|
1.Robinson PJ. Skin. In: 3, ed. Encyclopedia of Toxicology: Academic Press; 2014:283-309. 2.張效銘。化妝品皮膚生理學.。五南圖書出版公司;2018年:34-41頁。 3.曹克誠。化妝品與皮膚病。合記圖書出版社;2008年:7-10頁。 4.易光輝,歐明秋,徐照程,王曉芬。化妝品化學。華杏出版股份有限公司;2013年:132-133頁。 5.Sahle FF, Gebre-Mariam T, Dobner B, Wohlrab J, Neubert RHH. Skin Diseases Associated with the Depletion of Stratum Corneum Lipids and Stratum Corneum Lipid Substitution Therapy. Skin Pharmacol Physiol. 2015; 28 (1): 42-55. 6.Luca CD, Valacchi G. Surface Lipids as Multifunctional Mediators of Skin Responses to Environmental Stimuli. Mediators Inflamm. 2010; 2010: 321494. 7.Hivnor C, Williams N, Singh F, et al. Gene expression profiling of porokeratosis demonstrates similarities with psoriasis. J Cutan Pathol. 2004; 31 (10): 657-664. 8.Zhang ZH, Wang ZM, Crosby ME, et al. Reassessment of microarray expression data of porokeratosis by quantitative real‐time polymerase chain reaction. J Cutan Pathol. 2010; 37 (3): 371-375. 9.Baroni A, Buommino E, Gregorio VD, Ruocco E, Ruocco V, Wolf R. Structure and function of the epidermis related to barrier properties. Clin Dermatol. 2012; 30 (3): 257-262. 10.Bonesi M, Loizzo MR, Menichini F, Tundis R. Flavonoids in Treating Psoriasis. In: Chatterjee S, Jungraithmayr W, Bagchi D. Immunity and Inflammation in Health and Disease. Academic Press; 2018: 281-294. doi: 10.1016/B978-0-12-805417-8.00023-8. 11.Lee HY. Improvement of skin barrier dysfunction by Scutellaria baicalensis GEOGI extracts through lactic acid fermentation. J Cosmet Dermatol. 2019; 18 (1): 183-191. 12.Kim J, Lee Is, Park S, Choue R. Effects of Scutellariae radix and Aloe vera gel extracts on immunoglobulin E and cytokine levels in atopic dermatitis NC/Nga J Ethnopharmacol. 2010; 132 (2): 529-532. 13.Leung DYM, Boguniewicz M. Atopic Dermatitis and Allergic Contact Dermatitis. In: O'Hehir RE, Holgate ST, Sheikh A. Middleton's Allergy Essentials. Elsevier; 2017: 265-300. doi: 10.1016/B978-0-323-37579-5.00011-8. 14.Immediate Allergic Reactions. In: Flaherty DK. Immunology for Pharmacy. Mosby; 2012: 118-126. doi: 10.1016/B978-0-323-06947-2.10015-X. 15.Fung MA. Inflammatory Diseases of the Dermis and Epidermis. In: Busam KJ. Dermatopathology. Saunders; 2010: 11-81. doi: 10.1016/B978-0-443-06654-2.00001-9. 16.Hwang ST, Nijsten T, Elder JT. Recent Highlights in Psoriasis Research. J Invest Dermatol. 2017; 137 (3): 550-556. 17.Colonna M. AHR: Making the Keratinocytes Thick Skinned. Immunity. 2014; 40 (6): 863-864. 18.Roberson EDO, Bowcock AM. Psoriasis genetics: breaking the barrier. Trends Genet. 2010; 26 (9): 415-423. 19.Gudjonsson JE, Ding J, Johnston A, et al. Assessment of the Psoriatic Transcriptome in a Large Sample: Additional Regulated Genes and Comparisons with In Vitro Models. J Invest Dermatol. 2010; 130 (7): 1829-1840. 20.Boehncke H, Schön MP. Psoriasis. The Lancet. 2015; 386 (9997): 983-994. 21.Rønholt K, Iversen L. Old and New Biological Therapies for Psoriasis. Int J Mol Sci. 2017; 18 (11): 2297. 22.Weedon D. Disorders of epidermal maturation and keratinization. Weedon's Skin Pathology. 3 ed. Churchill Livingstone; 2010: 247-279. doi: 10.1016/B978-0-7020-3485-5.00010-3. 23.Mao-Qiang M, Elias PM, Feingold KR. Fatty acids are required for epidermal permeability barrier function. J Clin Invest. 1993; 92 (2): 791-798. 24.Feingold KR, Man MQ, Menon GK, Cho SS, Brown BE, Elias PM. Cholesterol synthesis is required for cutaneous barrier function in mice. J Clin Invest. 1990; 86 (5): 1738-1745. 25.Holleran WM, Man MQ, Gao WN, Menon GK, P M Elias, Feingold KR. Sphingolipids are required for mammalian epidermal barrier function. Inhibition of sphingolipid synthesis delays barrier recovery after acute perturbation. J Clin Invest. 1991; 88 (4): 1338-1345. 26.Blume‐Peytavi U, Bagot M, Tennstedt D, et al. Dermatology today and tomorrow: from symptom control to targeted therapy. J Eur Acad Dermatol Venereol. 2019; 33 (S1): 3-36. 27.Chen YE, Fischbach MA, Belkaid Y. Skin microbiota–host interactions. Nature. 2018; 553 (7689): 427-436. 28.Oh J, Byrd AL, Park M, Kong HH, Segre JA. Temporal Stability of the Human Skin Microbiome. Cell. 2016; 165 (4): 854-866. 29.Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012; 22 (5): 850-859. 30.Li C, Lin G, Zuo Z. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharmaceutice & Drug Disposition. 2011; 32 (8): 427-445. 31.Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011; 82 (4): 513-523. 32.GuohuaCao, EminSofic, L.Prior R. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Bio Med. 1997; 22 (5): 749-760. 33.González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Fruit polyphenols, immunity and inflammation. Brit J Nutr. 2010; 104 (Supplement S3): S15-S27. 34.Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. P Nutr Soc. 2010; 69 (3): 273-278. 35.González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Anti-Inflammatory and Immunomodulatory Properties of Dietary Flavonoids. In: Watson RR, Preedy VR, Zibadi S, eds. Polyphenols in Human Health and Disease. Vol 1; 2014: 435-452. doi: 10.1016/B978-0-12-398456-2.00032-3. 36.Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005; 81 (1): 317S-325S. 37.Hollman PCH, Cassidy A, Comte B, et al. The Biological Relevance of Direct Antioxidant Effects of Polyphenols for Cardiovascular Health in Humans Is Not Established. J Nutr. 2011; 141 (5): 989S-1009S. 38.Cai Y, Li S, Li T, Zhou R, Wai AT-S, Yan R. Oral pharmacokinetics of baicalin, wogonoside, oroxylin A 7-O-β-d-glucuronide and their aglycones from an aqueous extract of Scutellariae Radix in the rat. Journal of Chromatography B. 2016; 1026: 124-133. 39.Czerniak K, Walkiewicz F. Synthesis and antioxidant properties of dicationic ionic liquids. New J Chem. 2017; 41 (2): 530-539. 40.Andjelković M, Camp JV, Meulenaer BD, et al. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006; 98 (1): 23-31. 41.Farhoosh R, Johnny S, Asnaashari M, Molaahmadibahraseman N, Sharif A. Structure–antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem. 2016; 194 (1): 128-134. 42.Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta. 1999; 1472 (3): 643-650. 43.Hodnick WF, Kung FS, Roettger WJ, Bohmont CW, Pardini RS. Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids: A structure-activity study. Biochem Pharmacol. 1986; 35 (14): 2345-2357. 44.Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002; 13 (10): 572-584. 45.Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Bio Med. 1994; 16 (6): 845-850. 46.Sun C, Fu J, Chen J, Jiang L, Pan Y. On‐line HPLC method for screening of antioxidants against superoxide anion radical from complex mixtures. J Sep Sci. 2010; 33 (8): 1018-1023. 47.Maeta K, Nomura W, Takatsume Y, Izawa S, Inoue Y. Green Tea Polyphenols Function as Prooxidants To Activate Oxidative-Stress-Responsive Transcription Factors in Yeasts. Appl Environ Microbiol. 2007; 73 (2): 572-580. 48.Arakawa H, Maeda M, Okubo S, Shimamura T. Role of Hydrogen Peroxide in Bactericidal Action of Catechin. Clinical Nutrition ExperimentalBiol Pharm Bull. 2004; 27 (3): 277-281. 49.Nakagawa H, Hasumi K, Woo J-T, Nagai K, Wachi M. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Carcinogenesis. 2004; 25 (9): 1567-1574. 50.Ueda S, Nakamura H, Masutani H, et al. Baicalin induces apoptosis via mitochondrial pathway as prooxidant. Mol Immunol. 2001; 38 (10): 781-791. 51.Ismail N, Alam M. A novel cytotoxic flavonoid glycoside from Physalis angulata. Fitoterapia. 2001; 72 (6): 676-679. 52.Yen G-C, Duh P-D, Tsai H-L, Huang S-L. Pro-oxidative Properties of Flavonoids in Human Lymphocytes. Biosci Biotech Bioch. 2003; 67 (6): 1215-1222. 53.Harminder, Singh V, Chaudhary A. A Review on the Taxonomy, Ethnobotany, Chemistry and Pharmacology of Oroxylum indicum Vent. Indian J Pharm Sci. 2011; 73 (5): 483-490. 54.Babu KS, Babu TH, Srinivas PV, et al. Synthesis and in vitro study of novel 7-O-acyl derivatives of Oroxylin A as antibacterial agents. Bioorg Med Chem Lett. 2005; 15 (17): 3953-3956. 55.Dinda B, SilSarma I, Dinda M, Rudrapaul P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol. 2015; 161: 255-278. 56.Hu Y, Yang Y, Qi-DongYou, et al. Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity. Biochem Bioph Res Co. 2006; 351 (2): 521-527. 57.Li H-N, Nie F-F, Liu W, et al. Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology. 2009; 257 (1-2): 80-85. 58.Qiao C, Lu N, Zhou Y, et al. Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget. 2016; 7 (13): 17009-17020. 59.Ali RM, Houghton PJ, Raman A, Hoult JRS. Antimicrobial and antiinflammatory activities of extracts and constituents of Oroxylum indicum (L.) Vent. Phytomedicine. 1988; 5 (5): 375-381. 60.Steeg PS, Theodorescu D. Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol. 2008; 5 (4): 206-219. 61.Pollet I, Opina CJ, Zimmerman C, Leong KG, Wong F, Karsan A. Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-κB and c-Jun N-terminal kinase. Blood. 2003; 102 (5): 1740-1742. 62.Ye M, Wang Q, Zhang W, Li Z, Wang Y, Hu R. Oroxylin A exerts anti-inflammatory activity on lipopolysaccharide-induced mouse macrophage via Nrf2/ARE activation. Biochem Cell Biol. 2014; 92 (5): 337-348. 63.Chen Y-C, Ling-LingYang, J-FLee T. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation. Biochem Pharmacol. 2000; 59 (11): 1445-1457. 64.Yao J, Hu R, Sun J, et al. Oroxylin a prevents inflammation‐related tumor through down‐regulation of inflammatory gene expression by inhibiting NF‐κB signaling. Mol Carcinogen. 2014; 53 (2): 145-158. 65.Hearing VJ. Determination of Melanin Synthetic Pathways. J Invest Dermatol. 2011; 131 (3): E8-E11. 66.Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expet Rev Dermatol. 2011; 6 (1): 97-108. 67.Brożyna AA, Jóźwicki W, Carlson JA, Slominski AT. Melanogenesis affects overall and disease-free survival in patients with stage III and IV melanoma. Hum Patho. 2013; 44 (10): 2071-2074. 68.Kudo M, Kobayashi-Nakamura K, Tsuji-Naito K. Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: Inhibition of melanin production and intracellular melanosome transport. PLoS One. 2017; 12 (2): e0171513. 69.王守正。比哆胺與黃芩苷對人類角質形成細胞的保護作用--針對紫外線所誘導的細胞損傷,中臺科技大學醫學影像暨放射科學系暨研究所;2016年。 70.Rekus MT. Characterization of growth and differentiation of a spontaneously immortalized keratinocyte cell line (HaCaT) in a defined, serum-free culture system, The Medical Faculty of the Heinrich Heine University of Dusseldorf; 2000. 71.Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988; 106 (3): 761-771. 72.Wilson VG. Growth and differentiation of HaCaT keratinocytes. Methods Mol Biol. 2013; 1195: 33-41. 73.劉東鋒,郭琴,楊成東。從木蝴蝶中分離純化千層紙素A的方法:CN101955474A;IPC: C07D 311/30(2006.01); C07D 311/40(2006.01);China,2011年。 74.Huang W-H, Chien P-Y, Yang C-H, Lee A-R. Novel Synthesis of Flavonoids of Scutellaria baicalensis GEORGI. Chem Pharm Bull. 2003; 51 (3): 339-340. 75.Panhekar D, Mahale GD, Renalson KS, Satpute S. Resolving structural ambiguity of Oroxylin synthesized by different approaches. JCPRC5. 2015; 7 (6): 174-180. 76.李志裕,符偉,楊博,郭青龍,尤啟冬。一種千層紙素的合成方法:CN101508689;IPC: C07D 311/60(2006.01);China,2009年。 77.李冠漢,何文岳,王嘉駿。千層紙素A的合成方法:I637947;IPC: C07D 311/28(2006.01);Taiwan,2018年。 78.Lu L, Guo Q, Zhao L. Overview of Oroxylin A: A Promising Flavonoid Compound. Phytother Res. 2016; 30 (11): 1765-1774. 79.Warburg O. On the Origin of Cancer Cells. Science. 1956; 123 (3139): 309-314. 80.Daia Q, Yin Y, Liu W, et al. Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells. Int J Biochem Cell B. 2013; 45 (7): 1468-1478. 81.Dai Q, Yin Q, Wei L, et al. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia‐inducible factor‐1 in human hepatoma HepG2 cells. Mol Carcinogen. 2015; 55 (8): 1275-1289. 82.Yang Y, Hu Y, Gu HY, et al. Oroxylin A induces G2/M phase cell‐cycle arrest via inhibiting Cdk7‐mediated expression of Cdc2/p34 in human gastric carcinoma BGC‐823 cells. J Pharm Pharmacol. 2008; 60 (11): 1459-1463. 83.Mu R, Qi Q, Gu H, et al. Involvement of p53 in oroxylin A‐induced apoptosis in cancer cells. Mol Carcinogen. 2009; 48 (12): 1159-1169. 84.Xu M, Lu N, Sun Z, et al. Activation of the unfolded protein response contributed to the selective cytotoxicity of oroxylin A in human hepatocellular carcinoma HepG2 cells. Toxicol Lett. 2012; 212 (2): 113-125. 85.Choi HJ, Choi JY, Cho SW, et al. Genetic Polymorphism of Geranylgeranyl Diphosphate Synthase (GGSP1) Predicts Bone Density Response to Bisphosphonate Therapy in Korean Women. Yonsei Med J. 2010; 51 (2): 231-238. 86.Ashida S, Kawada C, Inoue K. Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR. Oncol Lett. 2017; 14 (6): 6533-6542. 87.Raihan O, Brishti A, Molla R, et al. The Age-dependent Elevation of miR-335-3p Leads to Reduced Cholesterol and Impaired Memory in Brain. Neuroscience. 2018; 390: 160-173. 88.Feingold KR. The outer frontier: the importance of lipid metabolism in the skin. J Lipid Res. 2009; 50: S417-S422. 89.Vukelic S, Stojadinovic O, Pastar I, et al. Cortisol Synthesis in Epidermis Is Induced by IL-1 and Tissue Injury. Journal of Biological Chemistry. 2011; 286 (12): 10265-10275. 90.Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990; 343 (6257): 425-430. 91.Lange BM, Croteau R. Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: Isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. Proc Natl Acad Sci U S A. 1999; 96 (24): 13714-13719. 92.Das S, Schapira M, Tomic-Canic M, Goyanka R, Cardozo T, Samuels HH. Farnesyl Pyrophosphate Is a Novel Transcriptional Activator for a Subset of Nuclear Hormone Receptors. Molecular Endocrinology. 2007; 21 (11): 2672-2686. 93.Pastar I, Stojadinovic O, Sawaya AP, et al. Skin Metabolite, Farnesyl Pyrophosphate, Regulates Epidermal Response to Inflammation, Oxidative Stress, and Migration. J Cell Physiol. 2016; 231 (11): 2452-2463. 94.Huang KF, Ma KH, Liu PS, Chen BW, Chueh SH. Baicalein increases keratin 1 and 10 expression in HaCaT keratinocytes via TRPV4 receptor activation. Exp Dermatol. 2016; 25 (8): 623-629. 95.Zhang C, Xu Q, Tan X, et al. Astilbin decreases proliferation and improves differentiation in HaCaT keratinocytes. Biomed Pharmacother. 2017; 93: 713-720. 96.Altwairgi AK. Statins are potential anticancerous agents (review). Oncol Rep. 2015; 33 (3): 1019-1039. 97.Ye K, Wu Y, Sun Y, Lin Ja, Xu J. TLR4 siRNA inhibits proliferation and invasion in colorectal cancer cells by downregulating ACAT1 expression. Life Sci. 2016; 155: 133-139. 98.Chen X, Liang H, Song Q, Xu X, Cao D. Insulin promotes progression of colon cancer by upregulation of ACAT1. Lipids Health Dis. 2018; 17 (1): 122. 99.Goudarzi A. The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target. Life Sci. 2019; 232: 116592. 100.Peeters JK, Spek PJVd. Growing applications and advancements in microarray technology and analysis tools. Cell Biochem Biophys. 2005; 43 (1): 149-166. 101.Terpenoid backbone biosynthesis - Homo sapiens (human). [Web page]. KEGG pathway. Available at: https://www.genome.jp/kegg-bin/show_pathway?hsa00900+H01933. Accessed March 8, 2019. 102.Slenter D, Willighagen E, Ehrhart F. Mevalonate arm of cholesterol biosynthesis pathway (Homo sapiens). [Web page]. WikiPathways BETA. Available at: https://www.wikipathways.org/index.php/Pathway:WP4190. Accessed March 14, 2019. 103.Slenter D, Willighagen E, Vercoulen J. Mevalonate arm of cholesterol biosynthesis pathway with inhibitors (Homo sapiens). [Web page]. WikiPathways BETA. Available at: https://www.wikipathways.org/index.php/Pathway:WP4189. Accessed March 14, 2019.
|