跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳灝展
研究生(外文):Hao-Chan Wu
論文名稱:6系列與7系列鍛造用鋁合金之機械性質及微結構特性之探討
論文名稱(外文):Mechanical Properties and Microstructure Characteristics of 6XXX Series and 7XXX Series Wrought Aluminum Alloys
指導教授:溫政彥
口試委員:葉均蔚唐自標
口試日期:2013-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:606160667075鋁合金時效Q相旋鍛再結晶
外文關鍵詞:Al-6061Al-6066Al-7075AgingQ-phaseRotary swagingRecrystallization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:2498
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要在探討7075、6066、6061鋁合金擠製棒材在不同時效之機械性質及顯微組織的特性。利用光學顯微鏡、掃描式電子顯微鏡,穿透式電子顯微鏡、XRD、掃描式熱差分析儀等儀器觀察經熱處理後的材料微結構及析出物。
由實驗結果得知,7075經120℃-72小時時效可得最大抗拉強度(680MPa以上),若淬火後於室溫放置數天再時效則析出物會較為細小而使強度降低。與T7處理相比,RRA處理與二階段時效的晶界析出物雖然都很粗大,但其無析出帶卻相對較窄,且晶粒內部的擴散組織及析出物仍相對較小,因此能維持較佳的強度。
6066會因含Cu量高,將之重新熔煉鑄造後會產生Q相(Al-Mg-Si-Cu),其熔點約在535℃左右,固溶溫度過高會導致其熔解產生微孔洞進而弱化強度。若施以適當均質化處理則可將之消除,固溶溫度提高至560℃可使強度提高至500MPa以上。
若對6066及6061在530℃固溶後的時效進行比較,6066最大抗拉強度為460MPa,6061最大抗拉強度則只有353MPa。經成分分析及SEM與TEM觀察可發現6066之合金元素較多且散佈顆粒較緻密,可產生較佳的固溶及散佈強化效果。另外,由DSC分析可知,6066因Si含量較高,在90℃與350℃會分別形成Si-cluster及silicon相,且s”及s’放熱峰都會比6061來的低溫,顯示6066的析出效果會較6061好,而時效結果也證實6066只需8小時即可達到時效尖峰,但6061卻須24小時才可達到時效尖峰。
最後利用極化量測以判斷材料抗應力腐蝕能力,由結果得知7075在T6處理時會有電流反轉現象而產生沿晶腐蝕情形,可能導致應力腐蝕抵抗能力下降,若改以T7、RRA等處理方式則可消除此反轉現象;而6066與6061經過T6也未觀察到此反轉現象,顯示其抗應力腐蝕能力會相對7075來的高。
為探討鋁合金擠製棒材實際鍛造後之特性,本實驗再以旋鍛機進行冷鍛後再固溶時效處理,發現試棒因發生再結晶而破壞原始織構組織,使強度嚴重降低;隨著加工量越大再結晶越小而產生細晶強化進而重新提升其強度。若改以固溶淬火後冷鍛再時效之T8處理,則強度可有效提升,但會由原本之延性破裂轉變為脆性延性共存之破斷模式,伸長率嚴重會下降。


This research mainly discuss that, under different condition of heat treatment, using OM, SEM, TEM XRD, DSC,UTM and hardness tester… to observe and test the mechanical properties of 7075, 6066, 6061 aluminum alloy extruded bars’ microstructure and precipitations.
The test result shows that after 120°C-72 hours of artificial aging, can get the best strength (over 680MPa). If after quenching, placed at room temperature for several days, and artificial aging, the precipitations are relatively small, the strength is decreased.
Compare to T7 aging treatment, duplex aging treatment and RRA processing both make grain boundary precipitates bulky, too, but PFZ from it grow narrow which makes grain boundary strength increase. Within grain, still maintain and have more diffused organization and precipitation reinforcement. Containing higher Cu, 6066 can produce Q (Al-Mg-Si-Cu) phase after casting. Melting point of Q-phase is about 535°C. Because of such high solid solution temperature, Q-phase will melt with many micro-voids, thereby weakening its intensity. If given appropriate homogenizing treatment, the Q-phase can be eliminated, and the strength will increase to more than 500MPa, after rising its solid solution temperature to 560°C.
Compare 6066 and 6061 after solid solution at 530°C and artificial aging. We can find that 6066 has more alloying elements, and dispersed particle. This can provide better solid solution and dispersion strengthening effect. According to DSC analysis, 6066 has higher Si, so under 90°C to 350°C, it will precipitate Si-cluster and silicon phase respectively. s’’ and s’ exothermic peak will lower than 6061. Therefore, 6066 has better precipitation effect. 6061 needs 24 hours to reach its peak aging, while 6066 needs only 8 hours.
Using polarization measurement to test material stress corrosion resistance, we can find that 7075 will have current reversal phenomenon and intergranular corrosion phenomenon under T6 treatment. The current reversal phenomenon can be eliminated by T7 or RRA. However, After T6 treatment, 6066 and 6061 will not produce this phenomenon, too. Therefore, their ability to resist stress corrosion will be better than 7075.
To explore the material properties of extruded bar after cold forging and heat treatment.
In the experiment, bars are given different strains by rotary swaging, and then carry on the solution treatment, aging treatment. We can find that recrystallization occur, the original texture is destroyed and intensity is greatly reduced. When the strain getting higher, the recrystallized grains will become smaller , and the strength will increase.
If changed to T8 treatment (solution treatment- quenching- cold forging- aging treatment ), the strength can be effectively improved, but ductile fracture will change to brittle-ductile coexistence mode, and the elongation will greatly decrease.


摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XII
第一章 前言 1
第二章 鋁合金介紹 2
2.1鋁合金熱處理 4
2.1.1 均質化處理 4
2.1.2 完全退火 5
2.1.3 固溶處理 5
2.1.4 淬火 7
2.1.5 時效 8
2.1.6 無析出帶(Precipitate Free Zone , PFZ) 14
2.1.7 再結晶 15
2.2 7XXX鋁合金 16
2.2.1 7XXX系列簡介 16
2.2.2 7XXX系列析出物介紹 16
2.3 6XXX鋁合金 18
2.3.1 6XXX系列簡介 18
2.3.2 6XXX系列析出物介紹 20
2.4 極化量測應力腐蝕 22
第三章 實驗流程 23
3.1 成分確認 23
3.2 試片重熔 24
3.3 試棒製備 24
3.4 熱處理 24
3.5 機械性質測試 27
3.5.1 硬度測試 27
3.5.2 拉伸試驗 27
3.6 顯微組織觀察與分析 27
3.6.1 光學顯微鏡(OM)及掃描式電子顯微鏡(SEM)的觀察 27
3.6.2 穿透式電子顯微鏡之觀察(TEM) 28
3.7示差掃描熱分析儀(DSC,DIFFERENTIAL SCANNING CALORIMETRY)28
3.8極化曲線測試 29
3.9 旋鍛熱處理 29
第四章 結果與討論 30
4.1 7075時效性質分析 30
4.1.1 7075成分鑑定 30
4.1.2 7075-TGA-DTA分析 30
4.1.3 7075 XRD分析 31
4.1.4 7075顯微組織觀察及EDX分析 32
4.1.5 7075時效機械性質 35
4.1.6 拉伸破斷面觀察及成分分析 39
4.1.7. DSC分析 43
4.1.8. 7075 之TEM觀察 48
4.2 6061與6066時效性質分析 55
4.2.1 6061與6066成分比較 55
4.2.2 6061、6066 TGA-DTA分析 55
4.2.3 6061、6066 XRD分析 57
4.2.4 6061、6066 金相及SEM觀察 58
4.2.5 6061、6066 時效機械性質討論 64
4.2.6 拉伸破斷面觀察及成分分析 68
4.2.7 DSC分析 72
4.2.8 6061及6066之TEM觀察 76
4.4 極化曲線 79
4.5 旋鍛後之分析 82
第五章 結論 94
參考文獻 96


1. W. F. Smith ,” Structure and Properties of Engineering Alloys”, McGraw-Hill Higher Education, 2nd Edition, 176-181 (1993).
2. 材料手冊 II,「非鐵金屬材料」,中國材料科學學會,63 (1983)。
3. 金重勳博士,「熱處理」,復文書局,485 (2000).
4. G. E. Totten , D. Scott MacKenzie, “Handbook of Aluminum, Physical Metallurgy and Processes” , vol. 1, 882-883 (2003).
5. I. J. Polmear , “Light Alloy : Metallurgy of the Light Metals (Metallurgy & Materials Science)”, London : E. Arnold ; Metals Park, Ohio : American Society for Metals, 3rd Edition , 105-114 (1995).
6. J.R. Davis , “ASM Specialty Handbook Aluminum and Aluminum Alloys” , The Materials Information Society , 290-299 (1993).
7. George E. Totten, D. Scott MacKenzie, “Handbook of Aluminum, Physical Metallurgy and Processes” , vol. 1, 890-893 (2003).
8. K. R. Van Horn , “Aluminum” , Chapter 5, American Society for Metals,
volume 1 (1967).
9. G.E. Totten , G.M. Webster, “Type I polymer quenchant alternatives to water”, Union Carbide Corporation , N.Y.
10. D. R. Askeland , P. P. Phule,”The science and engineering of materials”, 6th Edition , International Student Edition , 431 (2012).
11. W. F. Smith, N. J. Grant , “The Effect of Multiple-Step Aging on the Strength Properties and Precipitate-Free Zone Widths in Al-Zn-Mg Alloys” , Metallurgical and Materials Transactions A , vol. 1, 979-983 (1970).
12. 劉偉隆、林淳杰、曾春風、陳文照,「物理冶金」,全華科技圖書,第三版,16-12 (2000)。
13. William D. Callister, Jr. ,”Material science and engineering” , 3rd , 340 (1994).
14. Robert E. ReedHill ,”Physical metallurgy principle” , 3rd edition, 533 (1991).
15. Thomas H. Courtney, “Mechanical Behavior of Materials” , McGraw-Hill Higher Education , 2nd, 196-210 (2000).
16. J.D. Verhoeven , “Fundamentals of Physical Metallurgy” , 1st Edition, 405 (1975).
17. 李溢芸,王文雄,「超高強度Al-Zn-Mg-Cu合金的時效析出、機械性質與應力腐蝕特性研究」,台灣大學材料科學與工程學研究所, 27、28 (2008)。
18. J.T. Healey , R.W. Gould , “The Effect of Thermal and Mechanical Pretreatments on the Guinier-Preston Zone State of a Commercial 7075 Aluminum Alloy “, Metallurgical and Materials Transactions A , vol. 8 , 1907-1910 (1977).
19. L.K. Berg , J. Gjonnes , V. Hansen, X.Z. Li , M. Knutson-Wedel, G. Waterloo , D. Schryvers , L.R. Wallenberg, “GP-Zones in Al–Zn–Mg alloys and their role in artificial aging”, Acta Materialia., 2-9 (2001).
20. A. K. Mukhopadhyay ,”Guinier-Preston zones in a high-purity Al-Zn-Mg alloy“, Philosophical Magazine Letter ,vol. 70, 135-140 (1994).
21. W.F. Smith , “Structure and Properties of Engineering Alloys”, McGraw-Hill Higher Education, 2nd Edition, 211 (1993).
22. G.W. Lorimer , R.B. Nicholson , Acta metallurgica, vol. 14 , 1009 (1966).
23. F. Vianaa , A.M.P. Pintob, H.M.C. Santosa, A.B. Lopes,”Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization”, Journal of materials processing technology, vol. 92-93,54-59 (1999).
24. J.C. Werenskiold , A. Deschamps , Y. Bre’chet , “Characterization and modeling of precipitation kinetics in an Al–Zn–Mg alloy”, Materials Science and Engineering: A ,vol. 293, 268-274 (2000).
25. Gang Sha , Alfred Cerezo , “Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050)”,Acta Materialia ,vol.52, 4503-4516 (2004).
26. 日本輕金屬學會委員,「鋁合金之組織與性質」,日本輕金屬學會,278-279 (1991)。
27. L. Zhen ,W.D. Fei , S.B. kang , H.W. Kim, “Precipitation behaviour of Al-Mg-Si alloys with high silicon content “,Journal of Materials Science ,vol. 32, 1895-1902 (1997).
28. D.K. Chatterjee , K.M. Entwistle, Journal of The Japan Institute of Metals. , vol. 101, 53-59 (1973).
29. H. Suzuki , M. Kanno , Y. Shiraishi , The Japan Institute of Light Metals, vol. 29, 197-203 (1979).
30.Man Jina, Jing Lib , Guangjie Shaoc ,”Study of Cu Addition on Precipitation Behaviors and Mechanical Properties in AA6082 Al-Mg-Si Alloy”, Materials Science Forum ,vol. 546-549, 825-828 (2007).
31. N. A. Belov, D. G. Eskin , A. A. Aksenov , “Multicomponent phase diagrams” , Chapter 3 , 123-132 (2005)
32. T. Moons, P. Ratchev, P. DeSmet, B. Verlinden, , P. Van Houtte , Scripta Materialia, 939-45 (1996).
33. D.E. Laughlin, W.F. Miao, L.M. Karabin , D.J. Chakrabarti ,”Auto motive Alloys”, 63-79 (1998).
34. 程文宗、呂傳盛、陳立輝,「Al-Mg-Si 鋁合金拉伸性質與可靠度之固溶化處理效應」,國立成功大學,(2010)。
35. Liu Hong , Zhao Gang , Li Chun-ming , Zuo Liang , “Effects of magnesium content on phase constituents of Al-Mg-Si-Cu alloys”, Transacations of Nonferrous Metals Society ,vol. 16 , 376-381 (2006).
36. C.S. Tsao , C.Y. Chen, U.S. Jeng , T.Y. Kuo, “Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys” , Acta Materialia , vol. 54, 4621 (2006).
37. M. H. Jacobs, Philos. Mag. vol. 26 , (1972) .
38. J. P. Lynch, L. M. Brown , M. H. Jacobs, Acta Metallurgica. vol. 30 , 1389 (1982).
39. D.J. Chakrabarti ,Yingguo Peng , D. E. Laughlin, “Precipitation In Al-Mg-Si Alloys with Cu Additions and the Role of the Q’ and Related Phases” , Materials Science Forum, vol. 396-402 , 857-862 (2002).
40. I. Dutta , S. M. Allen , “A calorimetric study of precipitation in commercial aluminium alloy 6061” , Journal of Materials Science Letters, vol. 10, 323-326 (1991).
41. W.F. Miao , D.E. Laughlin ,”Effects of Cu Content and Preaging on Precipitation Characteristics in Aluminum Alloy 6022”, Metallurgical and Materials Transactions A,vol.31,361-371 (2000).
42. Lidia Lityńska-Dobrzyńska , “TEM studies of precipitation of metastable phases in 6000 series aluminium alloys”, 1-7 .
43. S.P. Lynch , “Environmentally assisted cracking-Overview of evidence for an adsorption-induced localized-slip process”, Acta Metallurgica , vol. 36, No. 10, 2639-2661 (1988).
44. S.P. Lynch , “Mechanisms of Intergranular Fracture”, Materials Science Forum, vol. 46, 1-24 (1989).
45. K. Sugimoto, K. Hoshino, M. Kageyama, S. Kageyama, Y. Sawada
“Stress corrosion cracking of aged Al-4%Cu alloy in NaCl solution”, Corrosion Science, vol.15, 709-720 (1975).
46. B.M. Cina ,U.S patent 3856584 , (1974).
47. J.K. Park , A.J. Ardell , “Effect of Retrogression and Reaging Treatments on the Microstructure of Al-7075-T651” , Metallurgical and Materials Transactions A, vol. 15A, 1531 (1984).
48. Shuhei Osaki, Hideki Kondo , Katsuyuki Kinoshita, “Contribution of Hydrogen Embrittlement to SCC Process in Excess Si Type Al-Mg-Si Alloys” , The Japan Institute of Metals ,vol. 47, 1127-1134 (2006).
49. J. K. Park ,”Influence of Retrogression and Reaging Treatments on the Strength and Stress Corrosion Resistance of Aluminium Alloy 7075-T6” , Materials Science and Engineering: A , vol. 103, 223-231 (1988).
50. J.R. Galvele, S.M. de De Micheli, “Mechanism of Intergranular corrosion of Al-Cu alloys” , Corrosion Science ,vol. 10, no.11, 795-807 (1970).
51.“Metals-Mechanical Testing; Elevated and Low Temperature Tests” , Section 3, Vol. 3 , ASTM , 132 (1998)
52. F. Smith , N. J. Gran, “The Effect of Multiple-Step Aging on the Strength Properties and Precipitate-Free Zone Widths in Al-Zn-Mg Alloys” , Metallurgical and Materials Transactions A ,vol. 1, 979-983 (1970).W
53. Evren Tan , Bilgehan Ogel, “Influence of Heat Treatment on the Mechanical Properties of AA6066 Alloy”, Turkish Journal of Engineering and Environmental Sciences, vol.31 , 53-60 (2007).
54. Yin Zhi-Min, Huang Zhi-Qi, Xiao Jing ,”Microstructure and properties of lead-free and free-cutting Al-Mg-Si alloy with minor Sn alloying” , Journal of Central South University. (Science and Technology) , vol. 38, (2007).
55. Yucel Birol, “The effect of sample preparation on the DSC analysis of 6061 alloy”, Journal of Materials Science ,vol. 40 , (2005).
56. I. Dutta , S. M. Allen , “A calorimetric study of precipitation in commercial aluminium alloy 6061” , Journal of Materials Science , vol.10 (1991), pp323-326
57. L. Zhen, W. D. Fei, S. V. Kang, H. W. Kim , “Precipitation behaviour of Al–Mg–Si alloys with high silicon content” , Journal of Material Science , vol. 32, 1895-1902 (1997).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top