing the results of physical characteristics of mixing V/T with V/α-Tocopherol (VE) nanoaggregates systems, the PEG-chain was the major factor on influencing membrane curvature, zeta potential, main phase transition temperature, membrane mobility, and stable days. From results of in vitro skin permeation study, the accumulstion of V in the skin decreased with increasing the amount of T. This indicated that PEG-chain could be a barrier for skin penetration of drugs. But, the accumulation of V in the skin increased with increasing the ethanol concentration. The optimal formulation, V/T nanoaggregates with the molar ratio of 8/2, was obtained.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1-1前言 1
1-2 動機 2
第二章 文獻回顧 3
2-1 V (V) 3
2-2 Compound T (T) 4
2-3乙醇 (EtOH) 5
2-4 單分子層 (Monolayer) 6
第三章 實驗設備與方法 9
3-1 實驗藥品 9
3-2 實驗方法 10
3-2-1 粒徑量測 10
3-2-2 界面電位量測 11
3-2-3 穿透式電子顯微鏡型態觀察 12
3-2-4 螢光偏極化量測 13
3-2-5 微分掃描式熱卡計量測 14
3-2-6 體外皮膚滲透實驗 15
3-2-7 單分子層技術 16
3-2-7-1 Langmuir trough 量測原理 16
3-2-7-2表面壓-分子佔據面積等溫線量測 17
3-2-7-3 混合單分子層過剩面積分析 18
3-2-7-4 混合單分子層過剩自由能分析 19
3-2-7-5 混合單分子層混合自由能分析 19
3-2-7-6 混合單分子層螢光影像觀察 20
第四章 結果與討論 27
4-1 混合V/T奈米聚集體分散液之物理特徵 27
4-1-1型態觀察 27
4-1-2粒徑及界面電位 27
4-1-3相變行為 28
4-1-4螢光偏極化 29
4-2混合V/VE奈米聚集體分散液之物理特徵 30
4-2-1型態觀察 30
4-2-2粒徑及界面電位 30
4-2-3相變行為 30
4-2-4螢光偏極化 31
4-3 PEG側鏈對奈米聚集體特性影響 31
4-4 混合V/T單分子層 33
4-4-1 表面壓-每分子佔據面積等溫線行為 33
4-4-2 熱力學性質分析 34
4-4-2-1 混合V/T單分子層的過剩面積分析 34
4-4-2-2 混合V/T單分子層的過剩自由能與混合自由能分析 34
4-4-2-3 混合V/T單分子層螢光成像 35
4-5固定乙醇含量下經皮吸收分析 37
4-6 不同乙醇含量對混合V/T奈米聚集體分散液之物理特徵影響 38
4-6-1 型態觀察 38
4-6-2粒徑及界面電位 38
4-6-3相變行為 40
4-6-4螢光偏極化 41
4-7固定V/T比例下經皮吸收分析 43
第五章 結論 117
參考文獻 119
附錄一 124


[1] British Association of Dermatologists, Androgenetic alopecia. Patient information
leaflet (2012).

[2] A. Ergun, C. Koch, W. Oder. Do somatosensory evoked potentials in traumatic brain injury patients indicate brainstem generators for frontally recorded N18, P20 and cervical N13?. Brain injury, 18 (2004) 289-298.

[3] S. Mura, M. Manconi, C. Sinico, D. Valenti, A.M. Fadda. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. International journal of pharmaceutics, (2009) 72-79.

[4] P. Balakrishnan, S. Shanmugam, W.S. Lee, W.M. Lee, J.O. Kim, D.H. Oh, D.D. Kim, J.S. Kim, B.K. Yoo, H.G. Choi, J.S. Woo, C.S. Yong. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. International journal of pharmaceutics, 377 (2009) 1-8.

[5] D. Stamatiadis, M.-C. Bulteau-Portois, I. Mowszowicz. Inhibition of 5α-reductase activity in human skin by zinc and azelaic acid. British journal of dermatology, 119 (1988) 627-632.

[6] L. Brzezińska-Wcisło. Evaluation of vitamin and calcium pantothenate effectiveness on hair growth from clinical and trichographic aspects for treatment of diffuse alopecia in women. Wiad lek, 54 (2001) 11-18.

[7] F. D'Agostini, P. Fiallo, T.M. Pennisi, S. De Flora. Chemoprevention of smoke-induced alopecia in mice by oral administration of L-cystine and vitamin . Journal of dermatological science, 46 (2007) 189-198.

[8] F. D’Agostini, P. Fiallo, M. Ghio, S. De Flora. Chemoprevention of doxorubicin-induced alopecia in mice by dietary administration of L-cystine and vitamin . Archives of dermatological research, 305 (2013) 25-34.

[9] S.-W. Wu, W.K. Hopkins. Characteristics of d-α-tocopheryl PEG 1000 succinate for applications as an absorption enhancer in drug delivery systems. Pharmaceutical technology, 23 (1999) 52-68.

[10] E.-M. Collnot, C. Baldes, U.F. Schaefer, K.J. Edgar, M.F. Wempe, C.-M. Lehr. Vitamin E T P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Molecular pharmaceutics, 7 (2010) 642-651.

[11] J.M. Dintaman, J.A. Silverman, Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (T). Pharmaceutical research, 16 (1999) 1550-1556.

[12] Z. Zhang, S. Tan, S.S. Feng. Vitamin E T as a molecular biomaterial for drug delivery, Biomaterials. 33 (2012) 4889-4906.

[13] M.-T. Sheu, A.-B. Wu, K.-P. Lin, C.-H. Shen, H.-O. Ho. Effect of tocopheryl polyethylene glycol succinate on the percutaneous penetration of minoxidil from water/ethanol/polyethylene glycol 400 solutions. Drug development and industrial pharmacy, 32 (2006) 595-607.

[14] A. Yoshida, K. Hashizaki, H. Yamauchi, H. Sakai, S. Yokoyama, M. Abe. Effect of lipid with covalently attached poly (ethylene glycol) on the surface properties of liposomal bilayer membranes. Langmuir, 15 (1999) 2333-2337.

[15] A. Mori, A.L. Klibanov, V.P. Torchilin, L. Huang. Influence of the steric barrier activity of amphipathic poly (ethyleneglycol) and ganglioside GM 1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS letters, 284 (1991) 263-266.

[16] M. Patra, E. Salonen, E. Terama, I. Vattulainen, R. Faller, B.W. Lee, J. Holopainen, M. Karttunen. Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophysical journal, 90 (2006) 1121-1135.

[17] J.A. Barry, K. Gawrisch. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry, 33 (1994) 8082-8088.

[18] A.A. Gurtovenko, J. Anwar. Interaction of ethanol with biological membranes: the formation of non-bilayer structures within the membrane interior and their significance. The journal of physical chemistry B, 113 (2009) 1983-1992.

[19] H. Komatsu, S. Okada. Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: participation of interdigitated membrane formation in their processes. Biochimica et biophysica acta (BBA)-biomembranes, 1235 (1995) 270-280.

[20] E. Touitou, N. Dayan, L. Bergelson, B. Godin, M. Eliaz. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of controlled release, 65 (2000) 403-418.

[21] T.J. McIntosh, K.G. Kulkarni, S.A. Simon. Membrane fusion promoters and inhibitors have contrasting effects on lipid bilayer structure and undulations. Biophysical journal, 76 (1999) 2090-2098.

[22] W.-Y. Yu, Y.-M. Yang, C.-H. Chang. Cosolvent effects on the spontaneous formation of vesicles from 1: 1 anionic and cationic surfactant mixtures, Langmuir, 21 (2005) 6185-6193.

[23] D. Friend, P. Catz, J. Heller, J. Reid, R. Baker. Transdermal delivery of levonorgestrel I: Alkanols as permeation enhancers in vitro. Journal of controlled release, 7 (1988) 243-250.

[24] L.K. Pershing, L.D. Lambert, K. Knutson. Mechanism of ethanol-enhanced estradiol permeation across human skin in vivo. Pharmaceutical research, 7 (1990) 170-175.

[25] N.A. Megrab, A.C. Williams, B.W. Barry. Oestradiol permeation across human skin, silastic and snake skin membranes: the effects of ethanol/water co-solvent systems. International journal of pharmaceutics, 116 (1995) 101-112.

[26] A. Blume. A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochimica et biophysica acta (BBA)-biomembranes, 557 (1979) 32-44.

[27] H. Schindler. Formation of planar bilayers from artificial or native membrane vesicles. FEBS letters, 122 (1980) 77-79.
[28] L. Balogh, S.S. Nigavekar, B.M. Nair, W. Lesniak, C. Zhang, L.Y. Sung, M.S. Kariapper, A. El-Jawahri, M. Llanes, B. Bolton, F. Mamou, W. Tan, A. Hutson, L. Minc, M.K. Khan. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine : nanotechnology, biology, and medicine, 3 (2007) 281-296.

[29] E. Frohlich. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International journal of nanomedicine, 7 (2012) 5577-5591.

[30] H. Lv, S. Zhang, B. Wang, S. Cui, J. Yan. Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of controlled release, 114 (2006) 100-109.

[31] S.J. Soenen, A.R. Brisson, M. De Cuyper. Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials, 30 (2009) 3691-3701.

[32] D.B. Vieira, A.M. Carmona-Ribeiro. Cationic nanoparticles for delivery of amphotericin B: preparation, characterization and activity in vitro. Journal of nanobiotechnology, 6 (2008) 6.

[33] K. Hac-Wydro, P. Wydro, A. Jagoda, J. Kapusta. The study on the interaction between phytosterols and phospholipids in model membranes. Chemistry and physics of lipids, 150 (2007) 22-34.

[34] H.F. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell. Molecular cell biology, (2000).

[35] 常怡光, 孙润广, 郝长春. 磷酯酰乙醇胺与硬脂酸和十八醇二元混合体系单层膜的热力学特性和 AFM 观测. 高等学校化学学报, 30 (2010) 559-565.

[36] R.J. Hunter. Zeta potential in colloid science: principles and applications. Academic press, (2013).

[37] J. Repáková, P. Capková, J.M. Holopainen. I. Vattulainen, Distribution, orientation, and dynamics of DPH probes in DPPC bilayer. The journal of physical chemistry B, 108 (2004) 13438-13448.

[38] M. Kepczynski, K. Nawalany, M. Kumorek, A. Kobierska, B. Jachimska, M. Nowakowska. Which physical and structural factors of liposome carriers control their drug-loading efficiency?. Chemistry and physics of lipids, 155 (2008) 7-15.

[39] M.L. Manca, I. Castangia, P. Matricardi, S. Lampis, X. Fernàndez-Busquets, A.M. Fadda, M. Manconi. Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloids and surfaces B: biointerfaces, 117 (2014) 360-367.

[40] P.L. Ahl, W.R. Perkins. Interdigitation–fusion liposomes. Methods in enzymology, 367 (2003) 80-98.

[41] L. Löbbecke, G. Cevc. Effects of short-chain alcohols on the phase behavior and interdigitation of phosphatidylcholine bilayer membranes. Biochimica et biophysica acta (BBA)-biomembranes, 1237 (1995) 59-69.

[42] N.E. Nagel, G. Cevc, S. Kirchner. The mechanism of the solute-induced chain interdigitation in phosphatidylcholine vesicles and characterization of the isothermal phase transitions by means of dynamic light scattering. Biochimica et biophysica acta (BBA)-biomembranes, 1111 (1992) 263-269.

[43] K.J. Tierney, D.E. Block, M.L. Longo. Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol. Biophysical journal, 89 (2005) 2481-2493.

[44] U. Vierl, L. Löbbecke, N. Nagel, G. Cevc. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures. Biophysical journal, 67 (1994) 1067.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 用語彙概念構造(LCS)來說明kakeru構文的用法 ―ACT和BECOME擁有的成立點―
2. 青少年心理福祉之影響因素— 家庭支持與同儕支持之比較
3. 「幸福花鑰」曼陀羅運用於網路諮商研究 -單身想婚熟女為例
4. 知覺建言氣候、建言行為、個人組織變革準備與 員工工作態度關係之研究
5. Ba4ZnTi11O27 微波介電陶瓷之低溫燒結
6. The Impact of Service Quality and Retail Atmospherics on Purchase Intention. A Case Study of Vietnam’s Parkson Department Store
7. 以狼尾草搭配米糠進行木酶菌固態發酵 生產纖維素酶的研究
8. 臺資銀行如何結合香港、中國大陸地區分行、OBU提升境外獲利能力之研究 -- 以A銀行為例
9. 壹、 開發新穎的磷誘導及磷催化反應:芳香雜環及多官能基烯類之合成貳、 開發有機催化連續性環化反應
10. 類比與混合訊號矽智財之行為模型設計與應用經驗 研究案例:展頻時脈產生器類比行為模型設計與應用
11. 身心障礙求職就業媒合的關鍵資訊探討 – 身心障礙求職者求職歷程與招募者用人計畫之比較
12. 陳品帆鋼琴演奏會 含輔助文件 史特拉汶斯基1924年的奏鳴曲:新古典主義與無形之手‪‎‬‬‬‬
13. 著重文法形式(Form-Focused)與著重意義(Meaning-Focused)的文法教學對台灣國小學童 學習規則與不規則動詞過去式的成效影響
14. 商業計劃書 在台灣開設印尼餐館
15. 利用實驗設計法改善半導體CMP製程晶圓平坦度 - 以U公司為例