跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李德麟
研究生(外文):LEE, TE-LIN
論文名稱:性能檢定站公豬步態評分之影響因素
論文名稱(外文):Factors of Affecting the Gait Score of Boars in the Performance Test Station
指導教授:李德南李德南引用關係
指導教授(外文):LEE, DER-NAN
口試委員:林美峰陳銘正楊天樹魏恆巍
口試委員(外文):LIN, MEI-FONGCHEN, MING-CHENGYANG, TIEN-SHUHWEI, HEN-WEI
口試日期:2021-01-18
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術與動物科學系動物科學碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:63
中文關鍵詞:公豬步態評分肢蹄腳弱綜合症營養
外文關鍵詞:BoarGait scoreNutritionOsteochondrosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
肢蹄腳弱綜合症(osteochondrosis, OC)為一種豬場的常見疾病,臨床上以行走站立異常或是無法支撐體重為特徵,而被認為是造成種豬腳弱之主因。目前國內對於此症之研究甚少,故本試驗為區分成三試驗,以期調查中央檢定站公豬OC發生率及杜洛克公豬步態參數、OC與生長性能之關聯,再者透過餵飼28天複合營養添加劑對於杜洛克公豬步態參數之影響。試驗一調查150日齡檢定完成杜洛克、藍瑞斯和約克夏之OC發生率,以4級制步態評分方法區分0分為正常、1分為輕微、2分為明顯以及3分為嚴重,1-3分歸納為罹患OC公豬,復以測定步態評分0和1分杜洛克之步態參數。結果顯示,經調查全期發現,杜洛克、藍瑞斯和約克夏公豬OC發生率分別為11.61、17.35和21.57%。罹患OC杜洛克公豬的後腳步幅和步伐顯著較正常豬減少5-7 cm(P < 0.05)。試驗二分析三個品種純種豬罹患OC對於生長性能之影響。結果顯示,藍瑞斯罹患OC顯著降低隻日增重和生長指數,而杜洛克罹患OC顯著提高飼料利用效率值(採食量/日增重)(P < 0.05)。復以相關分析發現杜洛克罹患OC與飼料利用效率值呈現顯著正相關(r = 0.16, P < 0.01),藍瑞斯罹患OC與隻日增重(r = -0.19, P < 0.05)與生長指數(r = -0.18, P < 0.05)均呈現顯著負相關,而約克夏罹患OC與隻日增重(r = -0.30, P < 0.05)、飼料利用效率(r = 0.30, P < 0.05)及生長指數(r = -0.38, P < 0.01)均具有顯著相關性。試驗三於檢定完成後將78頭杜洛克檢定合格公豬區分為正常和OC患豬,並分別餵飼澱粉(對照組)與複合營養(營養組),以2×2複因子試驗設計探討複合營養對於杜洛克步態參數之影響。結果顯示,無論是正常、OC患豬或有無添加複合營養均不影響杜洛克之步態參數,且正常豬與患豬之肢蹄結構也無差異。綜合上述結果,全期OC發生率約14.33%,而杜洛克罹患OC的後腳步幅和步伐較正常豬減少5-7 cm。罹患OC降低藍瑞斯之隻日增重和提高杜洛克之飼料利用效率值,但餵飼28天複合營養無法改善OC患豬之步態參數。
Osteochondrosis (OC), characterized by abnormal walking and standing, causes leg weakness and troubles body weight supporting, which is more often seen in breeding pigs expressing superior growth performance. The study is designed to reveal the prevalence of OC in young boars undertaking performance test and the likely nutritional improvement measure under the subtropical environment of Taiwan since the complications have not yet been fully disclosed. Three trials were conducted, the first one was to understand the incidence of OC and the gait parameters in Duroc boars at the test station; the second one was to realize the correlation between OC and growth performance. Trial 3 was designed to understand the likely beneficial effects of 28 days multi-nutritional supplementations on the gait parameters of Duroc boars. In the first trial, Duroc, Landrace and Yorkshire boars were scored on a 4-level gait of 0: normal, 1: mild, 2: obvious, and 3: severe at the end of the 150-day age testing and the normality of 88.39, 82.65 and 78.43% were respectively obtained. The gait parameters differed significantly (P < 0.05) between normal and OC Duroc boars that showed 7.64 and 5.00 cm less in the stride length and step length, respectively. In the second trial, the impact of OC on the growth performance of three purebred pigs was investigated. The results showed that OC significantly reduced average daily gain (ADG) and growth index in Landrace (P < 0.05), while in Duroc, OC significantly increased feed utilization efficiency (FE, feed intake/ weight gain) (P < 0.05). Significance correlation was also found that in Duroc, OC was positively correlated with FE (r = 0.16, P < 0.01); in Landrace, OC was negatively correlated with ADG (r = -0.19, P < 0.05) and growth index (r = -0.18, P < 0.05). However, in Yorkshire, OC was significantly correlated with ADG (r = -0.30, P < 0.05), FE (r = 0.30, P < 0.05) and growth index (r = -0.38, P < 0.01). In the third trial, 78 Duroc test-qualified boars were categorized into normal and OC pigs and they were fed with starch (control group) and compound nutrition (treatment group), respectively. A 2×2 multiple-factor test design was adopted to investigate the effects of multi-nutritional supplements on Duroc's gait parameters. The results showed that the treatment exerted no effect on Duroc's gait parameters regardless of initial physical conditions (normal vs OC). In conclusion, the prevalence of OC in young boars was 14.33% in the test station of Taiwan. In OC Duroc boars, a shorter rear stride and step length of 5.00-7.64 cm was recorded with inferior growth performance. The subsequent multi-nutritional supplementation for 28 days benefited little on the gait parameters.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 IX
壹、前言 1
貳、文獻探討 3
一、腳部問題對養豬產業所造成之影響 3
二、肢蹄腳弱綜合症之致病原理與發病機制 3
三、肢蹄腳弱綜合症之好發部位 4
四、肢蹄腳弱綜合症與生長速率之關聯 4
五、影響肢蹄腳弱綜合症之因素分析 5
(一)遺傳因素 5
1. 性別 5
2. 品種 6
3. 基因 6
(二)飼養因素 8
1. 生長階段 8
2. 飼養密度 8
3. 地面材質 9
4. 運動量 10
5. 單欄飼養和群體飼養 10
(三)飼料營養因素 11
1. 飼料營養濃度 11
2. 必需胺基酸 11
3. 非必需胺基酸 12
4. 礦物質 12
5. 維生素 13
(四)疾病與病原性關節炎 14
六、豬隻罹患肢蹄腳弱綜合症之判別方法 15
參、材料與方法 21
一、試驗設計與飼養管理 21
(一)試驗一:發生率調查及杜洛克公豬步態參數 21
(二)試驗二:肢蹄腳弱綜合症與生長性能之關聯性 23
(三)試驗三:餵飼複合營養對於肢蹄腳弱綜合症之影響 23
二、試驗資料之記錄與量測方法 25
(一)豬舍溫濕度記錄 25
(二)視覺評估方法 25
(三)生長性能 25
(四)步態參數 26
(五)肢蹄結構型態 30
三、統計分析 33
肆、結果 34
一、試驗一 34
二、試驗二 40
三、試驗三 44
伍、討論 47
一、發生率調查 47
二、肢蹄腳弱綜合症與生長性能之關聯 48
三、杜洛克公豬罹患肢蹄腳弱綜合症對於步態參數之影響 49
陸、結論 50
柒、參考文獻 51

朱家驥、朱偉興。2015。基於星狀骨架模型的豬步態分析。江蘇農業科學43:453-457。
張晉、朱偉興。2011。基於特徵融合與支持向量機的豬前肢步態異常識別研究。江蘇大學碩士論文1-84。
錢建軒、朱偉興。2018。基於計算機視覺的動物跛腳行為識別。江蘇農業科學10:1-4。
顏念慈、蔡秀容、賴永裕、陳佳萱、林正祥、陳培梅、吳明哲。2019。純種豬檢定之生長性能指數、體型及腳蹄之名次相關性探討。畜產研究52:249-255。
Adab, K., J. R. Sayne, D. S. Carlson, and L. A. Opperman. 2002. Tgf-β1, Tgf-β2, Tgf-β3 and Msx2 expression is elevated during frontonasal suture morphogenesis and during active postnatal facial growth. Orthod. Craniofac. Res. 5:227-237.
Andersson-Eklund, L., H. Uhlhorn, N. Lundeheim, G. Dalin, and L. Andersson. 2000. Mapping quantitative trait loci for principal components of bone measurements and osteochondrosis scores in a wild boar× Large White intercross. Genet. Res. 75:223-230.
Applegate, A. L., S. E. Curtis, J. L. Groppel, J. M. McFarlane, and T. M. Widowski. 1988. Footing and gait of pigs on different concrete surfaces. J. Anim. Sci. 66:334-341.
Armstrong, T. A., and J. W. Spears. 2001. Effect of dietary boron on growth performance, calcium and phosphorus metabolism, and bone mechanical properties in growing barrows. J. Anim. Sci. 79:3120-3127.
Armstrong, T. A., W. L. Flowers, J. W. Spears, and F. H. Nielsen. 2002. Long-term effects of boron supplementation on reproductive characteristics and bone mechanical properties in gilts. J. Anim. Sci. 80:154-161.
Arnbjerg, J. 2007. Effect of a low-growth rate on the frequency of osteochondrosis in Danish Landrace pigs. Arch. Anim. Breed. 50:105-111.
Bertholle, C. P., E. Meijer, W. Back, A. Stegeman, P. R. Van Weeren, and A. Van Nes 2016. A longitudinal study on the performance of in vivo methods to determine the osteochondrotic status of young pigs. BMC Vet. Res. 12:1-11.
Blumenfeld, I., S. Srouji, M. Peled, and E. Livne. 2002. Metalloproteinases (mmps-2, -3) are involved in tgf-beta and igf-1-induced bone defect healing in 20-month-old female rats. Arch. Gerontol. Geriatr. 35:59-69.
Brennan, J. J., and F. X. Aherne. 1986. Effect of dietary calcium and phosphorus levels on performance, bone bending moment and the severity of osteochondrosis and lameness in boars and gilts slaughtered at 100 or 130 kg body weight. Can. J. Anim. Sci. 66:777-790.
Busch, M. E., and H. Wachmann. 2011. Osteochondrosis of the elbow joint in finishing pigs from three herds: associations among different types of joint changes and between osteochondrosis and growth rate. Vet. J. 188:197-203.
Carlson, C. S., H. D. Hilley, C. K. Henrikson, and D. J. Meuten. 1986. The ultrastructure of osteochondrosis of the articular-epiphyseal cartilage complex in growing swine. Calcif. Tissue Int. 38:44-51.
Carlson, C. S., H. D. Hilley, D. J. Meuten, J. M. Hagan, and R. L. Moser. 1988. Effect of reduced growth rate on the prevalence and severity of osteochondrosis in gilts. Am. J. Vet. Res. 49:396-402.
Christensen, O. F., M. E. Busch, V. R. Gregersen, M. S. Lund, B. Nielsen, R. K. K. Vingborg, and C. Bendixen. 2010. Quantitative trait loci analysis of osteochondrosis traits in the elbow joint of pigs. Animal 4:417-424.
Crenshaw, T. D. 2006. Arthritis or OCD-identification and prevention. Adv. Pork Prod. 17:199-207.
Crochiere, M. L., J. K. Kubilus, and T. F. Linsenmayer. 2008. Perichondrial-mediated TGF-beta regulation of cartilage growth in avian long bone development. Int. J. Dev. Biol. 52:63-70.
Crump, R. E. 2001. A genetic analysis of sow longevity. Page 223 in Proc. 14th Conf. Assoc. Advmt. Anim. Breed. Genet., Queenstown, Australia.
da Silva, G. A., F. G. Fernandez, A. P. Backes, D. G. Donin, S. R. Fernandes, A. K. Fireman, T. Kramer, and G. C. Alberton. 2019. Effect of the organic minerals zinc, manganese, and copper on growth performance and the locomotor system of finishing pigs J. Agric. Sci. 40:3209-3222.
de Koning, D. B., B. F. A. Laurenssen, R. E. Koopmanschap, E. M. Van Grevenhof, P. R. Van Weeren, W. Hazeleger, and B. Kemp. 2016. Effects of a high carbohydrate diet and arginine supplementation during the rearing period of gilts on osteochondrosis prevalence at slaughter. Livest. Sci. 188:91-102.
de Koning, D. B., E. M. Van Grevenhof, B. F. A. Laurenssen, P. R. Van Weeren, W. Hazeleger, and B. Kemp. 2013. The influence of dietary restriction before and after 10 weeks of age on osteochondrosis in growing gilts. J. Anim. Sci. 91:5167-5176.
de Koning, D. B., E. M. Van Grevenhof, B. F. A. Laurenssen, P. R. Van Weeren, W. Hazeleger, and B. Kemp. 2014. The influence of floor type before and after 10 weeks of age on osteochondrosis in growing gilts. J. Anim. Sci. 92:3338-3347.
de Koning, D. B., E. M. Van Grevenhof, B. F. A. Laurenssen, W. Hazeleger, and B. Kemp. 2015. Associations of conformation and locomotive characteristics in growing gilts with osteochondrosis at slaughter. J. Anim. Sci. 93:93-106.
Duberstein, K. J., S. R. Platt, S. P. Holmes, C. R. Dove, E. W. Howerth, M. Kent, S. L. Stice, W. D. Hill, D. C. Hess, and F. D. West. 2014. Gait analysis in a pre-and post-ischemic stroke biomedical pig model. Physiol. Behav. 125:8-16.
Duthie, R. B., and G. R. Houghton. 1981. Constitutional aspects of the osteochondrosis. Clin. Orthop. Relat. Res. 158:19-27.
Ekman, S., D. Heinegård, O. Johnell, and H. Rodriguez-Martinez. 1990. Immunohistochemical localization of proteoglycans and non-collagenous matrix proteins in normal and osteochondrotic porcine articular-epiphyseal cartilage complex. Matrix 10:402-411.
Etterlin, P. E., S. Ekman, R. Strand, K. Olstad, and C. J. Ley. 2017. Osteochondrosis, synovial fossae, and articular indentations in the talus and distal tibia of growing domestic pigs and wild boars. Vet. Pathol. 54:445-456.
Fabà, L., J. Gasa, M. D. Tokach, M. Font-i-Furnols, E. Vilarrasa, and D. Solà-Oriol. 2019. Effects of additional organic micro-minerals and methionine on carcass composition, gait score, bone characteristics, and osteochondrosis in replacement gilts of different growth rate. Anim. Feed Sci. Technol. 256:1-12.
Fan, B., S. K. Onteru, B. E. Mote, T. Serenius, K. J. Stalder, and M. F. Rothschild. 2009. Large-scale association study for structural soundness and leg locomotion traits in the pig. Genet. Sel. Evol. 41:1-9.
Flannelly, J., M. G. Chambers, J. Dudhia, R. M. Hembry, G. Murphy, R. M. Mason, and M. T. Bayliss. 2002. Metalloproteinase and tissue inhibitor of metalloproteinase expression in the murine str/ort model of osteoarthritis. Osteoarthr. Cartil. 10:722-733.
Frantz, N. Z., G. A. Andrews, M. D. Tokach, J. L. Nelssen, R. D. Goodband, J. M. DeRouchey, and S. S. Dritz. 2008. Effect of dietary nutrients on osteochondrosis lesions and cartilage properties in pigs. Am. J. Vet. Res. 69:617-624.
Fredeen, H. T., and A. P. Sather. 1978. Joint damage in pigs reared under confinement. Can. J. Anim. Sci. 58:759-773.
Geverink, N., M. Meuleman, A. Van Nuffel, L. Van Steenbergen, V. Hautekiet, K. Vermeulen, V. Lammens, R. Geers, C. G. Van Reenen, and F. A. M. Tuyttens. 2009. Assessment of animal welfare measures for sows, piglets, and fattening pigs. Welfare Quality Reports No. 10. Cardiff Univ., Uppsala, Sweden.
Goedegebuure, S. A., H. J. Häni, P. C. Van der Valk, and P. G. Van der Wal. 1980. Osteochondrosis in six breeds of slaughter pigs: I. A morphological investigation of the status of osteochondrosis in relation to breed and level of feeding. Vet. Quart. 2:28-41.
Grégoire, J., R. Bergeron, S. d'Allaire, M. C. Meunier-Salaün, and N. Devillers. 2013. Assessment of lameness in sows using gait, footprints, postural behaviour and foot lesion analysis. Animal 7:1163-1173.
Grez-Capdeville, M., N. Gross, J. C. Baker, J. A. Shutter, A. R. Haas, M. E. Wilson, and T. D. Crenshaw. 2020. Alleged predisposing dietary factors fail to increase the incidence of osteochondrosis-like lesions in growing pigs at 14 and 24 wk of age. J. Anim. Sci. 98:1-13.
Grøndalen, T. 1974. Leg weakness in pigs. II. Litter differences in leg weakness, skeletal lesions, joint shape and exterior conformation. Acta Vet. Scand. 15:574-586.
Grøndalen, T. 1981. Osteochondrosis and arthrosis in Norwegian slaughter-pigs in 1980 compared to 1970. Nord. Vet. Med. 33:417-422.
Grøndalen, T., and O. Vangen. 1974. Osteochondrosis and arthrosis in pigs. V. A comparison of the incidence in three different lines of the Norwegian Landrace breed. Acta Vet. Scand. 15:61-79.
Guo, Y. M., H. S. Ai, J. Ren, G. J. Wang, Y. Wen, H. R. Mao, L. T. Lan, J. W. Ma, B. Brenig, M. F. Rothschild, C. S. Haley, and L. S. Huang. 2009. A whole genome scan for quantitative trait loci for leg weakness and its related traits in a large F2 intercross population between White Duroc and Erhualian. J. Anim. Sci. 87:1569-1575.
Hacker, R. R., Z. Du, and C. J. D'arcy. 1994. Influence of penning type and feeding level on sexual behavior and feet and leg soundness in boars. J. Anim. Sci. 72:2531-2537.
Harris, M. J., E. A. Pajor, A. D. Sorrells, S. D. Eicher, B. T. Richert, and J. N. Marchant-Forde. 2006. Effects of stall or small group gestation housing on the production, health and behaviour of gilts. Livest. Sci. 102:171-179.
Huang, S. Y., H. L. Tsou, M. T. Kan, W. K. Lin, and C. S. Chi. 1995. Genetic study on leg weakness and its relationship with economic traits in central tested boars in subtropical area. Livest. Prod. Sci. 44:53-59.
Jefferies, D., C. Farquharson, J. Thomson, W. Smith, E. Seawright, H. McCormack, and C. Whitehead. 2002. Differences in metabolic parameters and gene expression related to Osteochondrosis/Osteoarthrosis in pigs fed 25-hydroxyvitamin. Vet. Res. 33:383-396.
Jensen, T. B., N. P. Baadsgaard, H. Houe, N. Toft, and S. Østergaard. 2007. The effect of lameness treatments and treatments for other health disorders on the weight gain and feed conversion in boars at a Danish test station. Livest. Sci. 112:34-42.
Johnston, L. J., D. W. Rozeboom, R. D. Goodband, S. J. Moeller, M. C. Shannon, and S. J. Schieck. 2017. Effect of floor space allowances on growth performance of finishing pigs marketed at 138 kilograms. J. Anim. Sci. 95:4917-4925.
Jørgensen, B. 1995. Effect of different energy and protein levels on leg weakness and osteochondrosis in pigs. Livest. Prod. Sci. 41:171-181.
Jørgensen, B. 2003. Influence of floor type and stocking density on leg weakness, osteochondrosis and claw disorders in slaughter pigs. Anim. Sci. 77:439-449.
Jørgensen, B., and S. Andersen. 2000. Genetic parameters for osteochondrosis in Danish Landrace and Yorkshire boars and correlations with leg weakness and production traits. Anim. Sci. 71:427-434.
Jørgensen, B., and T. Vestergaard. 1990. Genetics of leg weakness in boars at the Danish pig breeding stations. Acta Agric. Scand. 40:59-69.
Jørgensen, B., J. Arnbjerg, and M. Aaslyng. 1995. Pathological and radiological investigations on osteochondrosis in pigs, associated with leg weakness. J. Vet. Med. 42:489-504.
Kadarmideen, H. N., D. Schworer, H. Ilahi, M. Malek, and A. Hofer. 2004. Genetics of osteochondral disease and its relationship with meat quality and quantity, growth, and feed conversion traits in pigs. J. Anim. Sci. 82:3118-3127.
Karlen, G. A., P. H. Hemsworth, H. W. Gonyou, E. Fabrega, A. D. Strom, and R. J. Smits. 2007. The welfare of gestating sows in conventional stalls and large groups on deep litter. Appl. Anim. Behav. Sci. 105:87-101.
KilBride, A., C. Gillman, P. Ossent, and L. Green. 2009. Impact of flooring on the health and welfare of pigs. In Pract. 31:390-395.
Kirk, R. K., B. Jørgensen, and H. E. Jensen. 2008. The impact of elbow and knee joint lesions on abnormal gait and posture of sows. Acta Vet. Scand. 50:1-8.
Laenoi, W., N. Rangkasenee, M. J. Uddin, M. U. Cinar, C. Phatsara, D. Tesfaye, A. M. Scholz, E. Tholen, C. Looft, M. Mielenz, H. Sauerwein, K. Wimmers, and K. Schellander. 2012. Association and expression study of MMP3, TGFβ1 and COL10A1 as candidate genes for leg weakness-related traits in pigs. Mol. Biol. Rep. 39:3893-3901.
Lee, G. J., A. L. Archibald, G. B. Garth, A. S. Law, D. Nicholson, A. Barr, and C. S. Haley 2003. Detection of quantitative trait loci for locomotion and osteochondrosis-related traits in Large White x Meishan pigs. Anim. Sci. 76:155-166.
Li, P., and G. Wu. 2018. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino acids 50:29-38.
Lisgara, Μ., V. Skampardonis, and L. Leontides. 2016. Effect of diet supplementation with chelated zinc, copper and manganese on hoof lesions of loose housed sows. Porc. Health Manag. 2:1-9.
Liu, Y., X. Wang, Y. Hou, Y. Yin, Y. Qiu, G. Wu, and C. A. A. Hu. 2017. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models. Amino Acids 49:1277-1291.
Lundeheim, N. 1987. Genetic analysis of osteochondrosis and leg weakness in the Swedish pig progeny testing scheme. Acta Agric. Scand. 37:159-173.
Luther, H., D. Schwörer, and A. Hofer. 2007. Heritabilities of osteochondral lesions and genetic correlations with production and exterior traits in station-tested pigs. Animal 1:1105-1111.
Main, D. C. J., J. Clegg, A. Spatz, and L. E. Green. 2000. Repeatability of a lameness scoring system for finishing pigs. Vet. Rec. 147:574-576.
Meijer, E., M. Oosterlinck, A. Van Nes, W. Back, and F. J. Van der Staay. 2014. Pressure mat analysis of naturally occurring lameness in young pigs after weaning. BMC Vet. Res. 10:1-12.
Mouttotou, N., F. M. Hatchell, and L. E. Green. 1999. Prevalence and risk factors associated with adventitious bursitis in live growing and finishing pigs in south-west England. Prev. Vet. Med. 39:39-52.
Nakano, T., and F. X. Aherne. 1988. Involvement of trauma in the pathogenesis of osteochondritis dissecans in swine. Can. J. Vet. Res. 52:154-155.
Nakano, T., F. X. Aherne, and J. R. Thompson. 1979. Effects of feed restriction, sex and diethylstilbestrol on the occurrence of joint lesions with some histological and biochemical studies of the articular cartilage of growing-finishing swine. Can. J. Anim. Sci. 59:491-502.
Nakano, T., F. X. Aherne, and J. R. Thompson. 1981. Effect of housing system on the recovery of boars from leg weakness. Can. J. Anim. Sci. 61:335-342.
Nakano, T., F. X. Aherne, and J. R. Thompson. 1983. Effect of dietary supplementation of vitamin C on pig performance and the incidence of osteochondrosis in elbow and stifle joints in young growing swine. Can. J. Anim. Sci. 63:421-428.
Nakano, T., J. J. Brennan, and F. X. Aherne. 1987. Leg weakness and osteochondrosis in swine: a review. Can. J. Anim. Sci. 67:883-901.
Newton, G. L., C. V. Booram, O. M. Hale, and B. G. Mullinix Jr. 1980. Effect of four types of floor slats on certain feet characteristics and performance of swine. J. Anim. Sci. 50:7-20.
Noblet, J., and J. M. Perez. 1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 71:3389-3398.
Ohata, H., K. Zushida, T. Sugiyama, and S. Kusuhara. 2002. Immunohistochemical study of matrix metalloproteinase-3 (mmp-3) at the articular cartilage in osteochondrotic pigs. Anim. Sci. J. 73:517-522.
Olstad, K., B. Wormstrand, J. Kongsro, and E. Grindflek. 2019. Osteochondrosis in the distal femoral physis of pigs starts with vascular failure. Vet. Pathol. doi: 10.1177/0300985819843685
Olstad, K., J. Kongsro, E. Grindflek, and N. I. Dolvik. 2014. Consequences of the natural course of articular osteochondrosis in pigs for the suitability of computed tomography as a screening tool. BMC Vet. Res. 10:212-223.
Olstad, K., S. Ekman, and C. S. Carlson. 2015. An update on the pathogenesis of osteochondrosis. Vet. Pathol. 52:785-802.
Perrin, W. R., and J. P. Bowland. 1977. Effects of enforced exercise on the incidence of leg weakness in growing boars. Can. J. Anim. Sci. 57:245-253.
Peterkofsky, B. 1991. Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am. J. Clin. Nutr. 54:1135-1140.
Petersen, J. S., N. Oksbjerg, B. Jørgensen, and M. T. Sørensen. 1998. Growth performance, carcass composition and leg weakness in pigs exposed to different levels of physical activity. Anim. Sci. 66:725-732.
Pluym, L. M., D. Maes, J. Vangeyte, K. Mertens, J. Baert, S. Van Weyenberg, S. Millet, and A. Van Nuffel. 2013. Development of a system for automatic measurements of force and visual stance variables for objective lameness detection in sows: SowSIS. Biosyst. Eng. 116:64-74.
Qin, X., and H. Klandorf. 1991. Effect of dietary boron supplementation on egg production, shell quality, and calcium metabolism in aged broiler breeder hens. Poult. Sci. 70:2131-2138.
Rangkasenee, N., E. Murani, R. M. Brunner, K. Schellander, U. M. Cinar, H. Luther, A. Hofer, M. Stoll, A. Witten, S. Ponsuksili, and K. Wimmers. 2013. Genome-wide association identifies TBX5 as candidate gene for osteochondrosis providing a functional link to cartilage perfusion as initial factor. Front. Genet. 4:1-13.
Reiland, S. 1978a. Pathology of so-called leg weakness in the pig. Acta Radiol. Suppl. 358:23-44.
Reiland, S. 1978b. The effect of decreased growth rate on frequency and severity of osteochondrosis in pigs. Acta Radiol. Suppl. 358:107-122.
Reiland, S., N. Ordell-Gustafson, and N. Lundeheim. 1980. Heredity of osteochondrosis. A correlative and comparative investigation in different breeds using progeny testing. Page 328 in Proc. 6th Int. Congr. Pig Vet. Soc., Copenhagen, Denmark.
Rothammer, S., M. Bernau, P. V. Kremer-Rücker, I. Medugorac, and A. M. Scholz. 2017. Genome-wide QTL mapping results for regional DXA body composition and bone mineral density traits in pigs. Arch. Anim. Breed. 60:51-59.
Rothschild, M. F., and L. L. Christian. 1988. Genetic control of front-leg weakness in Duroc swine. I. Direct response to five generations of divergent selection. Livest. Prod. Sci. 19:459-471.
SAS. 2020. SAS/STAT user's guide, version 9. 5. SAS Inst. Inc., Cary, NC.
Schulenburg, A. v. d., K. Meyer, and B. Dierks-Meyer. 1986. Orthopaedic and microstructural studies on claw horn in fattening pigs in stalls of varying types. J. Vet. Med. A Physiol. Pathol. Clin. Med. 33:767-776.
Scott, K., D. J. Chennells, F. M. Campbell, B. Hunt, D. Armstrong, L. Taylor, B. P. Gill, and S. A. Edwards. 2006. The welfare of finishing pigs in two contrasting housing systems: Fully-slatted versus straw-bedded accommodation. Livest. Sci. 103:104-115.
Serenius, T., M. L. Sevón-Aimonen, and E. A. Mäntysaari. 2001. The genetics of leg weakness in Finnish Large White and Landrace populations. Livest. Prod. Sci. 69:101-111.
Stalder, K. J., M. Knauer, T. J. Baas, M. F. Rothschild, and J. W. Mabry. 2004. Sow longevity. Pig News Inf. 25:53-74.
Stavrakakis, S., W. Li, J. H. Guy, G. Morgan, G. Ushaw, G. R. Johnson, and S. A. Edwards. 2015. Validity of the Microsoft Kinect sensor for assessment of normal walking patterns in pigs. Comput. Electron. Agr. 117:1-7.
Stern, S., N. Lundeheim, K. Johansson, and K. Andersson. 1995. Osteochondrosis and leg weakness in pigs selected for lean tissue growth rate. Livest. Prod. Sci. 44:45-52.
Sugiyama, T., S. Kusuhara, T. K. Chung, H. Yonekura, E. Azem, and T. Hayakawa. 2013. Effects of 25‐hydroxy‐cholecalciferol on the development of osteochondrosis in swine. Anim. Sci. J. 84:341-349.
Tholen, E., K. L. Bunter, S. Hermesch, and H. U. Graser. 1996. The genetic foundation of fitness and reproduction traits in Australian pig populations. 2. Relationships between weaning to conception interval, farrowing interval, stayability, and other common reproduction and production traits. Aust. J. Agric. Res. 47:1275-1290.
Thorp, B. H., S. Ekman, S. B. Jakowlew, and C. Goddard. 1995. Porcine osteochondrosis: deficiencies in transforming growth factor-β and insulin-like growth factor-I. Calcif. Tissue Int. 56:376-381.
Thorup, V. M., B. Laursen, and B. R. Jensen. 2008. Net joint kinetics in the limbs of pigs walking on concrete floor in dry and contaminated conditions. J. Anim. Sci. 86:992-998.
Thorup, V. M., F. A. Tøgersen, B. Jørgensen, and B. R. Jensen. 2007. Biomechanical gait analysis of pigs walking on solid concrete floor. Animal 1:708-715.
Tóth, F., M. J. Nissi, J. Zhang, M. Benson, S. Schmitter, J. M. Ellermann, and C. S. Carlson. 2013. Histological confirmation and biological significance of cartilage canals demonstrated using high field MRI in swine at predilection sites of osteochondrosis. J. Orthop. Res. 31:2006-2012.
van der Wal, P. G., H. Hemminga, P. C. Van der Valk, S. A. Goedegebuure, H. G. Hulshof, and G. Van Essen. 1985. The effect of sodium bicarbonate in the ration on the acid-base equilibrium of pigs. J. Anim. Physiol. Anim. Nutr. 56:86-90.
van der Wal, P. G., H. Hemminga, S. A. Goedegebuure, and P. C. Van der Valk. 1986. The effect of replacement of 0.30% sodium chloride by 0.43% sodium bicarbonate in rations of fattening pigs on leg weakness, osteochondrosis and growth. Vet. Q. 8:136-144.
van der Wal, P. G., P. C. Van der Valk, S. A. Goedegebuure, and G. Van Essen. 1983. Do gilts and barrows react similarly with respect to leg weakness and osteochondrosis? Vet. Quart. 5:175-177.
van Grevenhof, E. M., H. C. M. Heuven, P. R. Van Weeren, and P. Bijma. 2012. The relationship between growth and osteochondrosis in specific joints in pigs. Livest. Sci. 143:85-90.
von Wachenfelt, H., C. Nilsson, and S. Pinzke. 2010. Gait and force analysis of provoked pig gait on clean and fouled rubber mat surfaces. Biosyst. Eng. 106:86-96.
von Wachenfelt, H., S. Pinzke, C. Nilsson, O. Olsson, and C. J. Ehlorsson. 2008. Gait analysis of unprovoked pig gait on clean and fouled concrete surfaces. Biosyst. Eng. 101:376-382.
Webb, A. J., W. S. Russell, and D. I. Sales. 1983. Genetics of leg weakness in performance tested boars. Anim. Prod. 36:117-130.
Wells, G. A. H. 1984. Locomotor disorders of the pig. In Pract. 6:43-53.
Wilson, J. H., and P. L. Ruszler. 1998. Long term effects of boron on layer bone strength and production parameters. Br. Poult. Sci. 39:11-15.
Wilson, V., and F. L. Conlon. 2002. The T-box family. Genome Biol. 3:1-7.
Wu, G., and C. J. Meininger. 2000. Arginine nutrition and cardiovascular function. J. Nutr. 130:2626-2629.
Yoon, B. S., D. A. Ovchinnikov, I. Yoshii, Y. Mishina, R. R. Behringer, and K. M. Lyons. 2005. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc. Natl. Acad. Sci. USA. 102:5062-5067.
Ytrehus, B., C. S. Carlson, and S. Ekman. 2007. Etiology and pathogenesis of osteochondrosis. Vet. Pathol. 44: 429-448.
Ytrehus, B., C. S. Carlson, N. Lundeheim, L. Mathisen, F. P. Reinholt, J. Teige, and S. Ekman. 2004a. Vascularisation and osteochondrosis of the epiphyseal growth cartilage of the distal femur in pigs--development with age, growth rate, weight and joint shape. Bone 34:454-465.
Ytrehus, B., E. Grindflek, J. Teige, E. Stubsjøen, T. Grøndalen, C. S. Carlson, and S. Ekman. 2004b. The effect of parentage on the prevalence, severity, and location of lesions of osteochondrosis in swine. J. Vet. Med. A. 51:188-195.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top