跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林室含
研究生(外文):LIN, SHI-HAN
論文名稱:探討化學合成oroxylin A作用於人類角質細胞之分子特性分析
論文名稱(外文):Molecular Characterization of Synthesized Oroxylin A on Human Keratinocyte HaCaT Cells
指導教授:劉坤湘
指導教授(外文):LIU, KUN-HSIANG
口試委員:陳倩琪呂昆霖劉坤湘
口試委員(外文):CHEN, CHIEN-CHILEU, KUEN-LINLIU, KUN-HSIANG
口試日期:2019-07-24
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:化粧品應用與管理系
學門:民生學門
學類:美容學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:84
中文關鍵詞:oroxylin A角質細胞基因微陣列分析即時定量聚合酶連鎖反應
外文關鍵詞:oroxylin Akeratinocytegene microarray analysisquantitative real-time polymerase chain reaction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:588
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
皮膚屏障的功能障礙,例如皮脂膜缺乏或角質細胞增殖與分化的失衡,會導致皮膚疾病的產生,如異位性皮膚炎、牛皮癬和汗孔角化症。曾有研究使用中草藥萃取物做為替代性藥物,發現富含類黃酮化合物的黃芩萃取物,具有抗發炎、抗氧化、抗癌、抗菌、抗病毒、抗老化等的活性。
Oroxylin A (5,7-dihydroxy-6-methoxyflavone),為黃芩中類黃酮化合物之一,含量雖少但具有廣泛的藥理活性,包括抗發炎、抗癌、抗過敏與抗菌的效果,此外也發現具有抑制皮膚表皮黑素體運送與減少細胞內黑色素含量之活性,但是卻缺乏應用於皮膚表皮角質層的相關研究。Oroxylin A天然來源含量稀少且萃取步驟十分繁瑣,而先前有文獻提出不同的合成方法,其合成條件毒性較高且有爆炸疑慮,本研究透過較溫和、耗時短且安全性與產率皆高的特殊一鍋式反應,來合成所需的oroxylin A。
以oroxylin A處理人類角質細胞後,於檢測期間並未出現細胞毒性反應,隨後進行人類全基因微陣列晶片分析,並利用基因富集分析產生顯著變化的基因調控路徑,再以即時定量聚合酶連鎖反應針對目標基因分析表現情形。發現oroxylin A具有調節角質細胞中脂質代謝的作用,以及可能影響細胞分化與增殖。推測當皮膚受到環境刺激誘發過敏現象,或者受到外部的機械應力導致皮膚損傷,可能藉由加速角質代謝達到修復皮膚之效果。此外本研究所使用的基因微陣列分析技術,可以得知化合物施予細胞可能影響的基因調控路徑,未來可應用於檢測化粧品對於皮膚的合適性,評估原料的安全性及有效性,具有成為建立替代性實驗檢測方法之潛力。

Dysfunction of the epidermal barrier of the skin, such as sebum deficiency or imbalance of keratinocyte proliferation and differentiation, can lead to skin diseases, for example, atopic dermatitis, psoriasis and porokeratosis. The extracts of Chinese herbal medicine have been reported to be alternative drugs. S. baicalensis extracts contain various flavonoids and have anti-inflammatory, antioxidant, anti-cancer, antibacterial, anti-viral, and anti-aging effects.
Oroxylin A (5,7-dihydroxy-6-methoxyflavone), the least abundant flavonoid in S. baicalensis extracts, has a wide range of pharmacological activities, including anti-inflammatory, anti-cancer, anti-allergic and antibacterial effects. Oroxylin A has the inhibitory activity of the transport of melanosome and reducing the intracellular melanin content, but lacks the relevant literature on the application of oroxylin A to the stratum corneum of the skin. Oroxylin A has a rare natural source and is very cumbersome to extract. Previous studies showed different synthetic methods to produce oroxylin A, but the synthetic conditions are highly toxic and explosive. In this study, a milder, time-consuming, safe and high-yield one-pot reaction was used to synthesize the required oroxylin A.
Keratinocytes were treated with different concentrations of oroxylin A, and there was no cytotoxicity in the periods of treatments. Human whole-genome microarray analysis was used to identify significantly expressed genes that may contribute to the response, and then the gene ontology enrichment analysis could perform the signaling pathways by gene expression profiling. After quantitative polymerase chain reaction analysis, the results indicated lipid metabolism and the regulation of differentiation and proliferation of keratinocytes maybe involved. Therefore, we speculated that when the skin is stimulated by environmental changes or external mechanical stress, if it can accelerate the metabolism of keratinocytes, it might be able to achieve the effect of repairing skin abnormalities. In addition, the gene microarray analysis used in this study can be used to clarify the possible regulatory pathways of the compounds administered to cells, which can be applied to evaluate the safety and effectiveness of raw materials of cosmetics for the skin in the future.

致謝.....I
中文摘要.....II
Abstract.....IV
目錄.....VI
圖目錄.....IX
表目錄.....X
英文縮寫表.....XI

第一章 緒論.....01
1.1 人體皮膚結構.....01
1.2 表皮屏障異常對皮膚健康之影響.....03
1.3 黃芩中的類黃酮化合物.....10
1.4 Oroxylin A背景與藥理活性.....14
1.5 人類HaCaT角質細胞 (Human keratinocyte HaCaT cells).....16
1.6 研究目的.....17
1.7 研究架構與實驗流程.....19
第二章 實驗材料和方法.....20
2.1 藥品.....20
2.2 儀器.....21
2.2.1 合成實驗儀器.....21
2.2.2 生物活性實驗儀器.....22
2.3 Oroxylin A合成方法.....23
2.4 高效能液相層析.....24
2.5 Oroxylin A之細胞存活率分析.....25
2.5.1 細胞培養.....25
2.5.2 細胞冷凍保存.....26
2.5.3 細胞解凍.....26
2.5.4 細胞計數.....27
2.5.5 細胞存活率試驗 (MTT assay).....28
2.6 基因表現分析.....28
2.6.1 Total RNA萃取.....28
2.6.2 基因微陣列分析 (microarray analysis).....29
2.6.3 cDNA合成.....31
2.6.4 引子設計與基因表現分析.....31
2.6.5 瓊脂凝膠電泳.....33
2.6.6 即時定量聚合酶連鎖反應.....34
2.6.7 統計分析.....34
第三章 結果.....35
3.1 Oroxylin A合成.....35
3.2 Oroxylin A之細胞存活率分析.....35
3.3 基因微陣列分析與基因富集分析.....36
3.4 參與甲羥戊酸路徑與keratin家族之候選基因RT-PCR分析.....37
3.5 即時定量聚合酶連鎖反應分析.....37
第四章 討論.....38
4.1 Oroxylin A合成.....38
4.2 Oroxylin A對HaCaT角質細胞之影響.....39
第五章 結論.....44
參考文獻.....45
附錄.....67
1.Robinson PJ. Skin. In: 3, ed. Encyclopedia of Toxicology: Academic Press; 2014:283-309.
2.張效銘。化妝品皮膚生理學.。五南圖書出版公司;2018年:34-41頁。
3.曹克誠。化妝品與皮膚病。合記圖書出版社;2008年:7-10頁。
4.易光輝,歐明秋,徐照程,王曉芬。化妝品化學。華杏出版股份有限公司;2013年:132-133頁。
5.Sahle FF, Gebre-Mariam T, Dobner B, Wohlrab J, Neubert RHH. Skin Diseases Associated with the Depletion of Stratum Corneum Lipids and Stratum Corneum Lipid Substitution Therapy. Skin Pharmacol Physiol. 2015; 28 (1): 42-55.
6.Luca CD, Valacchi G. Surface Lipids as Multifunctional Mediators of Skin Responses to Environmental Stimuli. Mediators Inflamm. 2010; 2010: 321494.
7.Hivnor C, Williams N, Singh F, et al. Gene expression profiling of porokeratosis demonstrates similarities with psoriasis. J Cutan Pathol. 2004; 31 (10): 657-664.
8.Zhang ZH, Wang ZM, Crosby ME, et al. Reassessment of microarray expression data of porokeratosis by quantitative real‐time polymerase chain reaction. J Cutan Pathol. 2010; 37 (3): 371-375.
9.Baroni A, Buommino E, Gregorio VD, Ruocco E, Ruocco V, Wolf R. Structure and function of the epidermis related to barrier properties. Clin Dermatol. 2012; 30 (3): 257-262.
10.Bonesi M, Loizzo MR, Menichini F, Tundis R. Flavonoids in Treating Psoriasis. In: Chatterjee S, Jungraithmayr W, Bagchi D. Immunity and Inflammation in Health and Disease. Academic Press; 2018: 281-294. doi: 10.1016/B978-0-12-805417-8.00023-8.
11.Lee HY. Improvement of skin barrier dysfunction by Scutellaria baicalensis GEOGI extracts through lactic acid fermentation. J Cosmet Dermatol. 2019; 18 (1): 183-191.
12.Kim J, Lee Is, Park S, Choue R. Effects of Scutellariae radix and Aloe vera gel extracts on immunoglobulin E and cytokine levels in atopic dermatitis NC/Nga J Ethnopharmacol. 2010; 132 (2): 529-532.
13.Leung DYM, Boguniewicz M. Atopic Dermatitis and Allergic Contact Dermatitis. In: O'Hehir RE, Holgate ST, Sheikh A. Middleton's Allergy Essentials. Elsevier; 2017: 265-300. doi: 10.1016/B978-0-323-37579-5.00011-8.
14.Immediate Allergic Reactions. In: Flaherty DK. Immunology for Pharmacy. Mosby; 2012: 118-126. doi: 10.1016/B978-0-323-06947-2.10015-X.
15.Fung MA. Inflammatory Diseases of the Dermis and Epidermis. In: Busam KJ. Dermatopathology. Saunders; 2010: 11-81. doi: 10.1016/B978-0-443-06654-2.00001-9.
16.Hwang ST, Nijsten T, Elder JT. Recent Highlights in Psoriasis Research. J Invest Dermatol. 2017; 137 (3): 550-556.
17.Colonna M. AHR: Making the Keratinocytes Thick Skinned. Immunity. 2014; 40 (6): 863-864.
18.Roberson EDO, Bowcock AM. Psoriasis genetics: breaking the barrier. Trends Genet. 2010; 26 (9): 415-423.
19.Gudjonsson JE, Ding J, Johnston A, et al. Assessment of the Psoriatic Transcriptome in a Large Sample: Additional Regulated Genes and Comparisons with In Vitro Models. J Invest Dermatol. 2010; 130 (7): 1829-1840.
20.Boehncke H, Schön MP. Psoriasis. The Lancet. 2015; 386 (9997): 983-994.
21.Rønholt K, Iversen L. Old and New Biological Therapies for Psoriasis. Int J Mol Sci. 2017; 18 (11): 2297.
22.Weedon D. Disorders of epidermal maturation and keratinization. Weedon's Skin Pathology. 3 ed. Churchill Livingstone; 2010: 247-279. doi: 10.1016/B978-0-7020-3485-5.00010-3.
23.Mao-Qiang M, Elias PM, Feingold KR. Fatty acids are required for epidermal permeability barrier function. J Clin Invest. 1993; 92 (2): 791-798.
24.Feingold KR, Man MQ, Menon GK, Cho SS, Brown BE, Elias PM. Cholesterol synthesis is required for cutaneous barrier function in mice. J Clin Invest. 1990; 86 (5): 1738-1745.
25.Holleran WM, Man MQ, Gao WN, Menon GK, P M Elias, Feingold KR. Sphingolipids are required for mammalian epidermal barrier function. Inhibition of sphingolipid synthesis delays barrier recovery after acute perturbation. J Clin Invest. 1991; 88 (4): 1338-1345.
26.Blume‐Peytavi U, Bagot M, Tennstedt D, et al. Dermatology today and tomorrow: from symptom control to targeted therapy. J Eur Acad Dermatol Venereol. 2019; 33 (S1): 3-36.
27.Chen YE, Fischbach MA, Belkaid Y. Skin microbiota–host interactions. Nature. 2018; 553 (7689): 427-436.
28.Oh J, Byrd AL, Park M, Kong HH, Segre JA. Temporal Stability of the Human Skin Microbiome. Cell. 2016; 165 (4): 854-866.
29.Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012; 22 (5): 850-859.
30.Li C, Lin G, Zuo Z. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharmaceutice & Drug Disposition. 2011; 32 (8): 427-445.
31.Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011; 82 (4): 513-523.
32.GuohuaCao, EminSofic, L.Prior R. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Bio Med. 1997; 22 (5): 749-760.
33.González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Fruit polyphenols, immunity and inflammation. Brit J Nutr. 2010; 104 (Supplement S3): S15-S27.
34.Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. P Nutr Soc. 2010; 69 (3): 273-278.
35.González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Anti-Inflammatory and Immunomodulatory Properties of Dietary Flavonoids. In: Watson RR, Preedy VR, Zibadi S, eds. Polyphenols in Human Health and Disease. Vol 1; 2014: 435-452. doi: 10.1016/B978-0-12-398456-2.00032-3.
36.Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005; 81 (1): 317S-325S.
37.Hollman PCH, Cassidy A, Comte B, et al. The Biological Relevance of Direct Antioxidant Effects of Polyphenols for Cardiovascular Health in Humans Is Not Established. J Nutr. 2011; 141 (5): 989S-1009S.
38.Cai Y, Li S, Li T, Zhou R, Wai AT-S, Yan R. Oral pharmacokinetics of baicalin, wogonoside, oroxylin A 7-O-β-d-glucuronide and their aglycones from an aqueous extract of Scutellariae Radix in the rat. Journal of Chromatography B. 2016; 1026: 124-133.
39.Czerniak K, Walkiewicz F. Synthesis and antioxidant properties of dicationic ionic liquids. New J Chem. 2017; 41 (2): 530-539.
40.Andjelković M, Camp JV, Meulenaer BD, et al. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006; 98 (1): 23-31.
41.Farhoosh R, Johnny S, Asnaashari M, Molaahmadibahraseman N, Sharif A. Structure–antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem. 2016; 194 (1): 128-134.
42.Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta. 1999; 1472 (3): 643-650.
43.Hodnick WF, Kung FS, Roettger WJ, Bohmont CW, Pardini RS. Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids: A structure-activity study. Biochem Pharmacol. 1986; 35 (14): 2345-2357.
44.Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002; 13 (10): 572-584.
45.Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Bio Med. 1994; 16 (6): 845-850.
46.Sun C, Fu J, Chen J, Jiang L, Pan Y. On‐line HPLC method for screening of antioxidants against superoxide anion radical from complex mixtures. J Sep Sci. 2010; 33 (8): 1018-1023.
47.Maeta K, Nomura W, Takatsume Y, Izawa S, Inoue Y. Green Tea Polyphenols Function as Prooxidants To Activate Oxidative-Stress-Responsive Transcription Factors in Yeasts. Appl Environ Microbiol. 2007; 73 (2): 572-580.
48.Arakawa H, Maeda M, Okubo S, Shimamura T. Role of Hydrogen Peroxide in Bactericidal Action of Catechin. Clinical Nutrition ExperimentalBiol Pharm Bull. 2004; 27 (3): 277-281.
49.Nakagawa H, Hasumi K, Woo J-T, Nagai K, Wachi M. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Carcinogenesis. 2004; 25 (9): 1567-1574.
50.Ueda S, Nakamura H, Masutani H, et al. Baicalin induces apoptosis via mitochondrial pathway as prooxidant. Mol Immunol. 2001; 38 (10): 781-791.
51.Ismail N, Alam M. A novel cytotoxic flavonoid glycoside from Physalis angulata. Fitoterapia. 2001; 72 (6): 676-679.
52.Yen G-C, Duh P-D, Tsai H-L, Huang S-L. Pro-oxidative Properties of Flavonoids in Human Lymphocytes. Biosci Biotech Bioch. 2003; 67 (6): 1215-1222.
53.Harminder, Singh V, Chaudhary A. A Review on the Taxonomy, Ethnobotany, Chemistry and Pharmacology of Oroxylum indicum Vent. Indian J Pharm Sci. 2011; 73 (5): 483-490.
54.Babu KS, Babu TH, Srinivas PV, et al. Synthesis and in vitro study of novel 7-O-acyl derivatives of Oroxylin A as antibacterial agents. Bioorg Med Chem Lett. 2005; 15 (17): 3953-3956.
55.Dinda B, SilSarma I, Dinda M, Rudrapaul P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol. 2015; 161: 255-278.
56.Hu Y, Yang Y, Qi-DongYou, et al. Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity. Biochem Bioph Res Co. 2006; 351 (2): 521-527.
57.Li H-N, Nie F-F, Liu W, et al. Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology. 2009; 257 (1-2): 80-85.
58.Qiao C, Lu N, Zhou Y, et al. Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget. 2016; 7 (13): 17009-17020.
59.Ali RM, Houghton PJ, Raman A, Hoult JRS. Antimicrobial and antiinflammatory activities of extracts and constituents of Oroxylum indicum (L.) Vent. Phytomedicine. 1988; 5 (5): 375-381.
60.Steeg PS, Theodorescu D. Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol. 2008; 5 (4): 206-219.
61.Pollet I, Opina CJ, Zimmerman C, Leong KG, Wong F, Karsan A. Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-κB and c-Jun N-terminal kinase. Blood. 2003; 102 (5): 1740-1742.
62.Ye M, Wang Q, Zhang W, Li Z, Wang Y, Hu R. Oroxylin A exerts anti-inflammatory activity on lipopolysaccharide-induced mouse macrophage via Nrf2/ARE activation. Biochem Cell Biol. 2014; 92 (5): 337-348.
63.Chen Y-C, Ling-LingYang, J-FLee T. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation. Biochem Pharmacol. 2000; 59 (11): 1445-1457.
64.Yao J, Hu R, Sun J, et al. Oroxylin a prevents inflammation‐related tumor through down‐regulation of inflammatory gene expression by inhibiting NF‐κB signaling. Mol Carcinogen. 2014; 53 (2): 145-158.
65.Hearing VJ. Determination of Melanin Synthetic Pathways. J Invest Dermatol. 2011; 131 (3): E8-E11.
66.Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expet Rev Dermatol. 2011; 6 (1): 97-108.
67.Brożyna AA, Jóźwicki W, Carlson JA, Slominski AT. Melanogenesis affects overall and disease-free survival in patients with stage III and IV melanoma. Hum Patho. 2013; 44 (10): 2071-2074.
68.Kudo M, Kobayashi-Nakamura K, Tsuji-Naito K. Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: Inhibition of melanin production and intracellular melanosome transport. PLoS One. 2017; 12 (2): e0171513.
69.王守正。比哆胺與黃芩苷對人類角質形成細胞的保護作用--針對紫外線所誘導的細胞損傷,中臺科技大學醫學影像暨放射科學系暨研究所;2016年。
70.Rekus MT. Characterization of growth and differentiation of a spontaneously immortalized keratinocyte cell line (HaCaT) in a defined, serum-free culture system, The Medical Faculty of the Heinrich Heine University of Dusseldorf; 2000.
71.Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988; 106 (3): 761-771.
72.Wilson VG. Growth and differentiation of HaCaT keratinocytes. Methods Mol Biol. 2013; 1195: 33-41.
73.劉東鋒,郭琴,楊成東。從木蝴蝶中分離純化千層紙素A的方法:CN101955474A;IPC: C07D 311/30(2006.01); C07D 311/40(2006.01);China,2011年。
74.Huang W-H, Chien P-Y, Yang C-H, Lee A-R. Novel Synthesis of Flavonoids of Scutellaria baicalensis GEORGI. Chem Pharm Bull. 2003; 51 (3): 339-340.
75.Panhekar D, Mahale GD, Renalson KS, Satpute S. Resolving structural ambiguity of Oroxylin synthesized by different approaches. JCPRC5. 2015; 7 (6): 174-180.
76.李志裕,符偉,楊博,郭青龍,尤啟冬。一種千層紙素的合成方法:CN101508689;IPC: C07D 311/60(2006.01);China,2009年。
77.李冠漢,何文岳,王嘉駿。千層紙素A的合成方法:I637947;IPC: C07D 311/28(2006.01);Taiwan,2018年。
78.Lu L, Guo Q, Zhao L. Overview of Oroxylin A: A Promising Flavonoid Compound. Phytother Res. 2016; 30 (11): 1765-1774.
79.Warburg O. On the Origin of Cancer Cells. Science. 1956; 123 (3139): 309-314.
80.Daia Q, Yin Y, Liu W, et al. Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells. Int J Biochem Cell B. 2013; 45 (7): 1468-1478.
81.Dai Q, Yin Q, Wei L, et al. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia‐inducible factor‐1 in human hepatoma HepG2 cells. Mol Carcinogen. 2015; 55 (8): 1275-1289.
82.Yang Y, Hu Y, Gu HY, et al. Oroxylin A induces G2/M phase cell‐cycle arrest via inhibiting Cdk7‐mediated expression of Cdc2/p34 in human gastric carcinoma BGC‐823 cells. J Pharm Pharmacol. 2008; 60 (11): 1459-1463.
83.Mu R, Qi Q, Gu H, et al. Involvement of p53 in oroxylin A‐induced apoptosis in cancer cells. Mol Carcinogen. 2009; 48 (12): 1159-1169.
84.Xu M, Lu N, Sun Z, et al. Activation of the unfolded protein response contributed to the selective cytotoxicity of oroxylin A in human hepatocellular carcinoma HepG2 cells. Toxicol Lett. 2012; 212 (2): 113-125.
85.Choi HJ, Choi JY, Cho SW, et al. Genetic Polymorphism of Geranylgeranyl Diphosphate Synthase (GGSP1) Predicts Bone Density Response to Bisphosphonate Therapy in Korean Women. Yonsei Med J. 2010; 51 (2): 231-238.
86.Ashida S, Kawada C, Inoue K. Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR. Oncol Lett. 2017; 14 (6): 6533-6542.
87.Raihan O, Brishti A, Molla R, et al. The Age-dependent Elevation of miR-335-3p Leads to Reduced Cholesterol and Impaired Memory in Brain. Neuroscience. 2018; 390: 160-173.
88.Feingold KR. The outer frontier: the importance of lipid metabolism in the skin. J Lipid Res. 2009; 50: S417-S422.
89.Vukelic S, Stojadinovic O, Pastar I, et al. Cortisol Synthesis in Epidermis Is Induced by IL-1 and Tissue Injury. Journal of Biological Chemistry. 2011; 286 (12): 10265-10275.
90.Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990; 343 (6257): 425-430.
91.Lange BM, Croteau R. Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: Isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. Proc Natl Acad Sci U S A. 1999; 96 (24): 13714-13719.
92.Das S, Schapira M, Tomic-Canic M, Goyanka R, Cardozo T, Samuels HH. Farnesyl Pyrophosphate Is a Novel Transcriptional Activator for a Subset of Nuclear Hormone Receptors. Molecular Endocrinology. 2007; 21 (11): 2672-2686.
93.Pastar I, Stojadinovic O, Sawaya AP, et al. Skin Metabolite, Farnesyl Pyrophosphate, Regulates Epidermal Response to Inflammation, Oxidative Stress, and Migration. J Cell Physiol. 2016; 231 (11): 2452-2463.
94.Huang KF, Ma KH, Liu PS, Chen BW, Chueh SH. Baicalein increases keratin 1 and 10 expression in HaCaT keratinocytes via TRPV4 receptor activation. Exp Dermatol. 2016; 25 (8): 623-629.
95.Zhang C, Xu Q, Tan X, et al. Astilbin decreases proliferation and improves differentiation in HaCaT keratinocytes. Biomed Pharmacother. 2017; 93: 713-720.
96.Altwairgi AK. Statins are potential anticancerous agents (review). Oncol Rep. 2015; 33 (3): 1019-1039.
97.Ye K, Wu Y, Sun Y, Lin Ja, Xu J. TLR4 siRNA inhibits proliferation and invasion in colorectal cancer cells by downregulating ACAT1 expression. Life Sci. 2016; 155: 133-139.
98.Chen X, Liang H, Song Q, Xu X, Cao D. Insulin promotes progression of colon cancer by upregulation of ACAT1. Lipids Health Dis. 2018; 17 (1): 122.
99.Goudarzi A. The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target. Life Sci. 2019; 232: 116592.
100.Peeters JK, Spek PJVd. Growing applications and advancements in microarray technology and analysis tools. Cell Biochem Biophys. 2005; 43 (1): 149-166.
101.Terpenoid backbone biosynthesis - Homo sapiens (human). [Web page]. KEGG pathway. Available at: https://www.genome.jp/kegg-bin/show_pathway?hsa00900+H01933. Accessed March 8, 2019.
102.Slenter D, Willighagen E, Ehrhart F. Mevalonate arm of cholesterol biosynthesis pathway (Homo sapiens). [Web page]. WikiPathways BETA. Available at: https://www.wikipathways.org/index.php/Pathway:WP4190. Accessed March 14, 2019.
103.Slenter D, Willighagen E, Vercoulen J. Mevalonate arm of cholesterol biosynthesis pathway with inhibitors (Homo sapiens). [Web page]. WikiPathways BETA. Available at: https://www.wikipathways.org/index.php/Pathway:WP4189. Accessed March 14, 2019.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top