|
REFERENCES 1.Weigelt, B., et al., Breast cancer metastasis: markers and models. Nat Rev Cancer, 2005. 5(8): p. 591-602. 2.Siegel, R., et al., Cancer statistics, 2014. CA Cancer J Clin, 2014. 64(1): p. 9-29. 3.Morris, P.G., et al, Therapeutic options for metastatic breast cancer. Expert Opin Pharmacother, 2009. 10(6): p. 967-81. 4.O''Shaughnessy, J., Extending survival with chemotherapy in metastatic breast cancer. Oncologist, 2005. 10 Suppl 3: p. 20-9. 5.Guarneri,V.,et al., Metastatic breast cancer: therapeutic options according to molecular subtypes and prior adjuvant therapy. Oncologist, 2009. 14(7): p. 645-56. 6.Acconcia, F.,et al., Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett, 2006. 238(1): p. 1-14. 7.Bjornstrom, L.,et al., Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol, 2005. 19(4): p. 833-42. 8.Bertolino, F., et al., Unscaled Bayes factors for multiple hypothesis testing in microarray experiments. Stat Methods Med Res, 2012. 9.Khatri, P., et al., Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol, 2012. 8(2): p. e1002375. 10.Ideker, T., et al., Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 2002. 18 Suppl 1: p. S233-40. 11.Mani, K.M., et al., A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol, 2008. 4. 12.Ideker, T., et al., Differential network biology. Mol Syst Biol, 2012. 8: p. 565. 13.Taylor, I.W., et al., Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol, 2009. 27(2): p. 199-204. 14.Chuang, H.Y., et al., Network-based classification of breast cancer metastasis. Mol Syst Biol, 2007. 3: p. 140. 15.Metivier, R., et al., Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 2003. 115(6): p. 751-63. 16.Workman, C.T., et al., A systems approach to mapping DNA damage response pathways. Science, 2006. 312(5776): p. 1054-9. 17.Sumazin, P., et al., An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 2011. 147(2): p. 370-81. 18.Chun, S.Y., et al., Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1alpha and HIF-2alpha target genes. Mol Cancer, 2010. 9: p. 293. 19.Stelniec-Klotz, I., et al., Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS. Mol Syst Biol, 2012. 8: p. 601. 20.Shen, C., et al., A modulated empirical Bayes model for identifying topological and temporal estrogen receptor alpha regulatory networks in breast cancer. BMC Syst Biol, 2011. 5: p. 67. 21.Van ''t Veer, L.J., et al., Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002. 415(6871): p. 530-6. 22.Gambardella, G., et al., Differential network analysis for the identification of condition-specific pathway activity and regulation. Bioinformatics, 2013. 29(14): p. 1776-85. 23.Margolin, A.A., et al., ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 2006. 7 Suppl 1: p. S7. 24.Hansen, M., et al., Mimosa: mixture model of co-expression to detect modulators of regulatory interaction. Algorithms Mol Biol, 2010. 5: p. 4. 25.Wang, K., et al., Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol, 2009. 27(9): p. 829-39. 26.Tay, Y., et al., Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 2011. 147(2): p. 344-57. 27.Karreth, F.A., et al., In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 2011. 147(2): p. 382-95. 28.Hsiao, T.-H., et al., Modeling Estrogen Receptor Modulated Gene Set Regulatory Networks in Breast Cancer. 2014. 29.Mason, O., et al., Graph theory and networks in Biology. IET Syst Biol, 2007. 1(2): p. 89-119. 30.Langfelder, P., et al., Is My Network Module Preserved and Reproducible? PLoS Comput Biol, 2011. 7(1). 31.Pavlopoulos, G.A., et al., Using graph theory to analyze biological networks. BioData Min, 2011. 4. 32.Wu, H.Y., et al., A modulator based regulatory network for ERalpha signaling pathway. BMC Genomics, 2012. 13 Suppl 6: p. S6. 33.Zou, M., et al., A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 2005. 21(1): p. 71-9. 34.Barrett, T., et al., NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res, 2011. 39: p. D1005-D1010. 35.Wang, Y., et al., Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 2005. 365(9460): p. 671-9. 36.Sotiriou, C., et al., Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst, 2006. 98(4): p. 262-72. 37.Hatzis, C., et al., A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA, 2011. 305(18): p. 1873-81. 38.Cancer Genome Atlas, N., Comprehensive molecular portraits of human breast tumours. Nature, 2012. 490(7418): p. 61-70. 39.Flores, M., et al., Gene regulation, modulation, and their applications in gene expression data analysis. Adv Bioinformatics, 2013. 2013: p. 360678. 40.Minas, C., et al., A distance-based test of association between paired heterogeneous genomic data. Bioinformatics, 2013. 29(20): p. 2555-2563. 41.Jurman, G., et al., Algebraic stability indicators for ranked lists in molecular profiling. Bioinformatics, 2008. 24(2): p. 258-64. 42.Emran, S.M.,et al., Robustness of Chi-square and Canberra distance metrics for computer intrusion detection. Qual Reliab Eng Int, 2002. 18(1): p. 19-28. 43.Ben-Hamo, R., et al., MicroRNA-Gene Association As a Prognostic Biomarker in Cancer Exposes Disease Mechanisms. PLoS Comput Biol, 2013. 9(11). 44.Marcucci, G., et al., Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol, 2014. 32(6): p. 548-56. 45.Kramer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 2014. 30(4): p. 523-30. 46.Bailey, S.T., et al., Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci USA, 2012. 109(44): p. 18060-18065. 47.Fernandez-Cuesta, L., et al., Estrogen levels act as a rheostat on p53 levels and modulate p53-dependent responses in breast cancer cell lines. Breast Cancer Res Treat, 2011. 125(1): p. 35-42. 48.Li, J., et al., DNA copy number aberrations in breast cancer by array comparative genomic hybridization. Genomics Proteomics Bioinformatics, 2009. 7(1-2): p. 13-24. 49.Moerkens, M., et al., Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer, 2014. 14(1): p. 283. 50.Deroo, B.J.,et al., Estrogen receptors and human disease. J Clin Invest, 2006. 116(3): p. 561-70. 51.Kuemmerle, N.B., et al., Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol Cancer Ther, 2011. 10(3): p. 427-36. 52.Viegas, M.S., et al., CD38 plays a role in effective containment of mycobacteria within granulomata and polarization of Th1 immune responses against Mycobacterium avium. Microb Infect, 2007. 9(7): p. 847-854. 53.Gu-Trantien, C., et al., CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest, 2013. 123(7): p. 2873-92. 54.Zaunders, J.J., et al., Early proliferation of CCR5(+) CD38(+++) antigen-specific CD4(+) Th1 effector cells during primary HIV-1 infection. Blood, 2005. 106(5): p. 1660-7. 55.Staub, E., et al., An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types. J Mol Med (Berl), 2009. 87(6): p. 633-44. 56.Couch, F.J., et al., AURKA F31I polymorphism and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a consortium of investigators of modifiers of BRCA1/2 study. Cancer Epidemiol Biomarkers Prev, 2007. 16(7): p. 1416-21. 57.Staff, S., et al., Aurora-A gene is frequently amplified in basal-like breast cancer. Oncol Rep, 2010. 23(2): p. 307-12. 58.Das, K., et al., Aurora-A expression, hormone receptor status and clinical outcome in hormone related cancers. Pathology, 2010. 42(6): p. 540-6. 59.Chen, X.,et al., Integrating biological knowledge with gene expression profiles for survival prediction of cancer. J Comput Biol, 2009. 16(2): p. 265-78. 60.Nikas, J.B., et al., Prognosis of treatment response (pathological complete response) in breast cancer. Biomark Insights, 2012. 7: p. 59-70. 61.Whiteside, T.L.,et al., For breast cancer prognosis, immunoglobulin kappa chain surfaces to the top. Clin Cancer Res, 2012. 18(9): p. 2417-9. 62.Weinstein, J.N., et al., The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 2013. 45(10): p. 1113-1120. 63.Carroll, J.S., et al., Genome-wide analysis of estrogen receptor binding sites. Nat Genet, 2006. 38(11): p. 1289-97. 64.Heemers, H.V., et al., Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev, 2007. 28(7): p. 778-808. 65.Wang, K., et al., Genome-wide discovery of modulators of transcriptional interactions in human B lymphocytes. RECOMB, 2006. 3909: p. 348-362. 66.Wang, L., et al., BRCA1 is a negative modulator of the PRC2 complex. EMBO J, 2013. 32(11): p. 1584-1597. 67.Hu, Z., et al., The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics, 2006. 7: p. 96. 68.Jene-Sanz, A., et al., Expression of Polycomb Targets Predicts Breast Cancer Prognosis. Mol Cell Biol, 2013. 33(19): p. 3951-3961. 69.Ahn, S.G., et al., Prognostic Discrimination Using a 70-Gene Signature among Patients with Estrogen Receptor-Positive Breast Cancer and an Intermediate 21-Gene Recurrence Score. Int J Mol Sci, 2013. 14(12): p. 23685-23699. 70.Garcia-Pravia, C., et al., Overexpression of COL11A1 by cancer-associated fibroblasts: clinical relevance of a stromal marker in pancreatic cancer. PLoS One, 2013. 8(10): p. e78327. 71.Kim, H., et al., Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics, 2010. 3: p. 51. 72.Marchionni, L., et al., A simple and reproducible breast cancer prognostic test. BMC Genomics, 2013. 14: p. 336. 73.Gilkes, D.M., et al., Procollagen Lysyl Hydroxylase 2 Is Essential for Hypoxia-Induced Breast Cancer Metastasis. Mol Cancer Res, 2013. 11(5): p. 456-466. 74.Comen, E.A., et al., Breast Cancer Tumor Size, Nodal Status, and Prognosis: Biology Trumps Anatomy. J Clin Oncol, 2011. 29(19): p. 2610-2612.
|