|
[1] British Association of Dermatologists, Androgenetic alopecia. Patient information leaflet (2012).
[2] A. Ergun, C. Koch, W. Oder. Do somatosensory evoked potentials in traumatic brain injury patients indicate brainstem generators for frontally recorded N18, P20 and cervical N13?. Brain injury, 18 (2004) 289-298.
[3] S. Mura, M. Manconi, C. Sinico, D. Valenti, A.M. Fadda. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. International journal of pharmaceutics, (2009) 72-79.
[4] P. Balakrishnan, S. Shanmugam, W.S. Lee, W.M. Lee, J.O. Kim, D.H. Oh, D.D. Kim, J.S. Kim, B.K. Yoo, H.G. Choi, J.S. Woo, C.S. Yong. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. International journal of pharmaceutics, 377 (2009) 1-8.
[5] D. Stamatiadis, M.-C. Bulteau-Portois, I. Mowszowicz. Inhibition of 5α-reductase activity in human skin by zinc and azelaic acid. British journal of dermatology, 119 (1988) 627-632.
[6] L. Brzezińska-Wcisło. Evaluation of vitamin and calcium pantothenate effectiveness on hair growth from clinical and trichographic aspects for treatment of diffuse alopecia in women. Wiad lek, 54 (2001) 11-18.
[7] F. D'Agostini, P. Fiallo, T.M. Pennisi, S. De Flora. Chemoprevention of smoke-induced alopecia in mice by oral administration of L-cystine and vitamin . Journal of dermatological science, 46 (2007) 189-198.
[8] F. D’Agostini, P. Fiallo, M. Ghio, S. De Flora. Chemoprevention of doxorubicin-induced alopecia in mice by dietary administration of L-cystine and vitamin . Archives of dermatological research, 305 (2013) 25-34.
[9] S.-W. Wu, W.K. Hopkins. Characteristics of d-α-tocopheryl PEG 1000 succinate for applications as an absorption enhancer in drug delivery systems. Pharmaceutical technology, 23 (1999) 52-68.
[10] E.-M. Collnot, C. Baldes, U.F. Schaefer, K.J. Edgar, M.F. Wempe, C.-M. Lehr. Vitamin E T P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Molecular pharmaceutics, 7 (2010) 642-651.
[11] J.M. Dintaman, J.A. Silverman, Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (T). Pharmaceutical research, 16 (1999) 1550-1556.
[12] Z. Zhang, S. Tan, S.S. Feng. Vitamin E T as a molecular biomaterial for drug delivery, Biomaterials. 33 (2012) 4889-4906.
[13] M.-T. Sheu, A.-B. Wu, K.-P. Lin, C.-H. Shen, H.-O. Ho. Effect of tocopheryl polyethylene glycol succinate on the percutaneous penetration of minoxidil from water/ethanol/polyethylene glycol 400 solutions. Drug development and industrial pharmacy, 32 (2006) 595-607.
[14] A. Yoshida, K. Hashizaki, H. Yamauchi, H. Sakai, S. Yokoyama, M. Abe. Effect of lipid with covalently attached poly (ethylene glycol) on the surface properties of liposomal bilayer membranes. Langmuir, 15 (1999) 2333-2337.
[15] A. Mori, A.L. Klibanov, V.P. Torchilin, L. Huang. Influence of the steric barrier activity of amphipathic poly (ethyleneglycol) and ganglioside GM 1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS letters, 284 (1991) 263-266.
[16] M. Patra, E. Salonen, E. Terama, I. Vattulainen, R. Faller, B.W. Lee, J. Holopainen, M. Karttunen. Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophysical journal, 90 (2006) 1121-1135.
[17] J.A. Barry, K. Gawrisch. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry, 33 (1994) 8082-8088.
[18] A.A. Gurtovenko, J. Anwar. Interaction of ethanol with biological membranes: the formation of non-bilayer structures within the membrane interior and their significance. The journal of physical chemistry B, 113 (2009) 1983-1992.
[19] H. Komatsu, S. Okada. Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: participation of interdigitated membrane formation in their processes. Biochimica et biophysica acta (BBA)-biomembranes, 1235 (1995) 270-280.
[20] E. Touitou, N. Dayan, L. Bergelson, B. Godin, M. Eliaz. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of controlled release, 65 (2000) 403-418.
[21] T.J. McIntosh, K.G. Kulkarni, S.A. Simon. Membrane fusion promoters and inhibitors have contrasting effects on lipid bilayer structure and undulations. Biophysical journal, 76 (1999) 2090-2098.
[22] W.-Y. Yu, Y.-M. Yang, C.-H. Chang. Cosolvent effects on the spontaneous formation of vesicles from 1: 1 anionic and cationic surfactant mixtures, Langmuir, 21 (2005) 6185-6193.
[23] D. Friend, P. Catz, J. Heller, J. Reid, R. Baker. Transdermal delivery of levonorgestrel I: Alkanols as permeation enhancers in vitro. Journal of controlled release, 7 (1988) 243-250.
[24] L.K. Pershing, L.D. Lambert, K. Knutson. Mechanism of ethanol-enhanced estradiol permeation across human skin in vivo. Pharmaceutical research, 7 (1990) 170-175.
[25] N.A. Megrab, A.C. Williams, B.W. Barry. Oestradiol permeation across human skin, silastic and snake skin membranes: the effects of ethanol/water co-solvent systems. International journal of pharmaceutics, 116 (1995) 101-112.
[26] A. Blume. A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochimica et biophysica acta (BBA)-biomembranes, 557 (1979) 32-44.
[27] H. Schindler. Formation of planar bilayers from artificial or native membrane vesicles. FEBS letters, 122 (1980) 77-79. [28] L. Balogh, S.S. Nigavekar, B.M. Nair, W. Lesniak, C. Zhang, L.Y. Sung, M.S. Kariapper, A. El-Jawahri, M. Llanes, B. Bolton, F. Mamou, W. Tan, A. Hutson, L. Minc, M.K. Khan. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine : nanotechnology, biology, and medicine, 3 (2007) 281-296.
[29] E. Frohlich. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International journal of nanomedicine, 7 (2012) 5577-5591.
[30] H. Lv, S. Zhang, B. Wang, S. Cui, J. Yan. Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of controlled release, 114 (2006) 100-109.
[31] S.J. Soenen, A.R. Brisson, M. De Cuyper. Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials, 30 (2009) 3691-3701.
[32] D.B. Vieira, A.M. Carmona-Ribeiro. Cationic nanoparticles for delivery of amphotericin B: preparation, characterization and activity in vitro. Journal of nanobiotechnology, 6 (2008) 6.
[33] K. Hac-Wydro, P. Wydro, A. Jagoda, J. Kapusta. The study on the interaction between phytosterols and phospholipids in model membranes. Chemistry and physics of lipids, 150 (2007) 22-34.
[34] H.F. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell. Molecular cell biology, (2000).
[35] 常怡光, 孙润广, 郝长春. 磷酯酰乙醇胺与硬脂酸和十八醇二元混合体系单层膜的热力学特性和 AFM 观测. 高等学校化学学报, 30 (2010) 559-565.
[36] R.J. Hunter. Zeta potential in colloid science: principles and applications. Academic press, (2013).
[37] J. Repáková, P. Capková, J.M. Holopainen. I. Vattulainen, Distribution, orientation, and dynamics of DPH probes in DPPC bilayer. The journal of physical chemistry B, 108 (2004) 13438-13448.
[38] M. Kepczynski, K. Nawalany, M. Kumorek, A. Kobierska, B. Jachimska, M. Nowakowska. Which physical and structural factors of liposome carriers control their drug-loading efficiency?. Chemistry and physics of lipids, 155 (2008) 7-15.
[39] M.L. Manca, I. Castangia, P. Matricardi, S. Lampis, X. Fernàndez-Busquets, A.M. Fadda, M. Manconi. Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloids and surfaces B: biointerfaces, 117 (2014) 360-367.
[40] P.L. Ahl, W.R. Perkins. Interdigitation–fusion liposomes. Methods in enzymology, 367 (2003) 80-98.
[41] L. Löbbecke, G. Cevc. Effects of short-chain alcohols on the phase behavior and interdigitation of phosphatidylcholine bilayer membranes. Biochimica et biophysica acta (BBA)-biomembranes, 1237 (1995) 59-69.
[42] N.E. Nagel, G. Cevc, S. Kirchner. The mechanism of the solute-induced chain interdigitation in phosphatidylcholine vesicles and characterization of the isothermal phase transitions by means of dynamic light scattering. Biochimica et biophysica acta (BBA)-biomembranes, 1111 (1992) 263-269.
[43] K.J. Tierney, D.E. Block, M.L. Longo. Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol. Biophysical journal, 89 (2005) 2481-2493.
[44] U. Vierl, L. Löbbecke, N. Nagel, G. Cevc. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures. Biophysical journal, 67 (1994) 1067.
|