跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 14:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡嘉倫
研究生(外文):Chia-Lun Tsai
論文名稱:龍王颱風(2005)雨帶結構及其地面觀測特徵
論文名稱(外文):Observational study of structures and surface fluctuations of typhoon rainbands of Longwang (2005)
指導教授:游政谷
指導教授(外文):Cheng-Ku Yu
口試委員:陳台琦郭鴻基吳俊傑廖宇慶王重傑葉天降游政谷
口試委員(外文): Cheng-Ku Yu
口試日期:2013-06-06
學位類別:博士
校院名稱:中國文化大學
系所名稱:地學研究所博士班
學門:社會及行為科學學門
學類:地理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:124
中文關鍵詞:颱風雨帶雙都卜勒雷達三都卜勒雷達弧形雷達回波
相關次數:
  • 被引用被引用:2
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
螺旋雨帶為颱風中主要的特徵之一,然而颱風雨帶的形態相當多元及複雜,因此對雨帶有更完整認識是相當重要的。本文利用高解析度的地面測站及雷達資料,針對龍王颱風(2005)當中通過臺灣北部的兩個雨帶(R1與R2)進行研究。主要目的為瞭解R1與R2內各種地面參數細微之變化特徵,並使用多都卜勒雷達分析雨帶內的氣流及降雨結構特徵,以及探討其發展及維持的可能機制。
由高時間解析度的地面觀測資料顯示,R1與R2在通過各測站時所觀測到的氣象參數變化相當類似。地面擾動氣壓會先在雨帶外側下降並在內側上升,氣溫在雨帶中心軸通過後會有顯著的下降。垂直雨帶氣流(Vc)在擾動氣壓開始上升同時會有明顯的減速。降雨集中在雨帶內側區域,此區的相對濕度會有些微增加,但大都是未飽和的狀態。早期資料受觀測技術限制,僅能對雨帶地面參數變化進行粗略且模糊的定性描述。但透過本研究,對於雨帶內各地面參數產生變化的確切時間、位置及擾動程度,已有詳細的定量分析探討。
利用三都卜勒雷達風場合成可分析降水與三維氣流結構資料。結果顯示,R1與R2的寬度約為15~30公里,Vc在雨帶前方與外側皆為內流,後方低層有外流存在並延伸至雨帶內側,平行雨帶氣流(Va)的最大值出現在中心軸附近約3公里高。主要對流降雨區中的垂直速度大部分為正值,在兩側邊界外的融解層以下為負值。
本研究利用擾動氣壓診斷方程來估計對流效應在R1與R2內觀測擾動氣壓的貢獻程度。診斷結果顯示,對流效應對擾動氣壓的貢獻僅佔實際觀測值約30%~57%。由地面觀測資料顯示擾動氣壓隨時間會有著規律的週期與振幅變化,當R1與R2通過地面測站時其振幅會有顯著的放大。結合這些診斷分析可推論R1與R2內的擾動氣壓變化,應來自對流與大氣波動交互作用之結果。
透過詳細的雙都卜勒分析顯示,R1在不同時期的降雨及氣流結構會有顯著差異。R1在前期離颱風中心較近,結構特徵較為二維。但在後期距離中心較遠時,則呈現多樣性的三維結構。地面觀測資料顯示氣溫與降雨率在不同時期也會有明顯的差異,前期的氣溫下降趨勢較為平緩且強降雨集中在雨帶內側,但在後期氣溫可驟降約4.5℃,降雨區則位於外邊界附近且相對較弱。這些前後期結構差異主要可能與環境條件的改變有關,而環境條件會因為R1與颱風中心距離不同而有所差異。
除了上述的分析之外,本研究也探討R1在登陸期間的結構特徵。由雷達觀測顯示R1的帶狀降雨回波結構並無受地形破壞而消散,在開始遭遇到地形時其回波強度會些微增強,但隨即會逐漸減弱,離開地形時其對流會重新組織且增強,並維持帶狀組織持續向外傳播發展。登陸前的內流邊界隨高度向外側傾斜發展,通過地形時內流邊界則變為平緩且無傾斜,但在離開地形時又會重新開始出現向外側傾斜的結構。透過此分析結果可知臺灣北部地形對R1內降雨及氣流結構的發展有相當程度的影響。
本研究更針對R2內的弧形雷達回波 (ASREs)特徵進行詳細的降雨及氣流結構探討。分析結果顯示ASREs的前緣為對流降雨區,此區為前方內流與後方外流(rear-to-front flow)輻合的位置,在後方外流區西(東)側可發現水平尺度約為十公里之氣旋式(反氣旋式)的渦漩結構。前方內流與後方外流在對流降雨區抬升並隨高度向後方傾斜,後方外流的邊界約為3公里高,內側主要為層狀的降雨。透過地面資料與雙都卜勒分析顯示, 在R2內所觀測到的弧形回波結構特徵可能主要與冷池發展有關。綜合以上探討發現ASREs的降雨及氣流結構與颮線相當類似,但與典型principal band卻有明顯的差異存在。

摘要 I
致謝 III
目錄 IV
圖表說 VII
第一章 前言 1
(一) 研究動機 1
(二) 文獻回顧 2
(三) 研究問題 5
第二章 資料與研究方法 7
(一) 資料 7
1. 資料來源 7
2. 都卜勒雷達資料的特性與處理 8
3. 地面測站資料的特性與處理 11
(二) 都卜勒雷達風場合成及反演 12
1. 雙都卜勒雷達風場合成 12
2. 地形上雷達資料之處理 14
3. 三都卜勒雷達風場反演 14
第三章 個案描述 16
(一) 龍王颱風 16
(二) 龍王颱風雨帶 16
1. 颱風雨帶之定義與演變 17
2. 颱風雨帶之移動特徵 19

第四章 地面觀測特徵與診斷分析 21
(一) 颱風雨帶之地面觀測特徵 21
1. 雨帶一(R1) 21
2. 雨帶二(R2) 22
(二) 三都卜勒風場分析 24
1. 雨帶一(R1) 24
2. 雨帶二(R2) 25
(三) 擾動氣壓之診斷分析 26
(四) 對流與波動之交互作用 28
第五章 颱風雨帶之降雨及氣流結構 31
(一) 雨帶一(R1)之結構變化 31
1. 降雨及氣流結構之改變 31
2. 地面觀測特徵的變化差異 34
3. 地形對雨帶結構演變之影響 36
(二) 雨帶二(R2)之弧形回波觀測特徵 38
1. 弧形回波之降雨及氣流結構 38
2. 弧形回波之地面觀測特徵 40
(三) 討論 41
1. 環境條件對雨帶結構演變之影響 41
2. 弧形回波之擾動氣壓診斷分析 43
3. 弧形回波內冷池動力之探討 44
第六章 結論與未來工作 46
(一) 結論 46
(二) 未來工作 49
參考文獻 51
表 58
圖 61
附錄 107

Anthes, R. A., 1982: Tropical cyclones: Their evolution, structure, and effects. Meteor. Monogr., 19, Amer. Meteor. Soc., 208 pp.
Barnes, G. M., E. J. Zipser, D. P. Jorgensen, and F. D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125-2137.
Barnes, G. M., and G. J. Stossmeister, 1986: The structure and decay of a rainband in Hurricane Irene (1981). Mon. Wea. Rev., 114, 2590-2601.
Benjamin W. G., F. Zhang, and P. Markowski, 2011: Multiscale Processes Leading to Supercells in the Landfalling Outer Rainbands of Hurricane Katrina (2005). Wea. Forecasting, 26, 828-847.
Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192-207.
Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573-1592.
Didlake, A. C., and R. A. Houze, Jr., 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 3269-3293.
Diercks, J. W., and R. A. Anthes, 1976: Diagnostic studies of spiral rainbands in a nonlinear hurricane model. J. Atmos. Sci., 33, 959-975.
Doviak, R. J., S. R. Peter, G. S. Richard, and L. Miller, 1976: Error Estimation in Wind Fields Derived from Dual-Doppler Radar Measurement. J. Applied Meteor. 15, 868-878.
Eastin M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137, 2081-2104.
Einaudi, F., W. L. Clark, D. Fua, J. L. Green, and T. E. VanZandt, 1987: Gravity waves and convection in Colorado during July 1983. J. Atmos. Sci., 44, 1534-1553.
Frame, J., and P. Markowski, 2006: The interaction of simulated squall line with idealized mountain ridges. Mon. Wea. Rev., 134, 1919-1941.
Frank, W. M., 1977: The Structure and energetics of the tropical cyclone. Part I: Storm structure. Mon. Wea. Rev., 105, 1119-1135.
Gall, R., J. Tuttle, and P. Hildebrand, 1998: Small-scale spiral bands observed in Hurricanes Andrew, Hugo, and Erin. Mon. Wea. Rev., 126, 1749-1766.
Glen, S. R., G. S., and R. B.Wilhelmson, 2006: Finescale spiral band features within a numerical simulation of Hurricane Opal (1995). Mon. Wea. Rev., 134, 1121-1139.
Gray, W. M., 1979: Tropical cyclone intensity determination through Upper-Tropospheric aircraft reconnaissance. Bull. Amer. Meteor. Soc., 60, 1069-1074.
Hamuro, M., and Coauthors, 1969: Precipitation bands of Typhoon Vera in 1959 (Part I). J. Meteor. Soc. Japan., 47, 298-309.
Hence, D. A., and R. A. Houze, Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.
Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall–line system. Mon. Wea. Rev., 105, 1540-1567.
Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293-344.
Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 1268-1285.
Jorgensen, D. J., M. A. LeMone, and B. J.-D. Jou, 1991: Precipitation and kinematic structure of an oceanic mesoscale convective system. Part I: Convective line structure. Mon. Wea. Rev., 119, 2608-2637.
Klimowski, B. A., M. R. Hjelmfelt, and M. J. Bunkers, 2004: Radar observations of the early evolution of bow echoes. Wea. Forecasting, 19, 727-734.
Koch, S. E., and R. E. Golus, 1988:Amesoscale gravity wave event observed during CCOPE. Part I: Multiscale statistical analysis of wave characteristics. Mon. Wea. Rev., 116, 2527-2544.
Koch, S. E., R. E. Golus, and P. B. Dorian, 1988:Amesoscale gravity wave event observed during CCOPE. Part II: Interactions between mesoscale convective systems and the antecedent waves. Mon. Wea. Rev., 116, 2545-2569.
Kuo, H.-C., C.-P. Chang, C.-H. Liu, 2012: Convection and Rapid Filamentation in Typhoon Sinlaku during TCS-08/T-PARC. Mon. Wea. Rev., 140, 2806-2817.
Kurihara, Y., 1976: On the development of spiral bands in a tropical cyclone. J. Atmos. Sci., 33, 940-958.
Lee, W.-C., M. M. Bell, and K. E. Goodman, Jr., 2008: Supersells and mesocyclones in outer rainbands of Hurricane Katrina (2005). Geophys. Res. Lett., 35, L16803. doi:10.1029/2008GL034724.
Ligda, M. G. H., 1955: Hurricane squall lines. Bull. Amer. Meteor. Soc., 36, 340-342.
Lo ̈ffer-Mang, M., K. Michael, and S. Willi, 1999:On the performance of low-cost K-band Doppler radar for quantitative rain measurements. J. Atmos. Oceanic Technol., 16, 379-387.
Mohr, C. G., and L. J. Miller, 1983: CEDRIC—A software package for Cartesian space editing, synthesis, and display of radar fields under interactive control. Preprints, 21st Conf. on Radar Meteorology, Edmonton, AB, Canada, Amer. Meteor. Soc., 569-574.
Newton, C. W., 1963: Dynamics of severe convective storms. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 31-55.
Nettleton, L., S. Daud, R. Neitzel, C. Burghart, W. C. Lee, and P. Hildebrand, 1993: SOLO: A program to peruse and edit radar data. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 338-339.
Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359-361.
Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891-917.
Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918-9938.
Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 1607-1625.
Rebecca, D. A.-S., and R. H. Johnson, 2010: Mesoscale surface pressure and temperature features associated with bow echoes. Mon. Wea. Rev., 138, 212-227.
Rotunno, R., and J. B. Klemp, 1982: The influence of the shearinduced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136-151.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463-485.
Roux, F., 1998: The oceanic mesoscale convective system observed with airborne Doppler radars on 9 February 1993 during TOGA COARE: Structure, evolution and budgets. Quart. J. Roy. Meteor. Soc., 124, 585-614.
Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 1543-1567.
Senn, H. V., and H. W. Hiser, 1959: On the origin of hurricane spiral rain bands. J. Meteor., 16, 419-426.
Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378-394.
Simpson, J. E., 1969: A comparison between atmospheric and laboratory density currents. Quart. J. Roy. Meteor. Soc., 95, 758-765.
Skwira, G. D., J. L. Schroeder, and R. E. Peterson, 2005: Surface observations of landfalling hurricane rainbands. Mon. Wea. Rev., 133, 454-4465.
Tang X-D, Yang M-J, Tan Z-M. 2012. A modeling study of orographic convection and mountain waves in the landfall typhoon Nari (2001). Q.J.R. Meteorol. Soc. 138: 419-438. DOI:10.1002/qj.933
Teng, J.-H., C.-S., Chen, and T.-C. C. Wang, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev., 128, 1123-1138.
Trier, A. B., W. C. Skamarock, and M. A. LeMone, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation. J. Atmos. Sci., 54, 386-407.
Ushijima, T., 1958: Outer rain bands of typhoons. J. Meteor. Soc. Japan., 36, 1-10.
Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082.
Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250-1273.
Weisman, M. L., 1993: The Genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645-670.
Weisman, M. L., and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 2603-2622.
Wexler, H., 1947: Structure of hurricanes as determined by radar. Ann. N.Y. Acad. Sci., 48, 821-844.
Wilde, N. P., R. B. Stull, and E. W. Eloranta, 1985: The LCL zone and cumulus onset. J. Appl. Meteor., 24, 640-57.
Willoughby, H. E., 1977: Inertia-buoyancy waves in hurricanes. J. Atmos. Sci., 34, 1028-1039.
Willoughby, H. E., 1978: A possible mechanism for the formation of hurricane rainbands. J. Atmos. Sci., 35, 838-848.
Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395-411.
Willoughby, H. E., F. D. Marks, Jr., R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189-3211.
Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulateon associated with Typhoon Herb (1996) near Taiwan. Part I: The topographyc effect. Wea. Forecasting, 17, 1001-1015.
Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65, 3095–3115.
Yau, M.-K., 1979: Perturbation pressure and cumulus convection. J. Atmos. Sci., 36, 690-694.
Yu, C.-K, B. J.-D. Jou, and D. P. Jorgensen, 2001: Retrieved thermodynamic structure of a subtropical, orographically influenced, quasi-stationary convective line. Mon. Wea. Rev., 129, 1099-1116.
Yu, C.-K., and L.-W. Cheng, 2008: Radar observations of intense orographic precipitation associated with Typhoon Xangsane (2000). Mon. Wea. Rev., 136, 497-521
Yu, C.-K., and C.-L. Tsai, 2010: Surface pressure features of landfalling typhoon rainbands and their possible causes. J. Atmos. Sci., 67, 2893-2911.
Yu, C.-K., and Y. Chen, 2011: Surface fluctuations associated with tropical cyclone rainbands observed near Taiwan during 2000-08. J. Atmos. Sci., 68, 1568-1585.
Yu, C.-K., and C.-L. Tsai, 2013: Structural and surface features of arc-shaped radar echoes along an outer tropical cyclone rainband . J. Atmos. Sci., 70, 56-72.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top