跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉郁文
研究生(外文):Yu-Wen Yeh
論文名稱:含芴官能基Polybenzoxazine 之製備及性質之研究
論文名稱(外文):Preparation and Properties of Polybenzoxazine Containing Fluorene Group
指導教授:黃介銘黃介銘引用關係
指導教授(外文):Jieh-Ming Huang
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:97
中文關鍵詞:benzoxazine玻璃轉移溫度熱安定性
外文關鍵詞:fluorenebenzoxazineglass transition temperaturethermal stability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以具有不同官能基之一級胺類、甲醛與雙酚芴以及雙胺芴、甲醛與N-(4-羥基苯基)馬來醯亞胺,合成出三種含芴官能基之benzoxazine單體 9,9-bis(3-phenyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene, BPBF; 9,9-bis(3-fur-
furyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene, BFBF; 9,9-bis(3-maleimideyl-3,4-
dihydro-2H-1,3-benzoxazin-6-yl)fluorene, BMBF ,經由傅利葉轉換紅外線光譜儀(FT-IR)、氫核磁共振光譜儀(1H NMR)與碳核磁共振光譜儀(13C NMR)確認單體之化學結構,證明成功地合成三個單體。
先以雙酚芴、甲醛及苯胺為反應物合成出含有苯胺官能基之benzoxazine單體BPBF,擁有良好的有機溶劑溶解度。Poly(BPBF)具有優異的熱安定性(thermal stability),高的玻璃轉移溫度(glass transition temperature, Tg) tan δ = 231.1℃。
其次以2-呋喃甲胺(furfurylamine)為起始物,製備了含呋喃官能基之benzoxazine 單體BFBF。Poly(BFBF)具有高的熱裂解溫度(Td = 361.8℃)、高的灰份殘餘率(char yield = 53.8%)、高的玻璃轉移溫度(tan δ = 324.3℃)以及低的熱膨脹係數(coefficient of thermal expansion, CTE = 31.22 ppm/℃)。
進一步以雙胺芴、N-(4-羥基苯基)馬來醯亞胺與甲醛為反應物合成出含馬來醯亞胺官能基之benzoxazine單體BMBF。Poly(BMBF)擁有良好的有機溶劑溶解度,具有兩階段的熱聚合反應,第一階段為馬來醯亞胺之聚合反應,第二階段為benzoxazine的熱開環反應,於開環聚合中形成之網狀結構有效的提升benzoxazine聚合物之交聯密度與熱安定性。Poly(BMBF)具有高的玻璃轉移溫度(Poly(BMBF-I), tan δ = 250.6℃, Poly(BMBF-II), tan δ = 374.4℃)、優異的熱穩定性(Td = 479.6℃)、高的灰份殘餘率(char yield = 64.9%)、高的儲存模數、低的熱膨脹係數(CTE = 30.04 ppm/℃)。
最後以BFBF單體用溶液摻混方式製備BFBF/DGEBA與BFBF/Pa-aptms摻混物;摻混物具有不錯的熱穩定性(Poly(BFBF/DGEBA 30%),Td = 401.2℃,Poly(BFBF/Pa-aptms 40%),Td = 407.5℃),DGEBA比例增加可改善polybenzoxazine易脆的性質增加韌性;摻混Pa-aptms比例提高可增加其硬性,隨後以SEM觀察摻混物之相容性,當DGEBA含量達40% 將產生團聚現象使熱穩定性及尺寸安定性降低。
本研究聚焦在polybenzoxazine性質之改善,以終端需求之概念,利用分子設計觀點將不同功能性的分子基團導入benzoxazine的分子結構中,以提升其加工性、熱安定性、尺寸安定性與材料特性。從研究結果顯示本論文於benzxoazine之物性改善與提升作了相當程度之貢獻:(1)將具有芴的官能基導入benzoxazine,提升其熱穩定性,另可改善polybenzoxazine之尺寸安定性,(2)將呋喃分子基團導入benzoxazine的分子結構中,提升polybenzoxazine的性能,(3)以具有可聚合的馬來醯亞胺導入benzoxazine,提高其交聯密度,大幅提升polybenzoxazine的性質,(4)以DGEBA與Pa-aptms摻混於BFBF單體作共聚合,可有效地改善polybenzoxazine的韌性與硬性。

This study we used different primary amines, formaldehyde, 9,9-bis(4-hydroxyphenyl)fluorene, and 9,9-bis(4-aminophenyl)fluorene, formaldehyde, and N-(4-hydroxyphenyl)maleimide as raw materials to synthesize a series of benzoxazine monomer containing fluorene group: 9,9-bis(3-phenyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene, BPBF; 9,9-bis(3-fur- furyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene, BFBF; 9,9-bis(3-maleimideyl-3, 4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene, BMBF. Chemical structures of the synthesized benzoxazine monomer were confirmed by FT-IR, 1H and 13 C NMR analyses.
First, a benzoxazine monomer, BPBF, with aniline group was synthesized using 9,9-bis(4-hydroxyphenyl)fluorene, formaldehyde, and aniline. The obtained benzoxazine BPBF showed good organic solvent solubility. Poly(BPBF) possessed good thermal stability, and higher glass transition temperature, Tg. The Tg value of poly(BPBF) from the tan δ peak was 231.1℃.
Second, a benzoxazine monomer, BFBF, with furan group was synthesized using furfurylamine. The obtained benzoxazine BFBF revealed that the cured poly(BFBF) possessed good thermal properties with the 5% weight loss temperature of 361.8℃, and char yield at 800℃ of 53.7%. In addition, it showed higher Tg and the Tg from the tan δ peak was 324.3℃. The coefficient of thermal expansion of poly(BFBF) was 31.22 ppm/℃.
Third, a benzoxazine monomer, BMBF, with maleimide group was synthesized using 9,9-bis(4-aminophenyl)fluorene, formaldehyde, and N-(4-hydroxyphenyl)maleimide as raw materials. The cured BMBF exhibited good solvent solubility, and thermal stability. DSC results showed that there are two stages polymerization, the first stage is from the polymerization of maleimide and the second stage is from the ring opening of benzoxazine. Network structures were formed during polymerization, which increases the crosslink density and thermal stability of the poly(BMBF). Thermal analyses results found that the Tg of tan δ was 374.4℃, the 5% weight loss temperature was 479.6℃, the char yield at 800℃ was 64.9%, and the coefficient of thermal expansion of poly(BMBF) was 30.04 ppm/℃.
Finally, BFBF was blended individually with DGEBA and Pa-aptms. The obtained blends showed good thermal stability, for example: the 5% weight loss temperature of BFBF/DGEBA 30% was 401.2℃, and that for BFBF/Pa-aptms 40% was 407.5℃. The toughness of the blend can be improved by the increase of DGEBA content in the blend. On the contrary, the rigid of the blend can be increased by the addition of Pa-aptms in the blend. The SEM micrograph showed that there was phase separation for BFBF/DGEBA 40%, and result in lower thermal properties and dimension stability.
In this study we introduced different function groups into benzoxazine structure, and improved their processing, thermal properties, and dimension stability. We focus on (1) introduced fluorene group into benzoxazine and increased their thermal stability, (2) introduced furan group into benzoxazine and improved polybenzoxazine properties, (3) introduced polymerizable maleimide into benzoxazine and increased crosslink density, (4) blended BFBF individually with DGEBA and Pa-aptms, and improved toughness or rigidity properties of polybenzoxazine.

摘 要 I
ABSTRACT III
誌 謝 V
目 錄 VI
圖 目 錄 VIII
表 目 錄 XI
第一章 緒論 1
1-1 前言 1
第二章 文獻回顧 3
2-1 Polybenzoxazine之簡介 3
2-2 Polybenzoxazine之特性 10
2-3 Polybenzoxazine之改質 10
2-4 含可聚合之官能基 benzoxazine 11
2-5 主鏈含benzoxazine聚合物 15
2-6 Benzoxazine之聚合反應分析 17
2-7 Benzoxazine之難燃性 18
2-8 積分程序分解溫度(Integral procedure decomposition temperature,
IPDT) 20
2-9 Benzoxazine之熱裂解動力學 21
2-10 芴之簡介 22
2-11 含芴結構的中間體 23
2-12 聚醯亞胺 (Polyimide, PI) 24
2-13 呋喃 (Furan) 26
2-14 酚醛樹脂之介紹 26
2-15 環氧樹脂之介紹 26
2-16 研究動機 27
第三章 實驗 29
3-1 實驗流程 29
3-2 實驗藥品 30
3-3 儀器設備 33
3-4 實驗步驟 36
3-4-1 N-(4-Hydroxyphenyl)maleic acid, NHMA之合成 36
3-4-2 N-(4-Hydroxyphenyl)maleimide, HPM之合成 37
3-4-3 9,9-Bis(4-aminophenyl)fluorene, BAPF之合成 37
3-4-4 9,9-bis(3-phenyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene,
BPBF之合成 38
3-4-5 9,9-bis(3-furfuryl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene,
BFBF之合成 39
3-4-6 9,9-bis(3-maleimideyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene,
BMBF之合成 40
3-4-7 3,4-dihydro-3-phenyl-2H-1,3-benzoxazine, Pa之合成 41
3-4-8 3,4-dihydro-3-(3-(trimethoxysily)propyl-2H-1,3-benzoxazine,
Pa-aptms之合成 42
3-5 摻混熟化樣品製備 42
第四章 結果與討論 44
4-1 單體鑑定 44
4-1-1 N-(4-Hydroxyphenyl)maleic acid (NHMA)之結構鑑定與分析 44
4-1-2 N-(4-Hydroxyphenyl)maleimide (HPM) 之結構鑑定與分析 45
4-1-3 9,9-Bis(4-aminophenyl)fluorene (BAPF) 之結構鑑定與分析 46
4-1-4 9,9-bis(3-phenyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene
(BPBF) 之結構鑑定與分析 49
4-1-5 9,9-bis(3-furfuryl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene
(BFBF) 之結構鑑定與分析 51
4-1-6 9,9-bis(3-maleimideyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl)fluorene
(BMBF) 之結構鑑定與分析 53
4-1-7 3,4-dihydro-3-(3-(trimethoxysily)propyl-2H-1,3-benzoxazine
(Pa-aptms) 之結構鑑定與分析 56
4-2 溶解度測試 57
4-3 Polybenzoxazine聚合反應 58
4-4 熱性質分析 68
4-5 熱機械性質分析 72
4-6 以摻混方式製備高分子 76
4-7 摻混物聚合反應 77
4-8 摻混物熱性質分析 82
4-9 摻混物熱機械性質分析 84
4-10 摻混物表面形態 88
第五章 結論 90
第六章 未來展望 92
第七章 參考文獻 93


1. 周進義,氧代氮代苯并環己烷單體之設計合成及其高性能熱固性聚合物之研究,中原大學,博士論文,2008.
2. Knop, A.; Pilatio, L. A. Phenolic resins. Berlin: Springer, 1985, pp.147.
3. Jackson, W. M. J Appl Polym Sci 1964, 8, 2163.
4. Kpof, P. W. in Encyclopedia of Polymer Science and Engineering, 1985, Vol. 11. Wiley, New York, pp. 45-95.
5. Burke, W. J.; Smith, R. P.; Weatherbee, C. J Am Chem Soc 1952, 74, 602.
6. Burke, W. J.; Hammer, C. R.; Weatherbee, C. J Org Chem 1961, 26, 4403.
7. Holly, F. W.; Cope, A.C. J Am Chem Soc 1944, 66, 1875.
8. Burke, W. J. J Am Chem Soc 1949, 71, 609.
9. Ning, X.; Ishida, H. J. Polym Sci Part A:Polym Chem 1994, 32, 1121.
10. Ning, X.; Ishida, H. J. Polym Sci Part B:Polym Physics 1994, 32, 921.
11. Kopf, P. W.; Wanger, E. R. J Polym Sci Part A: Chem Ed 1973, 11, 939.
12. Schreiber, H. German Offen, 1973, 2,323,936.
13. C.P. Reghunadhan Nair, Prog Polym Sci, 2004, 29, 401.
14. 蘇一哲,聚氧代氮代苯并環己烷於高分子作用力、低介電材料與嵌入式錯合物的合成與研究,交通大學,博士論文,2004.
15. Riess, G.; Schwob, J. M.; Guth, G.; Roche, M.; Lande, B. in Advance in polymer synthesis, B. m. Culbertson and J. E. McGrath, Eds., New York, 1985.
16. Ishida, H.; Rodringuez, Y. Polymer, 1995, 36, 3151.
17. Brunovska, Z.; Liu, J. P.; Ishida, H. Macromol Chem Phys, 1999, 200, 1745.
18. Hemvichian, K.; Ishida, H. Polymer, 2002, 43, 4391.
19. Shi, Z.; Yu, D.; Wang, Y.; Xu, R. J Appl Polym Sci, 2003, 88, 194.
20. Shen, S. B.; Ishida, H. J Polym Sci Part B: Polym Phys, 1999, 37, 3257.
21. Allen, D. J.; Ishida, H. J Polym Sci Part B: Polym Phys, 1996, 34, 1019.
22. Ghosh, N. N.; Kiskan, B.; Yagci, Y. Prog Polym Sci, 2007, 32, 1344.
23. Jang, J.; Yang, H. Journal of Materials Science, 2000, 35, 2297.
24. Tragoonwichian, S.; Yanumet, N.; Ishida, H. Journal of Applied Polymer Science 2007, 106, 2925-2935.
25. Agag, T.; Takeichi, T. Polymer 2011, 52, 2757.
26. Ishida, H.; US Patent 5,543,516, assigned to Edison Polymer Innovation Corporation.
27. Ishida, H.; Sanders, D. P. J Appl Polym Sci, 2000, 38, 3289.
28. Shen, S. B.; Ishida, H. J Appl Polym Sci, 1996, 61, 4595.
29. Kimura, H.; Taguchi, S.; Matsumoto, A. J Appl Polym Sci, 2001, 79, 2331.
30. Wirasate, S.; Dhumrongvaraporn, S.; Allen, D. J.; Ishida, H. J Appl Polym Sci, 1998, 70, 1299.
31. Andreu, R; Espinosa, M. A.; Galia, M.; Cadiz, V.; Ronda, J. C.; Reina, J. A. J Polym Sci Part A: Polym Chem 2006, 44, 1529.
32. Agag, T.; Takeichi, T. Macromolecules, 2003, 36, 6010.
33. Ishida, H.; Low, H. Y. J Appl Polym Sci, 1998, 69, 2559.
34. Lin, K. F.; Lin, J. S.; Cheng, C. H. J Polym Sci Part A: Polym Chem 1997, 35, 2469.
35. Wohrle, D. Tetrahedron Lett 1971, 12, 1969.
36. Brunovska, Z.; Ishida, H. J Appl Polym Sci 1999, 73, 2937.
37. Lin, C. H.; Chang, S. L.; Hsien, C. W.; Lee, H. H. Polymer 2008, 49, 1220.
38. Takeichi, T.; Kano, T.; Agag, T. Polymer 2005, 46, 12172.
39. Kim, H. J.; Brunovska, Z. Ishida, H. Polymer 1999, 40, 6565.
40. Kim, H. J.; Brunovska, Z. Ishida, H. J Appl Polym Sci 1999, 73, 857.
41. Douglas, W. E.; Overend, A. S. Eur Polym J 1991, 27, 1279.
42. Agag, T.; Takeichi, T. Macromolecules 2001, 34, 7257.
43. Agag, T.; Takeichi, T. J Polym Sci Part A: Polym Chem 2007, 45, 1878.
44. Kiskan, B.; Yagci, Y.; Ishida, H. J Polym Sci Part A: Polym Chem 2008, 46, 414.
45. Liu, Y. L.; Hsiue, G. H.; Chiu, Y. S.; Jeng, R. J. J. Appl Polym. Sci., 1996, 61, 1789.
46. Park, B. D.; Ridel, B.; Hsu, E. W.; Shields, J. Polymer 1999, 40, 1689.
47. Wang, C. S.; Lin, C. H. Polymer 2000, 41, 8579.
48. Ozawa. T. J Thermal Anal 1970, 2, 301.
49. Kissinger, H, E. Anal Chem 1957, 29, 1702.
50. Wang, C. S.; Berman, J. R.; Walker, L. L.; Mendoza, A. J Appl Polym Sci 1991, 43, 1315.
51. Lin, Y. L.; Tsai, S. H. Polymer 2002, 43, 5757.
52. Cai, S. X.; Lin, C. H. J Polym Sci Part A: Polym Chem 2005, 43, 2862.
53. Espinosa, M. A.; Cadiz, V.; Galia, M. J Polym Sci Part A: Polym Chem 2004, 42, 279.
54. Lin, C. H.; Cai, S. X.; Leu, T. S.; Hwang, T. Y.; Lee, H. H. J Polym Sci Part A: Polym Chem 2006, 44, 3454.
55. Chang, C. W.; Lin, C. H.; Lin, H. T.; Huang, H. J.; Hwang, K. Y.; Tu, A. P. European Polymer Journal 2009, 45, 680.
56. Doyle, C. D Anal Chem 1961, 33, 77.
57. Weissgerber, R. Fluorene Derivatives Ber, 1908, 41, 2913.
58. Billaud, D.; Maarouf, E. B.; Hannecart, E. Synthetic Metals., 1995, 69, 571.
59. Xu, W.; Zhou, J.; Hou, S.; Pu, L.; Yan, J. W. Materials Letters., 2005, 59, 2412.
60. Belfied, K. D.; Schafer, K. J.; Mourad, W.; Reinhardt, B. A. J. Org. Chem., 2000, 65, 4475.
61. Jacob, J.; Oldridge, L.; Zhang, J.; Gaal, M.; List, E. J. W.; Grimsdale, A. C.; Mullen, K. Current Applied Physics, 2004, 4, 339.
62. Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
63. Wong, K. T.; Chien, Y. Y.; Chen, R. T.; Wang, C. F.; Lin, Y. T.; Chiang, H. H.; Hsieh, P. Y.; Wu, C. C.; Chou, C. H.; Su; Y. O.; Lee, G. H.; Peng, S. M. J. Am. Chem. Soc., 2002, 124, 11576.
64. 張豐志,應用高分子手冊,五南出版社,2003.
65. 游俊盟,馬來醯胺-氧代氮代苯并環己烷之合成、聚合及硬化樹脂研究,中原大學,碩士論文,2005.
66. Gandini, A.; Mealares, C. Trend in Polym Sci 1994, 2, 127.
67. Mealares, C.; Hui, Z.; Gandini, A. Polymer 1996, 37, 2273.
68. Gandini, A. Adv Polym Sci 1977, 25, 47.
69. Laita, H.; Duofi, S.; Gandini, A. Eur Polym Mater 1997, 33, 1203.
70. 林俊德,Novolac熱塑性酚醛樹脂的製備及應用在研磨工具材料的特性研究,萬能科技大學,碩士論文,2009.
71. 蔡岳勳,水性聚胺酯改性酚醛樹脂/黏土複合材料的製備及其性質研究,萬能科技大學,碩士論文,2011.
72. Robitschek, P.; Lewin, A. Phenolic Resins. Lond: Iliffe & Sons 1950.
73. 賴耿陽編譯,塑膠大全,台南,復文書局,1986年,P33-39.
74. 林遠臣,環氧樹脂-黏土奈米複材之合成及特性之研究,中原大學,碩士論文,2003.
75. 戴崇峰,環氧樹脂奈米複合材料及孔洞性材料之製備與性質探討,中原大學,碩士論文,2006.
76. Lee, H.; Neville, K. Handbook of Epoxy Resins, McGraw-Hill, New York, 1967.
77. May, C. A.; Tanaka, Y. Epoxy Resins Marcel Dekker. New York, 1973.
78. 王昱翔,熱穩定性Polybenzoxazine 混成材料之研究,勤益科技大學,碩士論文,2009.
79. 蔡銘豐,Polybenzoxazine/多壁奈米碳管(MWNT)奈米複合材料之製備及性質之研究,萬能科技大學,碩士論文,2008.
80. 高嘉蔆,官能化多壁奈米碳管/Polybenzoxazine 奈米複合材料之製備鑑定及性質研究,萬能科技大學,碩士論文,2010.
81. 陳育甄,熱固性馬來醯胺-環氧樹脂及雙馬來醯胺樹脂合成及性質研究,中原大學,碩士論文,2003.
82. Ishida, H.; Ohba, S. Polymer 2005, 46, 5588.
83. Hu, Z.; Wang, M.; Li, S.; Liu, X.; Wu, J. Polymer 2005, 46, 5278.
84. 郭權德,9, 9-雙苯基芴-噁唑共聚導電高分子之合成與性質研究,正修科技大學,碩士論文,2007.
85. Wang, J.; Wu, M. Q.; Liu, W. B.; Yang, S. W.; Bai, J. W.; Ding, Q. Q. European Polymer Journal 2010, 46, 1024.
86. Lu, Y.; Li, M.; Zhang, Y.; Hu, D.; Ke, L.; Xu, W. Thermochimica Acta 2011, 515, 32.
87. Jin, L.; Agag, T.; Ishida, H. European Polymer Journal 2010, 46, 354.
88. Wang, Y. X.; Ishida, H. J Appl Polym Sci 2002, 86, 2953.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊