跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林靖琮
研究生(外文):Ching-Tsung Lin
論文名稱:錫鋅系無鉛銲錫與OSP及ENIG電路板之界面反應及其可靠度分
論文名稱(外文):The interfacial reaction and reliability between Sn-Zn Series lead-free solders with ENIG and OSP Substrates.
指導教授:許志雄許志雄引用關係梁明侃
指導教授(外文):Chi-Shiung HsiMing-Kann Liang
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:材料科學工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:114
中文關鍵詞:無鉛銲錫有機保銲膜無電鍍鎳化金接點強度介金屬化合物
外文關鍵詞:organic solderability preservativesolder joint strengthelectroless nickel / immersion goldIntermetallic compoundPb-free solders
相關次數:
  • 被引用被引用:1
  • 點閱點閱:2412
  • 評分評分:
  • 下載下載:199
  • 收藏至我的研究室書目清單書目收藏:0
本研究以Sn8Zn3Bi與Sn9ZnAl無鉛銲錫,將被動元件與有機保銲膜(Organic solderability preservative, OSP)及無電鍍鎳化金(Electroless nickel immersion gold, ENIG)處理之印刷電路板以表面黏著技術(SMT) 進行接合。將組裝件於150�aC溫度下進行等溫時效200、400、600、800與1100小時後,進行微結構觀察與剪力(Shear strength)測試。由實驗結果知,兩種銲錫與OSP及ENIG均有好的銲錫性,銲接後Sn8Zn3Bi之銲點強度高於Sn9ZnAl。四種接點之強度均隨時效時間增加而降低,經1100小時時效後,銲接在OSP基板上之接點強度大幅度降低,銲接於ENIG基板上之接點依然保有良好的強度。兩種銲錫在迴銲後與銅銲墊形成扇貝狀�捸VCu0.2Zn0.8及平板狀的�蛂VCu5Zn8介金屬化合物(Intermetallic compound, IMC),隨時效時間增加,�捸VCu0.2Zn0.8相轉變成�蛂V Cu5Zn8 IMC且厚度增加,銲錫中出現鋅貧乏(Zn-depletion)現象,Sn與Cu反應成Cu6Sn5介金屬相。Sn9ZnAl銲錫材料與銅銲墊的界面反應和Sn8Zn3Bi銲錫類似,但銲錫與銅銲墊界面在時效600小時後產生Cu6Sn5介金屬相。隨時效時間增長,兩種界面均發生明顯的Cu5Zn8 IMC分解,且產生較大而連續的孔洞,進而造成銲點接合強度的大幅衰退。兩種銲錫與ENIG基板接點具有相似顯微結構,銲接後在界面形成極薄的AuZn3,時效後轉變成��-AuZn8,並在介金屬層與銲錫之界面發生Zn的再堆積(redeposited),隨時效時間增加介金屬層厚度並無明顯改變,但再堆積Zn相則持續增加。以錫鋅系銲錫與錫銀銅錫球進行組裝,銲接後在界面形成Ag-Au-Cu-Zn、Ni-Sn-Cu-Zn及富Ag-Sn相產生,經1000次溫度循環試驗後,接點電阻值均提高,而OSP銲點有較高的電阻值。
Two kinds of lead-free solders, Sn8Zn3Bi and Sn9ZnAl, were used to mount passive components onto OSP and ENIG finished printed circuit boards via a re-flow soldering process. The components mounted boards were aged at 150�aC for various times. After soldering, both of the solders on OSP and ENIG had good solderability, the joint strength between Sn8Zn3Bi solder pads were higher than those between Sn9ZnAl solder and pads. After aging for 1100 hours, the joint strength between both solders on OSP pad dramatically reduced, the solder joints on ENIG only had slight decrease. Shell-looked �捸VCu0.2Zn0.8 compound and intermetallic compound (IMC) �蛂VCu5Zn8 flat layers formed between both solders and Cu pads after reflowing. After 200 hours aging, all the �捸VCu0.2Zn0.8 compound transformed into �蛂VCu5Zn8 and the IMC layer became thicker. As the aging time increased, both solders form Zn-depletion zone and Cu6Sn5 IMC. The interaction between Sn9ZnAl solder and Cu pad had similar behavior as that between Sn8Zn3Bi solder and Cu pad. Both types of solders showed clear IMC decomposition layers with large and continuous voids, those voids substantially decreased the joint strength. Solder joint on ENIG board had similar microstructures with very thin AuZn3 layers formed in the interface after soldering. After aging, AuZn3 layers transformed into ��-AuZn8 IMC and its thickness did not obviously change. The redeposited - Zn phase was observed at the position above the IMC layer, and the shape size grow up as the aging time increased. The microstructural evolution along with the electrical resistance variation of the Sn–Ag–Cu solder ball joint with both of the solder pastes on OSP and ENIG finished BGA substrates. After thermal cycling test for 1000 cycles, the electrical resistance between the both solders on OSP pad greatly increased than ENIG pad.
中文摘要……………………………………………………………….. ..I
英文摘要…………………………………………………………………II
總目錄………………………………………………………………..... III
表目錄………………………………………………………………..…VI
圖目錄……………………………………………………………….....VII

第一章 緒論……………………………………………………………1
1-1 前言……………………………………………………………1
1-2 研究目的………………………………………………………2
第二章 文獻回顧……………………………………………………….3
2-1 電子構裝技術………………………………………………...3
2-1-1 表面黏著技術………………………………………….….3
2-2 無鉛銲錫的發展……………………………………………...4
2-2-1 常見無鉛銲錫材料及其性質比較…………………….….7
2-3 印刷電路板表面處理技術………………………………….12
2-4 銲錫與基板界面反應……………………………………….15
2-4-1 Sn-Zn系列銲錫/Cu 界面反應………………………….15
2-4-2 Sn-Zn系列銲錫/Au/Ni(P) 界面反應…………………...16
第三章 實驗方法與步驟……………………………………………..18
3-1 實驗構想……………………………………………………18
3-2 被動元件與印刷電路板接合………………………………20
3-3 組裝後被動元件高溫時效處理……………………………21
3-4 組裝後被動元件剪力強度測試……………………………21
3-5 BGA元件與印刷電路板組裝……………………………...21
3-5-1 BGA組裝銲件溫度循環測試…………………………21
3-5-2 BGA銲件溫度循環測試下電阻值量測………………25
3-6 錫鋅系銲錫與OSP及ENIG基板之界面反應分析………25
3-6-1 界面介金屬化合物之顯微結構觀察…………………..25
3-6-2 被動元件剪力破斷面之顯微結構觀察………………26
第四章 結果與討論…………………………………………………..28
4-1 被動元件以錫鋅系銲錫與OSP基板之接合行為………...28
4-1-1 銲後之銲點接合顯微結構…………………………….28
4-1-2 高溫時效處理後之銲件接合顯微結構……………….30
4-1-2-1 Sn9ZnAl/Cu銲錫接點…………………….………30
4-1-2-2 Sn8Zn3Bi/Cu銲錫接點………………...................33
4-1-3 界面介金屬化合物之分析…………………………….37
4-1-4 高溫時效後銲錫與Cu基板之界面反應機制………..42
4-2 被動元件以錫鋅系銲錫與ENIG基板之接合行為……….45
4-2-1 銲後之銲點接合顯微結構……………………………45
4-2-2 高溫時效處理後之銲件接合顯微結構………………45
4-2-2-1 Sn9ZnAl/ Au/Ni(P)銲錫接點………………….…..45
4-2-2-2 Sn8Zn3Bi/Au/Ni(P)銲錫接點……………………..48
4-2-3 界面介金屬化合物之分析……………………………51
4-2-4 高溫時效後銲錫與Au/Ni(P)基板界面反應機制…….53
4-3 錫鋅系銲錫與OSP、ENIG銲墊之接合強度……………..54
4-3-1 銲錫與OSP接點強度………………………………….54
4-3-2 銲錫與ENIG接點強度………………………………...57
4-3-3 比較銲錫與OSP、ENIG接點強度…………………….59
4-4 錫鋅系銲錫與OSP、ENIG銲墊之之剪力破壞分析………60
4-5 BGA元件以錫鋅系銲錫與OSP基板之接合行為………..68
4-5-1 銲後接點顯微結構……………………………………..68
4-5-2 溫度循環處理銲點接合顯微結構……………………..70
4-5-3 接點介金屬化合物成份分析…………………………..73
4-5-4 BGA元件以錫鋅系銲錫與OSP板接點反應機制……74
4-6 BGA元件以錫鋅系銲錫與ENIG基板之接合行為………76
4-6-1 銲後接點顯微結構…………………………………….76
4-6-2 溫度循環處理銲件接合顯微結構…………………….78
4-6-3 界面介金屬化合物之分析…………………………….84
4-6-4 BGA元件以錫鋅系銲錫與ENIG板接點反應機制….85
4-7 BGA元件以錫鋅系銲錫與ENIG基板之電阻變化………87
第五章 結論…………………………………………………………...91
参考文獻………………………………………………………………...93


表 目 錄
表2-1 常見銲錫合金材料組成及其熔點……………………………..9
表3-1 腐蝕液成分比例………………………………………………26
表4-1 Cu-Zn在773ºk反應時熱力學數值…………………..………40
表4-2 Au-Zn、Au-Sn介金屬化合物在該相反應溫度之△G、
△H、△S與計算後△G'……………………………….…...…52
表4-3 Sn9ZnAl、Sn8Zn3Bi銲錫與OSP基板對不同時效時間強
度數值…………………………………………………….……56
表4-4 Sn9ZnAl、Sn8Zn3Bi銲錫與ENIG基板對不同時效時間強
度數值……………………………………………………..…...58
表4-5 Ag-Zn、Cu-Zn、Au-Zn介金屬化合物在該相反應溫度之
△G、△H、△S與計算後△G'……….………………………87
表4-6 多種元素、合金及介金屬化合物在不同溫度下之電阻率…...90


圖 目 錄
圖 2-1 電子封裝層級的區分……………………………….…………..5
圖 2-2 常見元件與基板連結方式……………………………………...5
圖 2-3 SMT流程示意圖…………………...…………………………….6
圖 2-4 一般BGA封裝示意圖……………..………..…………………..6
圖 2-5 BTA有機保護膜示意圖……………...………………………..14
圖 2-6 印刷電路板無電鍍鎳製程反應機構圖……………………….14
圖 3-1 實驗流程圖…………………………………………………….19
圖 3-2 鋼板印刷示意圖……………………………………………….20
圖 3-3 迴銲曲線圖…………………………………………………….22
圖 3-4 基板上視圖…………………………………………………….22
圖 3-5 迴銲後被動元件與基板銲接情形…………………………….23
圖 3-6 剪力強度測試示意圖………………………………………….23
圖 3-7 BGA印刷電路板(含有Daisy Chain)…………………………24
圖 3–8 BGA試片組裝示意圖………………………..………………24
圖 3 - 9 銲後BGA試片,將Daisy Chain連結成一通路………………25
圖 3-10 被動元件與ENIG基板銲後橫截面示意圖………………….27
圖 3-11 被動元件與OSP基板銲後橫截面示意圖……...……………27
圖 4-1-1 0603電阻以(a)、(c) Sn9ZnAl;(b)、(d) Sn8Zn3Bi銲錫
與銅銲墊銲後接合之顯微結構……………………………31
圖 4-1-2 錫鋅二元合金相圖…………………………………………..32
圖 4-1-3 鋁錫二元合金相圖…………………………………………..32
圖 4-1-4 Sn9ZnAl銲錫與Cu銲墊接合,經時效 (a) 400、(b) 600、
(c) 1100 小時之銲點微結構…………………………..…...34

圖 4-1-5 Sn8Zn3Bi銲錫與Cu銲墊接合,經時效 (a) 400、(b) 600、
(c) 1100小時之銲點微結構……………………..…………36
圖 4-1-6 銅錫二元合金相圖………………………………………....39
圖 4-1-7 銅鋅二元合金相圖……………………………………..…..40
圖 4-1-8 各介金屬化合物在240℃之自由能….....…………………41
圖 4-1-9 Cu-Sn-Zn三元相圖系統…………………………………...41
圖 4-2-1 (a)、(b)、(c)0603電阻以Sn–9Zn-Al與Au/Ni(P)銲墊銲
後接合之顯微結構…..……………………………………..46
圖 4-2-1 (d)、(e)0603電阻以 Sn-8Zn-3Bi與Au/Ni(P)銲墊銲後接
合之顯微結構(續)…………………………………………47
圖 4-2-2 Sn9ZnAl銲錫與ENIG銲墊接合,經時效(a) 200、
(b) 400、(c) 1100 小時之銲點微結構…………………...49
圖 4-2-3 Sn8Zn3Bi銲錫與ENIG銲墊接合,經時效(a) 200、
(b) 400、(c) 1100 小時之銲點微結構…………………...50
圖 4-3-1 0603電阻以Sn9ZnAl、Sn8Zn3Bi銲錫與OSP基板
銲點強度變化…………………………………………..…..56
圖 4-3-2 0603電阻以Sn9ZnAl、Sn8Zn3Bi銲錫與EMIG基板銲點
強度變化……………………………………………………58
圖 4-3-3 Sn9ZnAl與Sn8Zn3Bi銲點經時效處理後之剪力強度
變化…………………………………………………………60
圖 4-4-1 Sn9ZnAl與OSP銲點之破壞型態,分別經過(a) 0、
(b) 200、(c) 400及(d) 1100 時………..…..………………..62
圖 4-4-2 Sn8Zn3Bi與OSP銲點之破壞型態,分別經過(a) 0、
(b) 200、(c) 400及(d) 1100 小時………….. ……..………..62
圖 4-4-3 Sn9ZnAl/ENIG銲點經時效(a) 0、(b) 200、(c) 600及
(d) 1100小時之破壞型態………………………………..…64
圖 4-4-4 Sn8Zn3Bi/ENIG銲點經時效 (a) 0、(b) 200、(c) 600小時
及 (d) 玻璃纖維與銲墊間 之破壞型態….…………..…...65
圖 4-4-5 銲點破壞趨勢,A表示破壞發生在銀電極/陶瓷本體或
銲錫內部;B表示破壞發生玻璃纖維/金屬銲墊………..…..67
圖 4-5-1 Sn -Ag -Cu錫球與Sn9ZnAl銲錫銲於OSP試片SEM
橫截面 (a) 銲錫橫截面;(b) 接點;(c) 接點界面
橫截面放大圖;(d) 銲錫內帶狀化合物……………………69
圖 4-5-2 Sn -Ag -Cu錫球與Sn8Zn3Bi銲錫銲於OSP試片SEM
橫截面 (a) 銲錫橫截面;(b) 接點;(c) 接點界面
橫截面放大圖;(d) 銲錫內帶狀化合物…………….…….71
圖 4-5-3 經過溫度循環處理1000 cycles後Sn-Ag-Cu錫球與
(a)、(b) Sn9ZnAl銲錫接點橫截面及帶狀化合物;
(c)、(d) Sn8Zn3Bi銲錫接點橫截面及帶狀化合物……..….72
圖 4-5-4 銲後Sn -Ag -Cu錫球與Sn9ZnAl銲錫內,帶狀化合物
EDS分析……………………………………..……………..74
圖 4-6-1 Sn-Ag-Cu錫球與Sn9ZnAl銲錫銲於ENIG試片SEM
橫截面(帶狀化合物);(a) 銲錫橫截面;(b) 接點;(c) 接點
界面橫截面放大圖;(d) 銲錫內帶狀化合物………..……79
圖 4-6-2 Sn-Ag-Cu錫球與Sn9ZnAl銲錫銲於ENIG試片SEM
橫截面(無帶狀化合物);(a) 銲錫橫截面;(b) 接點;(c) 接
點界面橫截面放大圖………………………………………80
圖 4-6-3 Sn-Ag-Cu錫球與Sn8Zn3Bi銲錫銲於ENIG試片SEM
橫截面(帶狀化合物);(a) 銲錫橫截面;(b) 接點;(c) 接點
界面橫截面放大圖;(d) 銲錫內帶狀化合物………...……81
圖 4-6-4 Sn -Ag -Cu錫球與Sn8Zn3Bi銲錫銲於ENIG試片SEM
橫截面(無帶狀化合物);(a) 銲錫橫截面;(b) 接點;
(c) 接點界面橫截面放大圖………………………..……....82
圖 4-6-5 經過溫度循環處理1000 cycles後Sn-Ag-Cu錫球與
(a)、(b) Sn9ZnAl銲錫接點橫截面及帶狀化合物;
(c)、(d) Sn8Zn3Bi銲錫接點橫截面及帶狀化合物……….83
圖 4-7-1 溫度循環時間對溫度關系圖………………………………89
圖 4-7-2 Sn9ZnBi銲錫銲接BGA元件於ENIG板試片,
0~20次溫度循環測試電阻與時間的關系圖………………89
圖4-7-3 各類試片經溫度循環1000循環後電阻值變化…..………..90
参考文獻
[1]J.W. Yoon, S.B. Jung, “Reliability studies of Sn–9Zn/Cu solder joints with aging treatment”, J. Alloys Compds. 407 (2006) 141–149.
[2]F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian, “Effects of reflow on wettability , microstructure and mechanical properties in lead-free solders”, Journal of electronic materials 29(2000) 1241-1248
[3]M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-free solder alloy with superior mechanical properties”, Appl. Phys. Lett. 63(1993) 15-17.
[4]S.W. Kim, J.W. Yoon and S.B. Jung, “Interfacial Reaction and Shear Strengths between Sn-Ag-based Pb-Free Solder Balls and Au/EN/Cu Metallization”, J. Electron. Mater. 33 (2004) 1182-1189.
[5]P.C. Shih , K.L. Lin, “Interfacial microstructure and shear behavior of Sn–Ag–Cu solder balls joined with Sn–Zn–Bi paste”, J. Alloys Compds. 422 (2006) 153–163.
[6]M. Abtew and G. Selvaduray‚ “Lead-Free Solders in Microelectronics “, Mater. Sci. Eng. R 27 (2000) 95-141.
[7]K.I Chen, S.C. Cheng, S. Wu and K.L. Lin, “Effects of small additions of Ag, Al, and Ga on the structureand properties of the Sn–9Zn eutectic alloy”, J. Alloys Compds. 416 (2006) 98-105.
[8]Y.S. Kim, K.S. Kim, C.W.H.K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys”, J. Alloys Compd. 352 (2003)237–245.
[9]K.S. Kim, J.Mo Yang , C.H. Yu, In-Ok Jung , H.H. Kim, “Analysis on interfacial reactions between Sn–Zn solders and the Au/Ni electrolytic-plated Cu pad”, J. Alloys Compds. 379 (2004) 314–318.
[10]Y.C. Liu, W.H. Lin, H.J. Lin and T.H. Chuang, “Intermetallic Reactions in Sn-8Zn-20In Solder Ball Grid Array Packages with Au/Ni/Cu and Ag/Cu pads”, Journal of Electronic Materials; 35(2006), 147-153.
[11]K.L. Lin, Li-H. Wen; T.P. Liu ,”The microstructures of the Sn-Zn-Al solder alloys” ,Journal of Electronic Materials; Mar; 27(1998) 97-105.
[12]K.L. Lin and Y.C. Wang, ” Wetting interaction of Pb-free Sn-Zn-Al solders on metal plated substrate”, J. Electron. Mater. 27 (1998) 1205-1210.
[13]C.W. Huang and K.L. Lin,” Interfacial reactions of lead-free Sn-Zn based solders on Cu and Cu plated electroless Ni-P/Au layer under aging at 150 °C”, J. Mater. Res. 19 (2004) 3560-3568.
[14]S.C. Chang, S.C. Lin and K.C. Hsieh, “The formation and growth of intermetallic compounds in sn-zn and sn-zn-al solder with ni/au surface finish bond pad”, Journal of Electronic Materials, 35 (2006)399-405
[15]K. Zeng, K.N. Tu,” Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Materials Science and Engineering, (R) 38(2002) 55-105.
[16]K.M. Kumar, V. Kripesh , Lu Shen , K. Zeng, Andrew A.O. Tay, “Nanoindentation study of Zn-based Pb free solders used in fine pitch interconnect applications”, Materials Science and Engineering A 423 (2006) 57–63.
[17]M. Date and K.N. Tu, “Interfacial reactions and impact reliability of Sn–Zn solder joints on Cu or electroless Au/Ni(P) bond-pads”, J. Mater. Res. 19(2004) 2887-2896.
[18]John H. Lau, “Ball Grid Array Technology”, McGraw-Hill Professional, Cheapter 1( 1994).
[19]楊省樞, “覆晶新組裝技術”, 工業材料163(2000) 162-167.
[20]T.P. Vianco, “Development of alternatives to lead-bearing solders”, in: Proceedings of the Technical Program on Surface Mount International, 1993, San Jose, CA.
[21]R.E. Reed-Hill, “Physical Metallurgy Principles”, PWS Publishing Company, Massachusetts (1994) 306-307.
[22]M. Abtew and G. Selvaduray‚ “Lead-Free Solders in Micro- electronics”, Materials Science and Engineering,(R) 27(2000) 95-141.
[23]K.I Chen, S.C. Cheng, S. Wu and K.L. Lin,” Effects of small additions of Ag, Al, and Ga on the structureand properties of the Sn–9Zn eutectic alloy”, J. Alloys Compds. 416 (2006) 98–105
[24]C. H. Miller, I. E. Anderson, and J. F. Smith, ”A viable tin-lead solder substitute: Sn-Ag-Cu”, Journal of Electronic Materials, 23(1994) 595-601.
[25]M. Harada and R. Satoh, “Mechanical characteristics of 96.5Sn /3.5Ag solder in microbonding”, IEEE Trans. Comp. Hybrids Manufact. Technol., CHMT-13(1990) 736–742.
[26]L. Nguyen, R. Walberg, L. Zhou and T. Koh ,”Board Level Reliability of Components with Matte Tin Lead Finish”, Electronic Components and Technology Conference(2003)Proceedings 346- 352.
[27]K. Suganuma and K. Niihara, “Wetting and interface microstructure between Sn–Zn binary alloys and Cu”, J. Mater. Res., 13(1998), 2859-2865.
[28]C.E. Ho, Y.L. Lin, and C.R. Kao, “Strong effect of Cu concentration on the reaction between lead-free microelectronic solders and Ni”, Chem. Mater. 14(2002), 949.
[29]W.T. Chen, C.E. Ho, and C.R. Kao, “Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders”, J. Mater. Res. 17 (2002), 263-266.
[30]C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, “Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni”, J. Electron. Mater. 31 (2002) 584-590.
[31]I.E. Anderson and J.L. Harringa,” Suppression of void coalescence in thermal aging of tin-silver-copper-x solder joints”, J. Electron. Mater. 35(2006), 94-106.
[32]S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S. Cho, J. Yu, and W.K. Choi, “Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying”, JOM 56, (2004) 34-38.
[33]K.S. Kim, K.W. Ryu , C.H. Yu, J.M. Kim, “The formation and growth of intermetallic compounds and shear strength at Sn–Zn solder/Au–Ni–Cu interfaces”, Microelectronics Reliability 45 (2005) 647-655.
[34]Y. Sogo, T. Hojo, H. Iwanishi, A. Hirose, K.F. Kobayashi, A. Yamaguch, A. Furusawa, and K. Nishida,” Influence of the interfacial reaction layer on reliability of CSP joints using Sn- 8Zn-3Bi solder and Ni/Au plating”, Mater. Trans. 45 (2004), 734-740.
[35]S.W. Yoon, J.R. Soh, B.J. Lee, H.M. Lee, “Thermodynamics-aided alloy design and evaluation of Pb-free solder”, Sn-Bi-In-Zn system Acta Mater. 45 (1997) 951-960.
[36]I. Shoji, T. Nakamura, F. Mori, S. Fujiuchi, Interface Reaction and Mechanical Properties of Lead-free Sn-Zn Alloy/Cu Joints, Mater. Trans. 43 (2002) 1797-1801.
[37]R.A. Islam, B.Y. Wu, M.O. Alam, Y.C. Chan,, W. Jillek, “Investigations on microhardness of Sn–Zn based lead-free solder alloys as replacement of Sn–Pb solder”, J. Alloys Compds. 392 (2005) 149–158.
[38]K. Suganuma, T. Murata, H. Noguchi and Y. Toyoda, “Heat resistance of Sn–9Zn solder/Cu interface with or without coating”, J. Mater. Res., 15(2000) 884-891.
[39]T. Ichitsubo, E. Matsubara, K. Fujiwara, M. Yamaguchi, H. Irie, S. Kumamoto and T. Anada, “Control of compound forming reaction at the interface between SnZn solder and Cu substrate”, J. Alloys Compds. 392 (2005) 200–205.
[40]K.L. Lin and H.M. Hsu, “Sn-Zn-Al Pb-free solder - an inherent barrier solder for Cu contact”, J. Electron. 30 (2001) 1068-1072.
[41]S.P Yu, M.C. Wang and M.H. Hon, “Formation of intermetallic compounds at eutectic Sn- Zn- Al solder/Cu interface”, J. Mater. Res. 16(2001) 76-82.
[42]M.C. Wang, S.P. Yu, T.C. Chang and M.H. Hon, “Kinetics of intermetallic compound formation at 91Sn–8.55Zn–0.45Al lead-free solder alloy/Cu interface”, J. Alloy Compd. 381 (2004) 162–167.
[43]I. Dugdale and J. B. Cotton, “An electrochemical investigation on the prevention of staining of copper by benzotriazole,” Corrosion Society 3(1963) 69-74.
[44]謝坤龍,王正金, “PCB無鉛表面處理製程技術之介紹”, 工業材料雜誌 207(2004) 159-166.
[45]李祺菁, “電路板在表面處理製程上無鉛化之因應”, ITIS產業資訊服務網(2005).
[46]J.W. Yoon and S.B. Jung, “Interfacial reactions and shear strength on Cu and electrolytic Au/Ni metallization with Sn-Zn solder”, J. Mater. Res. 21(2006), 1590-1599.
[47]C. E. Ho, S. Y. Tsai, and C. R. Kao, “Reaction of Solder With Ni/Au Metallization for Electronic Packages During Reflow Soldering”, IEEE Transactions on Advanced Packaging, 24(2001) 493-498.
[48]A. Bansal, S. Yoon, and V. Mahadev, “Flexural strength of BGA solder joints with ENIG substrate finish using 4-point bend test”, SMTA Pan Pacific Microelectronics Symposium, Kauai, HI(2005) 1-8.
[49]S.Y Cho, Y.W. Lee, K.S Kim, Y.J. Moon, J.W. Lee, H.J. Han, M.J. Kim and J.P. Jung, “Reiability of Sn-8Zn-3Bi lead-free solder and Zn behavior Sn-Ag-Cu alloy”, Materials Transaction, 46-11(2005), 2322-2328.
[50]L.L. Duan, D.Q. Yu, S.Q. Han, H.T. Ma, L. Wang, “Microstructural evolution of Sn–9Zn–3Bi solder/Cu joint during long-term aging at 170℃”, Journal of Alloys and Compounds 381 (2004) 202–207.
[51]S.P. Yu, H.J. Lin, M.H. Hon, “Effects of process parameters on the soldering behavior of the eutectic Sn-Zn solder on Cu substrate”, J. of Materials Scienece: Materials in Electronics 11 (2000) 461-471.
[52]M.C. Wang, S.P. Yu, T.C. Changc and M.H. Hon, Formation and morphology of the intermetallic compounds formed at the 91Sn–8.55Zn–0.45Al lead-free solder alloy/Cu interface, J. Alloys Compds. 389 (2005) 133–139.
[53]J.W. Yoon, S.W. Kim and S.B. Jung, “Interfacial reaction and mechanical properties of eutectic Sn-0.7Cu/Ni BGA solder joints during isothermal long-term aging” J. Alloys Compds. 391(2005) 82-89.
[54]H.J. Lin and T.H. Chuang, “Intermetallic Reactions in Reflowed and Aged Sn-9Zn Solder Ball Grid Array Packages with Au/Ni/Cu and Ag/Cu pads”, Journal of Electronic Materials; 35(2006) 154-164.
[55]M. Date and K.N. Tu, “Interfacial reactions and impact reliability of Sn–Zn solder joints on Cu or electroless Au/Ni(P) bond-pads”, J. Mater. Res., 19(2004) 2887-2896.
[56]C.W. Huang and K.L. Lin, “Wetting properties of and interfacial reactions in lead-free Sn–Zn based solders on Cu and Cu plated with an electroless Ni-P/Au layer”, Mater. Trans. JIM 45 (2004) 588-594.
[57]S.C. Chang, S.C. Lin and K.C. Hsieh, “Phase reaction in Sn–9Zn solder with Ni/Au surface finish bond-pad at 175 ◦C ageing”, J. Alloys Compds. 428 (2007) 179–184.
[58]R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys” (Metals Park, OH: ASM, 1973), 1334.
[59]ASM Handbook, Alloy Phase Diagrams, ASM International(1990) p.52.
[60]H.M. Lee, S.W. Yoon and B.J. Lee, “Thermodynamic prediction of interface phases at Cu / solder joints”, J. Electron. Mater. 27(1998), 1161-1166.
[61]ASM Handbook, Alloy Phase Diagrams, ASM International(1990) p.178.
[62]ASM Handbook, Alloy Phase Diagrams, ASM International(1990) p.182.
[63]R. Hultgren, P. D. Desai, D. T Hawkins, M. Gleiser and K. K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys”, ASM Metals Park, OH (1973) 810-820.
[64]C.Y. Chou and S.W. Chen,” Phase equilibria of Sn-Zn-Cu ternary system”, Acta Mater. 54(2006), 2393.
[65]B.F. Dyson, T.R. Anthony and D. Turnbull, “Interstitial diffusion of copper in tin”, J. Appl. Phys. 38(1967), 3408.
[66]J.K. Brandon, R.Y. Brizard, P.C. Chieh, R.K. McMillan and W. B. Pearson, “New refinements of the ���{brass type structures Cu5Zn8, Cu5Cd8 and Fe3Zn10”, Acta Cryst. B30(1974) 1412-1417.
[67]B. Huang and N.C. Lee, “Prospect of Lead Free Alternatives for Reflow Soldering”, in Proceedings of IMAPS Chicago, IL, 3906 (1999) 711-721.
[68]M. Date, K.N. Tu, T. Shoji, M. Fujiyoshi, K. Sato, “Ductile-to-brittle transition in Sn–Zn solder joints measured by impact test”, Scripta Mater. 51 (2004) 641–645.
[69]R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley,Selected Values of the Thermodynamic Properties of Binary Alloys(Metals Park, OH: ASM, 1973), 320-326.
[70]R. Hultgren, P. D. Desai, D. T Hawkins, M. Gleiser and K. K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys”, ASM Metals Park, OH(1973) 332-338.
[71]A. Hirose, H. Yanagawa, E. Ide and K.F. Kobayashi, “Science and Technology of Advanced Materials”, 5 (2004) 267-276.
[72]M. Lebbai, J.K. Kim, W. K. Szeto, M.M.F. Yuen and P. Tong, “Optimization of black oxide coating thickness as an adhesion promoter of copper substrate in plastic integrated-Circuit packages”, J. Electron. Mater. 32 (6) (2003) 558-563.
[73]K. Cho and E.C. Cho, “Effect of the microstructure of copper oxide on the adhesion behavior of epoxy/copper leadframe joints”, J. Adhesion Sci. Technol. 14 (2000) 1333 –1353.
[74]Y. Nakagawa, Y. Aoki and T. Nagai, “Evaluating joint reliability of Sn-Zn low-temperature, lead-free solder”, Espec Tech. Report 19 19-29.
[75]M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi, and K.F. Kobayashi, ”Mechanical strength and microstructure of BGA joints using lead-free solders”, Mater. Trans. JIM 43(2002), 1802-1807.
[76]Y. Chonan, T. Komiyama, J. Onuki, R. Urao, T. Kimura, and T. Nagano, “Influence of P content in electroless plated Ni-P alloy film on interfacial structures and strength between Sn–Zn solder and plated Au/Ni–P alloy film”, Mater. Trans. JIM 43(2000) 1887-1890.
[77]John H.L. Pang, T.I. Tan and S.K. Sitaraman, “Thermo-mechanical analysis of solder joint fatigue and creep in a flip chip on board package subjected to temperature cycling loading”, Electronic Components and Technology Conference(1998) 878~883.
[78]J.H. Lau, D.W. Rice and C.G. Harkins, “Thermal stress analysis of tape automated bonding packages and interconnections”, IEEE Transactions on components, hybrids and manufacturing technology 13(1990) 182~187.
[79]T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng and J.K. Kivilahti, “Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu”, J. Mater. Res., Vol. 17, No. 2, Feb 2002, 291-301.
[80]C.M. Chuang, P. C. Shih and K.L Lin, “Mechanical strength of Sn-3.5Ag-Based solderd and related bondings”, Journal of electronic Materials, 33(2004) 1-6.
[81]G. Ghosh, “Interfacial Reaction between Multicomponent Lead-Free solders and Ag, Cu, Ni, and Ps Substrates”, Journal of Electronic Materials 33(2004) 1080-1091.
[82]P.C. Shih and K.L. Lin, ‘Effect of microstructure evolution on electrical property of the Sn-Ag-Cu solder balls jointed with Sn-Zn-Bi paste”, J. Mater. Res., 20(2005) 2854-2865.
[83]施伯錚,”錫-銀-銅銲錫接點中導入錫-鋅-鉍錫膏之界面反應、剪力和電性質研究”,博士論文, 成功大學材料系, (2006) 83-96.
[84]R. Hultgren, P. D. Desai, D. T Hawkins, M. Gleiser and K. K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys, ASM Metals Park, OH(1973) 115-120.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李亞珊、林貴福(2005)。統合分析研究法簡介。竹師體育,3,24-28。
2. 李昆翰(1999)。小學的資訊素養教育。研習資訊,16(5),12-25。
3. 何榮桂、籃玉如(2000)。落實「教室電腦」教師應具備之資訊素養。資訊與教育,77,22-28。
4. 何榮桂、韓善民(1997)。我國中小學資訊教育的推展策略、問題與展望。社教雙月刊,81,7-14。
5. 何榮桂、陳麗如(2001)。中小學資訊教育總藍圖的內涵與精神。資訊與教育,85,22-28。
6. 何榮桂(2002)。臺灣資訊教育的現況與發展--兼論資訊科技融入教學。資訊與教育,87,22-48。
7. 王梅玲(2004)。大學生資訊素養課程設計與評鑑。圖書館學與資訊科學,30(2),136。
8. 王秀紅(1999)。統合分析的概念及其在護理的應用。護理研究,7(2),183-192。
9. [19]楊省樞, “覆晶新組裝技術”, 工業材料163(2000) 162-167.
10. 吳美美(2004)。資訊素養與媒體素養--數位時代的素養與素養教育。臺灣教育,629,9-14。
11. 林正彬(2003)。有效提升國小教師參與資訊融入教學之策略。研習資訊,20(1),65-75。
12. 林菁(2004)。資訊素養融入國小社會學習領域—以Big6理念架構為例。視聽教育雙月刊,45(5),2-16。
13. *洪秀熒(2005)。國民小學行政人員資訊素養與學校效能關係之研究。學校行政雙月刊,36,32-51。
14. 胡立耘(2005)。論資訊素養的結構與意義。教育資料與圖書館學,42(4),471-480。
15. 陳立祥(1999)。我國資訊教育推動現況與展望。竹縣文教,19,5-10。