跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 18:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝濟遠
研究生(外文):Hsieh, Chi-Yuan
論文名稱:疲勞影響駕車時大腦與行為關係之縱貫性研究
論文名稱(外文):A Longitudinal Study of the Effect of Fatigue on Brain-Behavior Relationships in Driving
指導教授:林進燈林進燈引用關係
指導教授(外文):Lin,Chin-Teng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:87
中文關鍵詞:瞌睡駕駛疲勞行為表現腦電波縱貫性研究多層次線性分析
外文關鍵詞:Drowsy drivingFatigueTask performanceElectroencephalographyLongitudinal studyHierarchical linear modeling
相關次數:
  • 被引用被引用:1
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
瞌睡容易使駕車行為產生失常或失誤,致使瞌睡駕駛成為近十年造成嚴重死亡車禍的主要原因之一。先前研究利用虛擬實境進行車道偏移駕車作業,並同步量測受測者的腦電波訊號,來了解大腦與行為之關係,並建立瞌睡駕駛之模型。疲勞是造成瞌睡駕駛的主要原因,然而,疲勞影響大腦與行為之關係尚未清楚,因此,本研究開發每日取樣系統結合客觀腕動計與主觀問卷,對17位受測者之疲勞狀態進行長期的觀察與記錄,並分別在不同疲勞程度之下進行車道偏移駕車作業。在駕駛行為的分析中,可發現反應時間隨疲勞程度上升而增加。在分析車道偏移發生前之腦電波訊號後發現:在中、低疲勞程度之下,大部分腦區的θ與α頻帶能量會隨反應時間增加而上升;相較於中、低疲勞程度,在高疲勞程度之下,隨反應時間增加,後側腦區θ頻帶能量的上升更為明顯,此外,α頻帶能量可發現倒U型趨勢。本研究顯示出不同疲勞程度下之受測者,大腦與行為之關係會隨之不同。此研究結果可對了解瞌睡駕駛與其模型的開發產生重大影響。
Drowsiness can impair task performance and increase behavioral lapses during driving, leading to becoming one of the main causes of fatal car crashes in the past decade. Previous studies have systematically established the brain-behavior relationship through the electroencephalography (EEG) signals recorded from human subjects when they performed a lane-keeping task in a simulated driving environment. Fatigue is the main cause of drowsy driving. However, the effect of fatigue on brain-behavior relationships is unclear. Thus, in this study, we developed the Daily Sampling System integrated with actigraphy and questionnaires to longitudinally assessed and tracked objective and subjective fatigue level of 17 subjects, respectively. When the fatigue met the criterion levels, subjects would be asked to participate in the driving experiment. The behavioral results showed that the reaction time (RT) in response to the deviation event increased with increased fatigue. The pre-stimulus brain activity showed that EEG theta and alpha powers of most of the brain regions observed in low- and median-fatigue groups increased as the RT increased. In the high-fatigue group, the theta power of posterior brain regions dramatically increased with the increased RT as compared with those in low- and median-fatigue groups. Additionally, the alpha power of the occipital regions showed an inverted U-shaped change which was observed only in the high-fatigue group. Taken together, fatigue significantly affects the brain-behavior relationship. Such findings could have major implication for understanding fatigue in drowsy driving and its model.
Chinese Abstract i
English Abstract ii
Acknowledgement iii
Table of Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 10
1.1 Brain-Behavior Relationships in Drowsy Driving 10
1.2 Statement of the Problem 12
1.3 Aim of this Study 14
Chapter 2 Materials and Methods 15
2.1 Participants 15
2.2 Daily Sampling System 15
2.2.1 Mobile application development 15
2.2.2 Self-reporting questionnaires 18
2.2.3 Actigraphy monitoring device 21
2.2.4 Fatigue level determination 22
2.3 Virtual Driving Experiment 23
2.3.1 Immersive driving environment 23
2.3.2 Lane-keeping task 24
2.3.3 Experimental protocol 26
2.4 Behavioral and EEG Data Recording 27
2.5 Data Processing and Analysis 29
2.5.1 EEG data preprocessing 29
2.5.2 Artifact removal 31
2.5.3 Independent component analysis 32
2.5.4 EEG spectral power estimation 33
2.6 Statistical Analysis with Hierarchical Linear Modeling 35
Chapter 3 Experimental Results 38
3.1 Relationship among Objective and Subjective Measures of Fatigue 38
3.1.1 Daily variations across five months 38
3.1.2 Repeated experimental sessions 40
3.2 Comparison of Task Performance between Different Levels of Fatigue 47
3.3 Resting-State EEG Activities across Different Levels of Fatigue 48
3.4 Brain-Behavior Relationships across Different Levels of Fatigue 49
Chapter 4 Discussion 58
4.1 Effect of Fatigue on Psychometric Response Scale and Task Performance 58
4.2 Effect of Fatigue on Resting-State EEG Activity 60
4.3 Effect of Fatigue on Brain-Behavior Relationships 61
Chapter 5 Conclusions 63
References 65
Appendix 70

[1] F. Vaca, J. S. Harris, H. G. Garrison, F. Vaca, and M. P. McKay, "Drowsy Driving," Annals of Emergency Medicine, vol. 45, pp. 433-434, 2005.
[2] P. P. Caffier, U. Erdmann, and P. Ullsperger, "Experimental evaluation of eye-blink parameters as a drowsiness measure," European journal of applied physiology, vol. 89, pp. 319-325, 2003.
[3] Q. Ji, Z. Zhu, and P. Lan, "Real-time nonintrusive monitoring and prediction of driver fatigue," IEEE Transactions on Vehicular Technology, vol. 53, pp. 1052-1068, 2004.
[4] J. Horne and L. Reyner, "Vehicle accidents related to sleep: a review," Occupational and environmental medicine, vol. 56, pp. 289-294, 1999.
[5] C.-H. Chuang, L.-W. Ko, Y.-P. Lin, T.-P. Jung, and C.-T. Lin, "Independent Component Ensemble of EEG for Brain–Computer Interface," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, pp. 230-238, 2014.
[6] F.-C. Lin, L.-W. Ko, C.-H. Chuang, T.-P. Su, and C.-T. Lin, "Generalized EEG-based drowsiness prediction system by using a self-organizing neural fuzzy system," IEEE Transactions on Circuits and Systems I, vol. 59, pp. 2044-2055, 2012.
[7] C.-T. Lin, K.-C. Huang, C.-H. Chuang, L.-W. Ko, and T.-P. Jung, "Can arousing feedback rectify lapses in driving? Prediction from EEG power spectra," Journal of neural engineering, vol. 10, pp. 1-10, 2013.
[8] K. S. Seen, S. B. M. Tamrin, and G. Y. Meng, "Driving fatigue and performance among occupational drivers in simulated prolonged driving," Global Journal of Health Science, vol. 2, pp. 167-177, 2010.
[9] L. N. Boyle, J. Tippin, A. Paul, and M. Rizzo, "Driver performance in the moments surrounding a microsleep," Transportation research part F: traffic psychology and behaviour, vol. 11, pp. 126-136, 2008.
[10] R. S. Daniel, "ALPHA AND THETA EEC IN VIGILANCE," Perceptual and Motor Skills, vol. 25, pp. 697-703, 1967.
[11] A. Campagne, T. Pebayle, and A. Muzet, "Correlation between driving errors and vigilance level: influence of the driver's age," Physiology &; behavior, vol. 80, pp. 515-524, 2004.
[12] T. Taniguchi and A. Takaoka, "A weak signal for strong responses: interferon-alpha/beta revisited," Nature Reviews Molecular Cell Biology, vol. 2, pp. 378-386, 2001.
[13] M. Simon, E. A. Schmidt, W. E. Kincses, M. Fritzsche, A. Bruns, C. Aufmuth, et al., "EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions," Clinical Neurophysiology, vol. 122, pp. 1168-1178, 2011.
[14] B. T. Jap, S. Lal, P. Fischer, and E. Bekiaris, "Using EEG spectral components to assess algorithms for detecting fatigue," Expert Systems with Applications, vol. 36, pp. 2352-2359, 2009.
[15] M. A. Schier, "Changes in EEG alpha power during simulated driving: a demonstration," International Journal of Psychophysiology, vol. 37, pp. 155-162, 2000.
[16] H. J. Eoh, M. K. Chung, and S.-H. Kim, "Electroencephalographic study of drowsiness in simulated driving with sleep deprivation," International Journal of Industrial Ergonomics, vol. 35, pp. 307-320, 2005.
[17] S. K. Lal and A. Craig, "A critical review of the psychophysiology of driver fatigue," Biological psychology, vol. 55, pp. 173-194, 2001.
[18] A. Glass and R. J. Riding, "EEG differences and cognitive style," Biological Psychology, vol. 51, pp. 23-41, 1999.
[19] M. Kikuchi, Y. Wada, and Y. Koshino, "Differences in EEG harmonic driving responses to photic stimulation between normal aging and Alzheimer's disease," Clinical EEG and Neuroscience, vol. 33, pp. 86-92, 2002.
[20] M. L. Jackson, R. J. Croft, G. A. Kennedy, K. Owens, and M. E. Howard, "Cognitive components of simulated driving performance: Sleep loss effects and predictors," Accident Analysis &; Prevention, vol. 50, pp. 438-444, 2013.
[21] P. Shenoy, M. Krauledat, B. Blankertz, R. P. Rao, and K.-R. Müller, "Towards adaptive classification for BCI," Journal of neural engineering, vol. 3, pp. R13-R23, 2006.
[22] K. J. Finn and B. Specker, "Comparison of Actiwatch® activity monitor and Children's Activity Rating Scale in children," Medicine and science in sports and exercise, vol. 32, pp. 1794-1797, 2000.
[23] C. Russell, J. Caldwell, D. Arand, L. Myers, P. Wubbels, and H. Downs. Validation of the Fatigue Science Readiband™ Actigraph and Associated Sleep/WakeClassification Algorithms [Online]. Available: www.fatiguescience.com/s/Readiband_Validation.pdf
[24] S. R. Hursh, D. P. Redmond, M. L. Johnson, D. R. Thorne, G. Belenky, T. J. Balkin, et al., "Fatigue models for applied research in warfighting," Aviation, space, and environmental medicine, vol. 75, pp. A44-A53, 2004.
[25] K. Kaida, M. Takahashi, T. Åkerstedt, A. Nakata, Y. Otsuka, T. Haratani, et al., "Validation of the Karolinska sleepiness scale against performance and EEG variables," Clinical Neurophysiology, vol. 117, pp. 1574-1581, 2006.
[26] G. Kecklund and T. Åkerstedt, "Sleepiness in long distance truck driving: an ambulatory EEG study of night driving," Ergonomics, vol. 36, pp. 1007-1017, 1993.
[27] T. Åkerstedt and M. Gillberg, "Subjective and objective sleepiness in the active individual," International Journal of Neuroscience, vol. 52, pp. 29-37, 1990.
[28] F. Lesage and S. Berjot, "Validity of occupational stress assessment using a visual analogue scale," Occupational medicine, pp. 434-436, 2011.
[29] K. A. Lee, G. Hicks, and G. Nino-Murcia, "Validity and reliability of a scale to assess fatigue," Psychiatry research, vol. 36, pp. 291-298, 1991.
[30] T. H. Monk, C. F. REYNOLDS, D. J. Kupfer, D. J. Buysse, P. A. Coble, A. J. Hayes, et al., "The Pittsburgh sleep diary," Journal of sleep research, vol. 3, pp. 111-120, 1994.
[31] S. Cohen, T. Kamarck, and R. Mermelstein, "A global measure of perceived stress," Journal of health and social behavior, pp. 385-396, 1983.
[32] C. D. Spielberger, State‐Trait anxiety inventory: Wiley Online Library, 2010.
[33] D. J. Buysse, C. F. Reynolds, T. H. Monk, S. R. Berman, and D. J. Kupfer, "The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research," Psychiatry research, vol. 28, pp. 193-213, 1989.
[34] J. R. Andrews-Hanna, J. S. Reidler, C. Huang, and R. L. Buckner, "Evidence for the default network's role in spontaneous cognition," Journal of Neurophysiology, vol. 104, pp. 322-335, 2010.
[35] S. R. Hursh, T. G. Raslear, A. S. Kaye, and J. F. Fanzone Jr, "Validation and calibration of a fatigue assessment tool for railroad work schedules, summary report," 2006.
[36] H. Van Dongen, M. D. Baynard, G. Maislin, and D. F. Dinges, "Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability," Sleep-New York Then Westchester, vol. 27, pp. 423-433, 2004.
[37] C.-T. Lin, R.-C. Wu, S.-F. Liang, W.-H. Chao, Y.-J. Chen, and T.-P. Jung, "EEG-based drowsiness estimation for safety driving using independent component analysis," IEEE Transactions on Circuits and Systems I, vol. 52, pp. 2726-2738, 2005.
[38] R.-S. Huang, T.-P. Jung, and S. Makeig, "Multi-scale EEG brain dynamics during sustained attention tasks," in IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, pp. IV-1173-IV-1176.
[39] R. Huang, T. Jung, J. Duann, S. Makeig, and M. Sereno, "Imaging brain dynamics during continuous driving using independent component analysis," in Proc. 35th Annual Meeting of the Society for Neuroscience, Washington DC, 2005.
[40] J. Malmivuo and R. Plonsey, "Principles and applications of bioelectric and biomagnetic fields, bioelectromagnetism," ed: New York: Oxford University Press, 1995.
[41] A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," Journal of neuroscience methods, vol. 134, pp. 9-21, 2004.
[42] R.-S. Huang, T.-P. Jung, A. Delorme, and S. Makeig, "Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking," NeuroImage, vol. 39, pp. 1896-1909, 2008.
[43] J. Onton, M. Westerfield, J. Townsend, and S. Makeig, "Imaging human EEG dynamics using independent component analysis," Neuroscience &; Biobehavioral Reviews, vol. 30, pp. 808-822, 2006.
[44] T.-P. Jung, S. Makeig, T.-W. Lee, M. J. McKeown, G. Brown, A. J. Bell, et al., "Independent component analysis of biomedical signals," in Proc. Int. Workshop on Independent Component Analysis and Signal Separation, 2000, pp. 633-644.
[45] S. Makeig, A. J. Bell, T.-P. Jung, and T. J. Sejnowski, "Independent component analysis of electroencephalographic data," Advances in neural information processing systems, pp. 145-151, 1996.
[46] R.-S. Huang, T.-P. Jung, and S. Makeig, "Tonic changes in EEG power spectra during simulated driving," in Foundations of augmented cognition. neuroergonomics and operational neuroscience, ed: Springer, 2009, pp. 394-403.
[47] J. B. Nezlek, "Multilevel random coefficient analyses of event-and interval-contingent data in social and personality psychology research," Personality and social psychology bulletin, vol. 27, pp. 771-785, 2001.
[48] J. B. Nezlek, "An introduction to multilevel modeling for social and personality psychology," Social and Personality Psychology Compass, vol. 2, pp. 842-860, 2008.
[49] H. Woltman, A. Feldstain, J. C. MacKay, and M. Rocchi, "An introduction to hierarchical linear modeling," Tutorials in Quantitative Methods for Psychology, vol. 8, pp. 52-69, 2012.
[50] S. W. Raudenbush and A. S. Bryk, Hierarchical linear models: Applications and data analysis methods vol. 1: Sage, 2002.
[51] J. J. Hox and I. G. Kreft, "Multilevel analysis methods," Sociological Methods &; Research, vol. 22, pp. 283-299, 1994.
[52] C. S. Mccrae, J. P. McNAMARA, M. A. Rowe, J. M. Dzierzewski, J. Dirk, M. Marsiske, et al., "Sleep and affect in older adults: using multilevel modeling to examine daily associations," Journal of sleep research, vol. 17, pp. 42-53, 2008.
[53] J. L. Peugh and C. K. Enders, "Using the SPSS mixed procedure to fit cross-sectional and longitudinal multilevel models," Educational and Psychological Measurement, vol. 65, pp. 717-741, 2005.
[54] A. Craig, Y. Tran, N. Wijesuriya, and H. Nguyen, "Regional brain wave activity changes associated with fatigue," Psychophysiology, vol. 49, pp. 574-582, 2012.
[55] R. Pigeau, R. Heslegrave, and R. Angus, "Psychophysiological measures of drowsiness as estimators of mental fatigue and performance degradation during sleep deprivation," DTIC Document1988.
[56] M. Steriade, P. Gloor, R. Llinas, F. L. Da Silva, and M.-M. Mesulam, "Basic mechanisms of cerebral rhythmic activities," Electroencephalography and clinical neurophysiology, vol. 76, pp. 481-508, 1990.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊