跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許晉龍
研究生(外文):Chin-Lung, Hsu
論文名稱:線上遊戲使用者行為研究
論文名稱(外文):Studies of user behavior in on-line games
指導教授:盧希鵬盧希鵬引用關係
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
畢業學年度:92
語文別:中文
論文頁數:139
中文關鍵詞:線上遊戲社群技術接受模型社會影響神迷經驗認知娛樂
外文關鍵詞:online gamecommunityTAMsocial influenceflow experienceperceived enjoyment
相關次數:
  • 被引用被引用:75
  • 點閱點閱:2517
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:23
近幾年來,線上遊戲已成為電子商務中最具獲利能力的產業之一,不論是市場規模或是使用人口,仍繼續顯著大幅成長。因此,了解玩家為何參與線上遊戲,儼然成為一個重要的議題。此外,不同於單機電玩,線上遊戲具有社群性質,也因此有玩家為遊戲而來,為社群留下的行話流傳。了解影響玩家對線上遊戲社群忠誠的因素亦是本研究想要探討的主題。本論文主要是由二個獨立研究組成,如下簡述。
一、玩家為什麼要參與線上遊戲?以延伸TAM(社會影響因素及神迷經驗)來探討
本篇研究以技術接受模型(TAM)為理論基礎,發展娛樂導向科技接受模型。在了解屬娛樂科技的線上遊戲獨有特性後,擴增二個新的變數,包括:社會影響(社會規範與認知關鍵多數)及神迷經驗,以更加完整解釋玩家參與線上遊戲的行為。
本研究透過網路問卷調查,總共回收233個玩家資料,經SEM技術分析得知,玩家參與線上遊戲的經驗主要是受到社會規範、態度及神迷經驗的影響,解釋能力高達80%。線上遊戲是一種娛樂性科技應用,不同於傳統以問題解決(problem-solving)為導向的資訊科技,人們使用娛樂科技通常是為了殺時間(kill time),而不是節省時間(saving time)。因此,認知有用性的顯著性效果在娛樂科技的影響上將會降低,而神迷經驗及社會規範效果變得較為重要。
二、玩家參與線上遊戲社群行為研究:娛樂動機、社會規範及認知凝聚力
本篇研究仍以TAM為理論基礎,但以認知娛樂性取代認知有用性,並同時新增認知凝聚力、社會規範二個因子,發展出娛樂導向社群忠誠模型,以解釋玩家參與線上遊戲社群忠誠之行為。
透過網路問卷調查所回收的356位玩家資料進行分析,使用者對社群的忠誠是受到認知娛樂性、社會規範及偏好的直接影響,認知凝聚力僅有間接影響。此外,本研究分析玩家對遊戲社群最感到困擾的問題,包括不穩定系統所造成的斷線及惡質玩家的干擾等。
經由二個研究結果整理,得出以下二點結論,提供給研究者及業界做為經營管理之參考。
一、 學術上
  在發展娛樂導向科技接受度模型及娛樂社群忠誠度模型上,了解內在動機(神迷經驗及認知娛樂性)之重要性。此外,社會及群體影響因子(社會規範、認知關鍵多數及認知凝聚力)亦不可忽視。未來研究可針對影響線上遊戲玩家認知信念的外部變數(例如:系統特質、社群特質及個人差異等),以及不同裝置的線上遊戲(例如:手機或連網TV),做更進一步的使用者行為探索。
二、 實務上
建議遊戲設計者應強調線上遊戲介面的友善性,對於神迷經驗及娛樂性的產生,有相當大的助益。管理者也需善用參考群體(代言人或社群管理者)的影響力,來產生規範玩家的效果,並以大眾媒體、試用式行銷或病毒式行銷方式,讓關鍵多數快速形成,以吸引更多玩家加入;舉辦大小型交友聚會或競賽活動,將有助玩家凝聚力的提昇。最後,解決玩家最關心的問題,包括;系統穩定度及玩家素質問題,讓玩家能夠愉快在線上遊戲社群上活動。
On-line games have been a highly profitable e-commerce application in recent years. The market value of online games is increasing markedly and number of players also is rapidly growing. The reasons for which people play on-line games represent an important area of research. In addition, online game is also seen as the entertainment community, which mainly differs with computer game. What factors contributing users’ loyalty on participating game community should be explored. This dissertation provides two studies that investigate into possible factors affecting users’ intention to accept an online game and users’ loyalty toward the game community.
In the first essay, an extended technology acceptance model (TAM) is proposed to explain why users play online games. The proposed model is empirically evaluated using survey data collected from 233 users about their perceptions of online games. Overall, the results reveal that social norms, attitude, and flow experience explain about 80% of game playing. While using entertainment technology such as online games, people usually want to “kill time”, not to “save time”. The influence of flow experience and social norms become important in explaining online games use.
In the second essay, the proposed model based on the modified TAM is developed to examine the perceived factors contributing to a game community users’ loyalty. The results indicate that loyalty is influenced by perceived enjoyment, social norms and preference from analyzing an empirical data involving 356 subjects. Perceived cohesion has an indirect impact on loyalty.
Finally, the implications of these findings for practitioners and academicians are provided in this dissertation. For academic researchers, this dissertation contributes to a theoretical understanding of the factors, such as intrinsic motivation (flow experience and perceived enjoyment) and social factors (norms, critical mass, and cohesion), that promote entertainment-oriented IT usage and entertainment-oriented community participation. For online game practitioners, the results presented here suggest that developers of online games should endeavor to design friendly interface, build solid relationship with opinion leaders, organize a periodic party or contest to create users’ cohesive feelings, and overcome the problems that users concern, including suffering an unstable system and malicious players.
摘要 I
Abstract III
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 IX
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 10
第三節 研究目的 12
第四節 研究範圍 14
第五節 博士論文研究架構 16
第二章 文獻探討 18
第一節 線上遊戲介紹 18
第二節 虛擬社群:線上遊戲社群 28
第三節 認知行為理論 33
第四節 神迷經驗 41
第五節 群體影響 47
第三章 玩家為什麼要參與線上遊戲?以延伸TAM(社會影響因素及神迷經驗)
來探討 52
第一節 介紹 52
第二節 概念模型與假說 55
第三節 研究方法 59
第四節 研究結果 63
第五節 討論 70
第六節 管理意涵 71
第七節 結論與研究限制 73
第四章 玩家參與線上遊戲社群行為研究:娛樂動機、社會規範及認知凝聚力 75
第一節 介紹 75
第二節 概念模型與研究假說 77
第三節 研究方法 80
第四節 研究結果 83
第五節 討論 89
第六節 管理意涵 91
第七節 結論與研究限制 92
第五章 結論與意涵 93
第一節 內在動機的重要性 96
第二節 社會因素的重要性 98
第三節 系統易用性的重要性 100
第四節 未來研究 101
附 錄 104
附錄一 結構化方程模式 104
附錄二 第一個研究之問卷調查題目 112
附錄三 第二個研究之問卷調查題目 115
參考文獻 118
一、中文部分 118
二、WWW資源 120
三、英文部分 121
作者簡介 137
研究著作目錄 138
參考文獻
一、中文部分
1. 中央警察大學資訊密碼曁建構實驗室,網路遊戲中的罪與罰,網路通訊,2003/8。
2. 何佩青,以國內電子遊戲業者現況探討線上遊戲營運模式及發展策略之先期研究,國立台灣大學工業工程所,民國90年。
3. 吳采芳,修正TAM模型在線上遊戲行為因素分析之研究,國防管理學院資源管理所,民國90年。
4. 吳婉汝,台灣遊戲軟體產業分析,國立台北大學經濟所,民國90年。
5. 宋鎮照,團體動力學,五南出版公司,民國89年。
6. 李天凌,網路商品之定價模式-以線上遊戲為例,國防管理學院資源管理所,民國90年。
7. 汪宗憲,線上遊戲產業發展概況,產業經濟,民92.05,頁1-15。
8. 卓彥銘,我國線上遊戲代表廠商行銷策略之研究,國立台北大學企管所,民國90年。
9. 林子凱,線上遊戲「天堂」之使用者參與動機與滿意度研究,國立成功大學企管所,民國90年。
10. 林東清,資訊管理-e化企業的核心競爭力,智勝文化出版社,民國92年。
11. 邱揮立,電玩新戰國時代:電玩遊戲商戰手冊,中華民國對外貿易發展協會,民國92年。
12. 邱皓政,結構方程模式-LISREL的理論、技術與應用,雙葉書廊有限公司,民國92年。
13. 胡啟華,線上遊戲參與者拍賣行為研究,輔仁大學資管所,民國91年。
14. 胡嘉彬,線上遊戲之顧客忠誠度行為,國立清華大學科技管理所,民國90年。
15. 高陳民,遊戲產業創意企劃人員專業能力及人才培育研究,元智大學資訊傳播所,民國91年。
16. 張武成,線上遊戲軟體設計因素與使用者滿意度關聯之研究,淡江大學資管所,民國90年。
17. 許晉龍,資訊管理增訂版,儒林出版社,民國92年。
18. 許瓊予、陳佳賢、林于勝,「遊戲產業發展現況與展望」,產業透析:軟體與應用透析,民91.08,頁2-12。
19. 陳怡安,線上遊戲的魅力,資訊社會研究,民國91年7月,頁183-214。
20. 陳俊良,線上遊戲顧客忠誠度之研究,國立台灣科技大學資管所,民國90年。
21. 陳冠中,「天堂」遊戲參與者之動機、沉迷與交易行為關係之研究,國立中正大學企管所,民國91年。
22. 陳軼辰,線上遊戲參與行為-消費者性別角色認同之探討,長庚大學資管所,民國91年。
23. 陳慶峰,從心流(flow)理論探討線上遊戲參與者之網路使用行為,南華大學資訊所,民國90年。
24. 傅鏡暉,線上遊戲產業H@ppy書,遠流出版社,民國91年。
25. 黃芳銘,結構方程模式理論與應用,五南圖書出版公司,民國92年。
26. 黃啟豪,線上遊戲使用者滿意度與忠誠度之研究,淡江大學企管系,民國91年。
27. 楊士良,我國電腦遊戲之關鍵成功因素,國立交通大學經營管理所,民國91年。
28. 楊蘊哲,網路遊戲產業人才培育政策之研究,國立台北師範學院教育傳播與科技研究所,民國91年。
29. 葉乃菁,從「群體動力學」探討個人對虛擬社群之接受度-以「Cityfamily」為例,國立台灣科技大學資管所,民國91年。
30. 董家豪,網路使用者參與網路遊戲行為之研究,南華大學資訊所,民國90年。
31. 潘玉華,電子遊戲專家與生手之表現差異研究,國立交通大學傳播所,民國91年。
32. 鄭明松、陳明光與吳思涵,台灣線上遊戲發展契機之探討,軟體產業通訊,民國91年。
33. 盧盛忠、余凱成、徐昶與錢冰鴻,組織行為學-理論與實務,五南圖書出版公司,民國86年。
34. 盧希鵬,電子商務之九陰真經,藍鯨出版社,民國90年。
35. 賴柏偉,虛擬社群:一個想像共同體的形成-以線上角色扮演遊戲【網路創世紀】為例,世新大學傳播所,民國91年。
36. 謝博亘,台灣線上遊戲產業運作模式之主要價值活動分析,國立台北大學企管所,民國90年。
二、WWW資源
1. Datamonitor (2001)
http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=1697
2. Datamonitor (2002) http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=2290
3. FIND (2003)
http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=2842
4. IDC (2003)
http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=2682
5. In-stat (2002)
http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=2056
6. MIC (2003)
http://www.find.org.tw/0105/focus/0105_focus_disp.asp?focus_id=241
7. NetValue (2002)
http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=2336
8. Pew Internet (2003)
http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=2757
三、英文部分
1. Adams, D.A., Nelson, R. R., and Todd, P. A. (1992). Perceives Usefulness, Ease of Use, and Usage of Information Technology: A Replication, MIS Quarterly, 16(2). pp. 227-247.
2. Agarwal, R. and Karahanna, E. (2000). Time Flies When You’re Having Fun: Cognitive Absorption and Beliefs About Information Technology Usage, MIS Quarterly, 24(4). pp. 665-694.
3. Agarwal, R. and Prasad, J. (1999). Are Individual Differences Germane to the Acceptance of New Information Technologies? Decision Sciences, 30(2). pp. 361-391.
4. Ajzen, I. (1985). From intention to actions: a theory of planned behavior, in: J. Kuhl, J. Bechmann (Eds.). Action Control: From Cognition to Behavior, Springer, New York, pp. 11-39.
5. Ajzen, I. (1991). The theory of planned behaviour. Organizational Behavior and Human Decision Process, 50, pp. 179-211.
6. Al-Gahtani, S. S. and King, M. (1999). Attitudes, satisfaction and usage: factors contributing to each in the acceptance of information technology. Behaviour & Information Technology, 18(4). pp. 277-297.
7. Armstrong, A. G. and Hagel, III, J. (1996). The real value of on-line communities. Harvard Business Review, May-June, pp. 134-141.
8. Armstrong, A. G.. and Hagel III, J. (1997). Net Gain: Expanding Markets through Virtual Communities. McKinsey Quarterly, 1. pp. 140-153.
9. Bagozzi, R. P. and Yi, Y. (1988). On the Evaluation of Structural Equation Models, Journal of the Academy of Marketing Science, 16, pp. 74-94.
10. Bajaj, A. and Nidumolu, S. R. (1998). A feedback model to understand information system usage. Information & Management, 33(4). pp. 213-224.
11. Balasubramanian, S. and Mahajan, V. (2001). The economic leverage of the virtual community. International Journal of Electronic Commerce, 5(3). pp. 103-137.
12. Barnatt, C. (1998). Virtual communities and financial services-on-line business potentials and strategic choice. International Journal of Bank Marketing, 16, pp. 161-169.
13. Barnett, L. A. (1990). Playfulness: definition, design, and measurement. Play and Culture, 3, pp. 319-336.
14. Bearden, W. O. and Etzel, M. J. (1982). Reference Group Influence on Product and Brand Purchase Decisions. Journal of Consumer Research, 9, pp. 183-194.
15. Bentler, P. M. and Bonett, D. G.. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, pp. 588-606.
16. Bergeron, F., Raymond, L., Rivard, S. and Gara, M-F. (1995). Determinants of EIS use: Testing a behavioural model. Decision Support System, 14, pp. 131-146.
17. Bhattacherjee, A. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2). pp. 201-214.
18. Blau, P. (1964). Exchange and Power in Social Life. New York: Wiley.
19. Bock, G. W. and Kim, Y.-G. (2002). Breaking the myths of rewards: an exploratory study of attitudes about knowledge sharing. Information Resources Management Journal, Apr-June, pp. 14-21.
20. Bollen, K. A. and Long, J. S. (1993). Testing structural equations models. Newbury Park, CA: Sage.
21. Briggs, R. O., Adkins, M., Mittleman, D. and Kruse, D. (2003). A technology transition model derived from field investigation of GSS use aboard the U.S.S. CORONADO. Journal of Management Information Systems, 15(3). pp. 151-196.
22. Bushnell, N. (1996). Relationships between fun and the computer business. Communication of the ACM, August, 39(8). pp. 31-37.
23. Chau, P. Y. K. and Hu, P. J.-H. (2002). Investigating healthcare professionals’ decisions to accept telemedicine technology: an empirical test of competing theories. Information & Management, 39, pp. 297-311.
24. Chau, P. Y. K. and Hu, P. J.-H. (2002). Examining a model of information technology acceptance by individual professionals: an exploratory study. Journal of Management Information Systems, 18(4). pp. 191-229.
25. Chen, H, Wigand, R. and Nilan, M. (1999). Optimal experience of web activities. Computers in Human Behavior, 15(5). pp. 585-608.
26. Chen, Lei-da, Gillenson, M. L. and Sherrell, D. L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & Management, 39, pp. 705-719.
27. Cheung, W., Chang, M. K. and Lai, V. S. (2000). Prediction of Internet and World Wide Web usage at work: a test of an extended Triandis model. Decision Support Systems, 30(1). pp. 83-100.
28. Chin, W.W. and Gopal, A. (1995). Adoption Intention in GSS: Relative Importance of Beliefs. the Data Base for Advances in Information Systems, 26(2&3). pp. 42-63.
29. Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety, Jossey-Bass, San Francisco, CA.
30. Csikszentmihalyi, M. and LeFevre, J. (1989). Optimal experience in work and leisure. Journal of Personality and Social Psychology, 56(5). pp. 815-822.
31. Csikszentmihalyi, M.and Csikszentmihalyi, I. (1988). Introduction to part IV. In M. Csikszentmihalyi, and I. S. Csikszentmihalyi (Eds.). Optimal experience: Psychological studies of flow in consciousness. New York: Cambridge University Press.
32. Csikzentmihalyi, M. (1990). Flow, the Psychology of Optimal Experience. Harper & Row.
33. David, O. S., Jonathan, L. F., and Letitia, A. P. (1986). Social Psychology. University of California, Los Angels.
34. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13, pp. 319-339.
35. Davis, F.D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), pp. 475-487.
36. Davis, F. D., Bagozzi, R. P. and Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8). pp. 982-1003.
37. Davis, F. D., Bagozzi, R. P. and Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14). pp. 1111-1132.
38. Deci, E. L. and Ryan, R. M. (1987). Accessibility and stability of predictors in the theory of planned behaviour. Journal of Personality and Social Psychology, 63(5). pp. 754-765.
39. Delone, W. and McLean, E. (1992). Information systems success: the quest for the dependent variable. Information Systems Research, 3(1). pp. 60-95.
40. Dermatis, H., Salke, M., Galanter, M. and Bunt, G.. (2001). The role of social cohesion among residents in a therapeutic community. Journal of Substance Abuse Treatment, 21, pp. 105-110.
41. Deutsch, M. and Gerard, H. B. (1995). A Study of Normative and Informational Social Influences upon Individual Judgment. Journal of Abnormal and Social Psychology, 51, pp.624-636.
42. Dick, A. S. and Basu, K. (1994). Customer loyalty: an integrated conceptual framework. Journal of Academy of Marketing Science, 22(2). pp. 99-113.
43. Dishaw, M.T. and Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information & Management, 36(1). pp. 9-21.
44. Doll, W. J., Hendrickson, A. and Deng, X. (1998). Using Davis’s Perceived Usefulness and Ease-of-use Instruments for Decision Making: A Confirmatory and Multigroup Invariance Analysis. Decision Sciences, 29(4). pp. 839-869.
45. Dumas, J. S. and Redish, J. C. (1999). A Practical Guide to Usability Testing (Revised Edition). Exeter, UK: Intellect.
46. Evans, C. R. and Dion, K. L. (1991). Group cohesion and performance: A meta-analysis. Small Group Research, 22(2), pp. 203-216.
47. Evans, N. J. and Jarvis, P. A. (1980). Group cohesion: a review and re-evaluation. Small Group Behavior, 11, pp. 359-370.
48. Festinge, L. (1950). Informal social communication. Psycholo Rev, 57, pp. 271-282.
49. Fishbein, M. and Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley, Reading, MA.
50. Fornell, C. R. (1982). A second generation of multivariate analysis methods: Vols. I and II. New York: Praeger Special Studies.
51. Fornell, C. R. and Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, pp. 39-50.
52. Gefen, D. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1). pp. 51-90.
53. Gefen, D. and Straub, D. W. (1997). Gender Differences in the Perception and Use of E-Mail: An Extension to the Technology Acceptance Model. MIS Quarterly, 21(4), pp. 389-400.
54. Ghani, J. A. Supnick, R. and Rooney, P. (1991). The experience of flow in computer-mediated and in face-to-face groups. In Degross, J. I., Benbasat, I., Desanctis, G. and Beath, C. M. (Eds). Proceedings of the Twelfth International Conference on Information Systems, ICIS, New York, NY, pp. 229-237.
55. Ghani, J. A. and Deshpande, S. P. (1994). Task characteristics and the experience of optimal flow in human-computer interaction. Journal of Psychology, 128(4). pp. 381-391.
56. Goodman, P. S., Ravlin, E. and Schminke, M. (1987). Understanding groups in organizations Research. Organization Behavior, 9, pp. 121-173.
57. Goodwin, C. (1987). A Social-Influence Theory of Consumer Cooperation. Advances in Consumer Research, 14, pp. 378-381.
58. Hagel III, J, Armstrong, A. G. (1997). Net Gain: Expanding Markets Through Virtual Communities. Harvard Business School Press.
59. Hair, J. F., Anderson, R. E., Tatham, R. L. and Black, W. C. (1992). Multivariate data analysis with readings. New York: MacMillan.
60. Hayduck, L. A. (1987). Structural Equation Modeling with LISREL (Baltimore, MD: Johns. Hopkings University Press.
61. Hoffman, D. L. and Novak, T. P. (1996). Marketing in Hypermedia Computer-mediated environments: conceptual foundations. Journal of Marketing, 60, pp. 50-68.
62. Hoffman, D. L. and Novak, T. P. (1997). A new marketing paradigm for electronic commerce. The Information Society, 13, pp.43-54.
63. Hogg, M. A. (1992). The social psychology of group cohesiveness: From attraction to social identity. New York University Press, New York.
64. Hong, W., Thong, J. Y. L., Wong, W.-M. and Tam, K.-Y. (2002). Determinants of user acceptance of digital libraries: An empirical examination of individual differences and systems characteristics. Journal of Management Information Systems, 18(3), pp. 97-125.
65. Horton, R.P., Buck, T., Waterson, P. E. and Clegg, C. W. (2001). Explaining intranet use with the technology acceptance model. Journal of Information Technology, 16(4), pp. 237-249.
66. Hu, P.J., Chau, P. K. Y., Sheng, O. R. L. and Tam, K. Y. (1999). Examining the Technology Acceptance Model Using Physician Acceptance of Telemedicine Technology. Journal of Management Information Systems, 16(2), pp. 91-112.
67. Hull, J. G., Lehn, D. A. and Tedlie, J. C. (1991). A General Approach to Testing Multifaceted Personality Constructs. Journal of Personality and Social Psychology, 61(6), pp. 932-945.
68. Hunton, J. E., Arnold, V. and Gibson, D. (2001). Collective user participation: a catalyst for group cohesion and perceived respect. International Journal of Accounting Information Systems, 2, pp. 1-17.
69. Igbaria, M., Schiffman, S. J. and Wieckowshi, T. S. (1994). The respective roles of perceived usefulness and perceived fun in the acceptance of microcomputer technology. Behavior and Information Technology, 13(6). 349-361.
70. Igbaria, M. and Iivari, J. (1995). The Effects of Self-efficacy on Computer Usage. OMEGA: International Journal of Management Science, 23(6). pp. 587-605.
71. Igbaria, M., Parasuraman, S. and Baroudi, J. (1996). A Motivational Model of Microcomputer Usage. Journal of Management Information Systems, 13, pp. 127-143.
72. Joreskog, K. G. and Sorborm, D. (1993). LISREL 8, User’s reference guide. Chincago, IL: Scientific Software International.
73. Joreskog, K. G. and Sorbom, D. (1996). LISREL 8: Users’ reference guide. Chicago: Scientific Software Internatioinal.
74. Karahanna, E. and Straub, D. W. (1999). The psychological origins of perceived usefulness and ease-of-use. Information & Management, 35(4), pp. 237-250.
75. Kardaras, D., Karakostas, B. and Papathanassiou, E. (2003). The potential of virtual communities in the insurance industry in the UK and Greece. International Journal of Information Management, pp. 23, 41-53.
76. Kauffman, R. J., McAndrews, J. and Wang, Y-M. (2000). Opening the “Black Box” of Network Externalities in Network Adoption. Information System Research, 11(1), pp. 61-82.
77. Kelman, H. C. (1961). Process of Opinion Change. Public Opinion Quarterly, 25, pp. 57-78.
78. Kenny, D. and Marshall, J. F. (2000). Contextual marketing: the real business of the internet. Harvard Business Review, Nov-Dec.
79. Klein, H. J. and Mulvey, P. W. (1995). Two investigations of the relationships among group goals, goal commitment, cohesion, and performance. Organizational Behavior and Human Decision Processes, 61(1), pp. 44-53.
80. Korzann, M. L. (2003). Going with the flow: predicting online purchase intentions. Journal of Computer Information Systems, Summer, pp. 25-31.
81. Koufaris, M. (2002). Applying the Technology Acceptance Model and Flow Theory to Online Consumer Behavior. Information System Research, 13(2). pp. 205-223.
82. Kusiak, III, F. J. (2002). Virtual historiography: How history is presented in entertainment-based computer games. PhD Dissertation, TRUMAN STATE UNIVERSITY.
83. Kwon, O. B., Kim, C.-R. and Lee, E. J. (2002). Impact of website information design factors on consumer ratings of web-based auction sites. Behaviour & Information Technology, 21(6), pp. 387-402.
84. Laka, C. (1996). Relational Development in Computer-Supported Groups. MIS Quarterly, June.
85. Lascu, D.-N. and Zinkhan, G. (1999). Consumer conformity: Review and applications for marketing theory and practice. Journal of Marketing Theory and Practice, Summer, 7(3). pp. 1-12.
86. Lederer, A.L., Maupin, D. J., Sena, M. P. and Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. Decision Support Systems, 29(3), pp. 269-282.
87. Lee, G. G. and Pai, J.-C. (2003). Effects of organizational context and inter-group behavior on the success of strategic information systems planning: an empirical study. Behaviur & Information Technology, pp. 1-18.
88. Legris, P. Ingham, J. and Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40, pp. 191-204.
89. Liao, S., Shao. Y. P., Wang, H. and Chen, A. (1999). The adoption of virtual banking: an empirical study. International Journal of Information Management, 19, pp. 63-74.
90. Liker, J. K. and Sindi, A. A. (1997). User Acceptance of Expert systems: A Test of the Theory of Reasoned Action. Journal of Engineering and Technology Management, 14, pp. 147-173.
91. Lin, J. C.-C. and Lu, H. (2000). Toward an understanding of the behavioural intention to use a web site. International Journal of Information Management, 20, pp. 197-208.
92. Loebbecke, C. and Powell, P. (2002). E-business in the entertainment sector: the Egmont case. International Journal of Information Management, 22(4), pp. 307-322.
93. Lu, H. and Yeh, Da-Chin. (1998). Enterprise’s Perceptions on Business Process Re-engineering: A Path Analytic Model. OMEGA: International Journal of Management Science, 26(1), pp. 17-27.
94. Lu, H. and Lin, J. C-C. (2003). Predicting customer behavior in the market-space: a study of Rayport and Sviokla’s framework. Information & Management, 40, pp. 1-10.
95. Lu, H., Yu, H.-J. and Lu, S. S.K. (2001). The effects of cognitive style and model type on acceptance: an empirical study. European Journal of Operational Research, 131, pp. 649-663.
96. Lucas, H. C. and Spitler, V. K. (2000). Implementation in a world of workstations and networks. Information & Management, 38(2), pp. 119-128.
97. Luo, W and Strong, D. (2000). Perceived critical mass effect on groupware acceptance. European Journal of Information Systems, 9(2). pp. 91-103.
98. M2 Communications Ltd., Gaming sites most popular in spain, Europemedia, 2002/4/9.
99. Markus, M. J. (1990). Toward a critical mass theory of interactive media. In Fulk, J. and Steinfield, C. (ed.) Organizations and Communication Technology, Newbury Park: Sage, pp.194-218.
100. Marsh, H. W., Balla, J. R. and McDonald, R. P. (1998). Goodness-of-Fit indices in Confirmatory Factory Analysis: The Effect of Sample Size. Psychological Bulletin, 103, pp. 391-410.
101. Mathieson, K. (1991). Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior. Information Systems Research, 2(3), pp. 173-191.
102. Mathieson, K. E. P. and Chin, W. C. (2001). Extending the Technology Acceptance Model: The Influence of Perceived User Resources. the Data Base for Advances in Information Systems, 32(3), pp. 86-113.
103. Methlie, L. B. and Nysveen, H. (1999). Loyalty of on-line bank customers. Journal of Information Technology, 14, pp. 375-386.
104. Moon, J.-W. and Kim, Y-G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), pp. 217-230.
105. Mulligan, J. and Patrovsky, B. (2003). Developing Online Games: An Insider''''''''s Guide. New Riders.
106. Narayanan, V. K. and Nath, R. (1984). The influence of group cohesiveness on some changes induced by flexitime: a quasi-experiement. Journal of Applied Behavioral Science, 20(3), pp. 265-276.
107. Nault, B. R. and Dexter, A. S. (1994). Adoption, transfers, and incentives in a franchise network with positive externalities. Marketing Science, 13(4), pp. 412-423.
108. Ng, H.-I., Pan, Y. J. and Wilson, T. D. (1998). Business Use of the World Wide Web. A Report on Further Investigations, 18(5), pp. 291-314.
109. Novak, P. T. and Hoffman, L. D. (1997). Measuring the flow experience among web users. Interval Research Corporation, July 31.
110. Novak, T. P., Hoffman, D. L. and Yung, Y-F. (2000). Measuring the Customer Experience in Online Environments: A Structural Modeling Approach. Marketing Science, 19(1), pp. 22-42.
111. Oliver, P. E., Marwell, G. and Teixeira, R. (1985). A theory of the critical mass: interdependence, group heterogeneity, and the production of collective action. American Journal of Sociology, 91(3), pp. 522-556.
112. Oliver, R. L. (1997). Satisfaction: A Behavioral Perspective on the Consumer, New York: Irwin/Mcgraw-Hill.
113. Park, W. C. and Lessig, V. P. (1977). Students and Housewives Differences in Susceptibility to Reference Group Influence. Journal of Consumer Research, 4, pp. 102-110.
114. Pine II B.J. and Gilmore, J. H. (1998). Welcome to the Experience Economy. Harvard Business Review, July-August, pp. 97-105.
115. Piper, W. E., Marrache, M., LaCroix, R., Richardsen, M. and Jones, B. D. (1983). Cohesion and a basic bond in groups. Human Relations, 36, pp. 93-108.
116. Pitt, L. F. Watson, R. T. and Kavan, C. B. (1995). Service quality: A measure of information systems effectiveness. MIS Quarterly, 19(2), pp. 173-188.
117. Plouffe, C.R., Hulland, J. and Vandenbosch, M. (2001). Richness versus Parsimony in Modeling Technology Adoption Decisions: Understanding Merchant Adoption of a Smart Cart-Based Payment System. Information Systems Research, 12(2), pp. 208-222.
118. Podsakoff, P. M., MacKenzie, S. B. and Ahearne, M. (1997). Moderating effects of goal acceptance on relationship between group cohesiveness and productivity. Journal of Applied Psychology, 82(6), pp. 974-983.
119. Preece, J. (2000). Online Communities: Designing Usability, Support Sociability. Chichester, UK: Wiley.
120. Preece, J. (2001). Sociability and usability in online communities: determining and measuring success. Behavior & Information Technology, 20(5), pp. 347-356.
121. Rayport, J. F. and Sviokla, J. J. (1994). Managing in the Marketspace. Harvard Business Reivew, Nov-Dec, pp. 141-150.
122. Rettie, R. (2001). An exploration of flow during Internet use, Internet Research: Electronic Networking Application and Policy. 11(2), pp. 103-113.
123. Rheingold, H. (1993). The Virtual Community: Homesteading on the Electronic Frontier. Reading, MA: Addison Wesley.
124. Rice, R. E. and Love, G. (1987). Electronic emotion: socioemotional content in a computer-mediated communication network. Communication Research, 14(1), pp. 85-108.
125. Riemenschneider, C. K., Harrison, D. A. and Jr, P. P. M. (2003). Understanding it adoption decisions in small business: integrating current theories. Information & Management, 40, pp. 269-285.
126. Robbins, S. P. (1992). Essentials of organizational behaviour, Prentice-Hall International.
127. Rogers, E. M. (1995). Diffusion of Innovations. 4th ed., New York, The Free Press.
128. Rogers, E. M. (2003). Diffusion of Innovation. 5th ed., New York, The Free Press.
129. Rollings, A. and Adams, E. (2003). Andrew Rollings and Ernest Adams on Game Design, New Riders.
130. Romm, C., Pliskin, N. and Clarke, R. (1997). Virtual Communities and Society: Toward and Integrative three phase model. International Journal of Information Management, 17(4), pp. 261-270.
131. Rubin, K. H., Fein, G. G., and Vandenbert, B. (1983). Play in P. H. Mussen(Ed.). Handbook of child psychology: Socialization, personality and social development. (Vol. 4). 4th ed., pp. 695-774, New York: Wiley.
132. Schiffman, Leon G. and Leslie Lazar Kanuk (2000). Consumer Behavior, Seventh Edition, Upper Saddle River, New Jersey: Prentice-Hall, Inc.
133. Seibert, S. M. Kraimer, R. and Liden, A. (2001). Social capital theory of career success. Academy of Management Journal, 44 (2), pp. 219-237.
134. Sega, V. L. and Zmud, R. W. (1994). The nature and determinants of IT acceptance, Routinization and infusion, IFIP Transaction A: Computer Science and Technology, A-45, pp. 67-86.
135. Scott, J. E. (1994). The measurement of information systems effectiveness: evaluating a measuring instrument. Proceedings of the Fifteenth International Conference on Information Systems, Vancouver, British Columbia, pp. 111-128.
136. Seibert, S. E., Kraimer, M. L. and Liden, R. C. (2001). A social capital theory of career success. Academy of Management Journal; Briarcliff Manor, pp. 219-237.
137. Seyal, A. H., Rahman, M. N. and Rahim, M. M. (2002). Determinants of academic use of the Internet: a structural equation model. Behavior & Information Technology, 21(1), pp. 71-86.
138. Shapiro, C. and Varian, H. R. (1999). Information Rules: A Strategic Guide to the Network Economy. Harvard Business School Press, Cambridge, MA.
139. Solomon, M. (1999). Consumer behavior, Fourth Edition, Upper Saddle River, New Jersey: Prentic-Hall, Inc.
140. Stafford, M. R. and Stern, B. (2002). Consumer bidding behavior on internet auction sites. International Journal of Electronic Commerce, 7(1), pp. 135-150.
141. Szajna, B. (1994). Software Evaluation and Choice: Predictive Validation of the Technology Acceptance Instrument. MIS Quarterly, 18(3), pp. 319-324.
142. Szajna, B. (1996). Empirical Evaluation of the Revised Technology Acceptance Model. Management Science, 42(1), pp. 85-92.
143. Takahashi, D. (2000). E-Commerce (A Special Report): Industry by Industry --- Don''''''''t Shoot! Everybody figured game sites would be hot; The surprise is who''''''''s playing -- and what. Wall Street Journal, New York; 17.
144. Tan, M. and Teo, T. S. H. (2000). Factors Influencing the Adoption of Internet Banking, Journal of the AIS (1:5). http://jais.isworld.org/articles/1-5/.
145. Taylor, S. and Todd, P. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2), pp. 144-176.
146. Teo, T.S.H., Lim, V. K. G. and Lai, R.Y.C. (1999). Intrinsic and extrinsic motivation in Internet usage. OMEGA International Journal of Management Science, 27(1), pp. 25-37.
147. Trevino, L. K. and Webster, J. (1992). Flow in computer-mediated communication. Communication Research, 19(5), pp. 539-573.
148. Triandis, H. C. (1980). Beliefs, Attitudes, and Values. Univ. Nebraska Press, Lincoln, pp. 195-259.
149. Vellerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation. Adv. Experiment, Soc. Psych, 29, pp. 271-360.
150. Venkatesh, V. (2000). Determinants of Perceived Ease Of Use: Integrating Control, Intrinsic Motivation, And Emotion Into The Technology Acceptance Model. Information Systems Research, 11(4), pp. 342-365.
151. Venkatesh, V. and Morris, M. G. (2000). Why Don''''''''t Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Quarterly, 24(1), pp. 115-139.
152. Venkatesh, V. and Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), pp. 186-204.
153. Venkatesh, V., Speier, C. and Morris, M. G. (2002). User Acceptance Enablers in Individual Decision Making About Technology: Toward an Integrated Model. Decision Sciences, 33(2), pp. 297-315.
154. Wachter, R. M., Gupta, J. N.D. and Quaddus, M. A. (2000). IT takes a village: virtual communities in support of education. International Journal of Information Management, 20, pp. 437-489.
155. Wang, E. T. and Seidmann, G. A. (1995). Electronic data interchange: Competitive externalities and strategic implementation policies. Management Science, 41(3), pp. 401-418.
156. Wasko, M. M. and Faraj, S. (2000). “It is what one does”: why people participate and help others in electronic communities of practice. Journal of Strategic Information Systems, 9, pp. 155-173.
157. Webster, J., Trevino, L. K. and Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interactions. Computers in Human Behavior, 9, pp. 411-426.
158. Woszczynski, A. B., Roth, P. L. and Segars, A. H. (2002). Exploring the theoretical foundations of playfulness in computer interactions. Computers in Human Behavior, 18, pp. 369-388.
159. Yoo, Y. and Alavi, M. (2001). Media and Group Cohesion: Relative Influences on Social Presence, Task Participation, and Group Consensus. MIS Quarterly, 25(3), pp. 371-390
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 19. 陳怡安,線上遊戲的魅力,資訊社會研究,民國91年7月,頁183-214。
2. 7. 汪宗憲,線上遊戲產業發展概況,產業經濟,民92.05,頁1-15。
3. 32. 鄭明松、陳明光與吳思涵,台灣線上遊戲發展契機之探討,軟體產業通訊,民國91年。
4. 邱文忠(1994)。中途輟學影響因素暨模式及其輔導策略之探討。教育研究雙月刊, 36, 32-41。
5. 林青瑩(1999)。青少年偏差行為的家庭因素之分析研究。師大公民訓育學報,8,409-456。
6. 陳儀如(1998)。政府與學校如何有效辦理中輟生的輔導。教育資料文摘, (245), 183-187。
7. 彭懷真(1995)。輔導工作網絡的建立與策略-以關懷受虐兒童和中輟學生為例。輔導季刊, 31(2), 14-16。
8. 張人傑(1994)。改進輟學研究需解決的問題。教育研究雙月刊37期,28-35。
9. 張清濱(1992)。中途輟學的社會學分析及其輔導策略。教育研究雙月刊, 25, 48-56。
10. 張鈿富 (1996)。高級職業-學校 學生中途輟學原因與輔導策略之研究。教育資料文摘,38(1),113-134。
11. 劉秀汶(1999)。國民中學中輟生問題及支援系統研究。訓育研究38期,63-80。
12. 劉佩雲(1995)。國民中小學學生中輟生成因及輔導策略之探討。教育研究資訊, 2 (2), 85-93。
13. 鄭崇趁(1999)。中途學校與中輟生輔導。訓育研究38期 (2),48-56。
14. 鄭瑞隆(2000)。暴力犯罪少年家庭特徵與家庭生活經驗。台北市,犯罪學期刊,p49 -78。
15. 譚光鼎(1997)。阿美族的教育及其問題之探討。山海文化雙月刊17:58-76。