跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 04:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉瓊鎂
研究生(外文):Chiung-Mei Liou
論文名稱:米品種與添加量對米包及米蛋糕升糖指數之影響
論文名稱(外文):Influence of cultivars and addition levels of rice flour on the glycemic index of rice substitute bread and cake
指導教授:陳時欣
指導教授(外文):Shih Hsin Chen
口試委員:張正昇馮臨惠陳翠瑤
口試委員(外文):Jenq-Sheng ChangLin-Huei FerngTsui-Yao Chen
口試日期:20130712
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:111
中文關鍵詞:精白米升糖指數水解指數米包米蛋糕
外文關鍵詞:milled riceglycemic indexhydrolysis indexrice breadrice cake
相關次數:
  • 被引用被引用:11
  • 點閱點閱:1401
  • 評分評分:
  • 下載下載:124
  • 收藏至我的研究室書目清單書目收藏:1
米是很重要的穀類作物,也是台灣的主食。為了提升稻米更多樣化發展,將米穀粉取代小麥粉製成西式米製品,藉此可提高米食文化多樣性及促進米食消費。此外,米食常被歸類為高升糖食物,但卻缺乏許多相關生理數據。本研究目的主要探討不同米穀粉部分取代製成麵包以及全取代製成蛋糕時,對其物理性質和生理性質影響。米穀粉品種分別有秈米、稉米及糯米穀粉,進行取代小麥粉;取代率方面,麵包以15及30%進行部分取代,而蛋糕進行全取代。從麵包來看,米包比容積隨米穀粉取代率增加而顯著降低,但品種間並無顯著差異。質地方面,秈米和稉米包硬度顯著較高,糯米包與對照組顯著較低且兩者並無顯著差異;當米穀粉取代率增加硬度也隨之增加。米包經過儲藏對硬度變化顯著影響,因秈米老化速率較快,而糯米較慢,且此趨勢隨米穀粉取代率增加而顯著增加。體外消化性結果顯示,秈米包的抗解澱粉含量較高,次之為稉米包,糯米包顯著較低。米品種和取代率對米包水解指數(HI)和推算升糖指數(eGI)影響甚小,但是30%糯米包有較高的升糖指數。從蛋糕來看,秈米蛋糕比稉米和糯米蛋糕有較高比容積,膨發程度較佳,但老化速率較快。體外消化性結果顯示,秈米蛋糕的抗解澱粉含量顯著高於糯米和稉米蛋糕;而秈米蛋糕的水解指數(HI)和推算升糖指數(eGI)顯著低於糯米和稉米蛋糕。整體說來,米包屬於高升糖指數的食物,蛋糕則屬於中低升糖指數的食物。本研究結果獲得另一GI和HI之關聯式為GI = 1.1848HI + 9.3145,可作為米食烘焙品推算升糖指數計算之參考。
Rice is one of the most important cereal crops and the staple food in Taiwan. Applying the rice flour to partially or totally substitute the wheat flour to produce the western food (such as bread and cake) can enhance consumption of rice and promote the culture diversity. In addition, rice products were generally recognized as high glycemic food; however, the concerning data were limited. The objective of this research is to study the influence of rice cultivars on the physical and physiological properties of rice substitute bread and whole rice cakes. Three varieties of rice flour, indica, japonica and glutinous, were applied to substitute for wheat flour. The substituted level of bread was 0, 15 and 30%, and which of cakes was 0 and 100%. For bread, the specific volume decreased significantly as the substitute level increased, however, the differences of specific volume between varieties were insignificant. In texture, the hardness of indica and japonica substitute bread was higher than glutinous substitute one, which the latter was similar to wheat bread. The difference of hardness got significant as the substitute level increased. The retrogradation rate of indica substitute bread was faster than the others, and glutinous substitute bread performed more retarded to retrogradation. The retrogradation of bread got more significant as the substitute level of rice flour was increased. According to the in vitro digestion study, indica substitute bread showed the highest resistant starch content than the other rice substitute bread, and glutinous substitute bread had the least resistant starch. However, the cultivars and addition levels of rice flour showed insignificant to the hydrolysis index and estimated glycemic index of rice substitute bread, with the exception of 30% glutinous substitute bread which has a higher glycemic index. For whole rice cake, the specific volume of indica cake was significantly higher than those of glutinous and japonica cakes, which denoted the indica cake got better leavening level; while, the aging rate of indica substitute bread was also significant. According to the in vitro digestion study, the resistant starch of indica cake was significantly higher than japonica and glutinous cakes. On the contrary, the hydrolysis index and estimated glycemic index of indica cake were significantly lower than japonica and glutinous cakes. In general, wheat and rice substitute bread were classified as the high glycemic index foods, and, on the contrary, wheat cake and rice cakes performed as middle-to-low glycemic index foods. Our suggested linear regression for HI and GI obtained another reasonable relation for the GI prediction, especially for rice bakery products.
中文摘要 I
ABSTRACT II
謝誌 IV
目錄 V
表目錄 IX
圖目錄 XII
壹、緒論 1
一、前言 1
二、目的 2
貳、文獻回顧 3
一、稻米 3
(一) 稻米簡介 3
(二) 稻米的結構 4
(三) 稻米的組成與特性 5
(四) 米穀粉 5
二、小麥 6
(一) 小麥簡介 6
(二) 小麥的構造與組成 6
(三) 麵粉分級 7
(四) 米穀粉與麵粉之差異性 8
三、米包與蛋糕 9
(一) 米包 9
(二) 蛋糕 10
四、澱粉消化性探討 11
(一) 澱粉在人體的消化特性 11
(二) 澱粉消化性的分類 11
(三) 澱粉消化性的測試方法 15
(四) 澱粉消化性的影響因子 15
五、升糖指數(GLYCEMIC INDEX, GI) 17
(一) 升糖指數的測定方法 18
(二) 澱粉水解動力學 19
(三) 升糖指數與疾病 20
參、材料與方法 22
一、試驗材料 22
(一) 原料 22
(二) 試藥 22
二、儀器 22
三、實驗架構 24
四、試驗方法 25
(一) 產品製備 25
1. 米包的製備方法 25
2. 米蛋糕的製備方法 26
(二) 一般成分分析 27
(三) 體內實驗 29
(四) 體外實驗(澱粉消化性分析) 29
(五) 抗解澱粉含量分析(Megazyme法) 32
(六) 質地分析 34
(七) 色澤分析 35
(八) 高度 35
(九) 比容積 35
(十) 感官品評 36
(十一) 統計分析 38
肆、結果與討論 39
一、穀粉原料的基本成分 39
二、米穀粉部分取代麵粉對米包品質的影響 40
(一) 米(麵)包的基本成分 40
(二) 米包物理的性質 40
1. 高度和比容積 40
2. 色澤分析 41
3. 質地分析 42
(三) 米包的感官品評 43
(四) 米包生理的性質 44
1. 酵素水解曲線與動力參數 44
2. 極快速消化澱粉、快速消化澱粉、慢速消化澱粉及抗解澱粉含量 46
3. 水解指數與推算升糖指數 47
三、米穀粉全取代麵粉對蛋糕品質的影響 50
(一) 米蛋糕的基本成分 50
(二) 米蛋糕物理的性質 51
1. 高度和比容積 51
2. 色澤分析 51
3. 質地分析 51
(三) 米蛋糕的感官品評 53
(四) 米蛋糕生理的性質 53
1. 酵素水解曲線與動力參數 53
2. 極快速消化澱粉、快速消化澱粉、慢速消化澱粉及抗解澱粉含量 54
3. 水解指數與推算升糖指數 55
四、HI和GI的相關性 56
伍、結論 58
陸、參考文獻 60
柒、表 73
捌、圖 99
玖、附表 110
拾、附圖 111

中華民國國家標準。2001。麵粉。經濟部中央標準局,總號550,類號N5007。
中華民國國家標準。2007。稻米詞彙。經濟部中央標準局,總號13446。
行政院農業委員會農糧署。2001。稻米品質資訊網-稻米小百科及CAS台灣好米(http://agrapp.coa.gov.tw/RICE/index.htm)。
宋文杰。1999。麵包老化的理論。烘焙工業,84:4447。
徐華強、黃登訓、顧德材。1979。蛋糕與西點,19。中華穀類食品工業技術研究所、美國小麥協會。
徐華強、黃登訓、謝建一、顧德材。1997。實用麵包製作技術,193143。中華穀類食品工業技術研究所編印。
郭文怡。1997。活性麵筋為麵製品帶來活力。烘焙工業,72:2324。
張世正。2003。澱粉回凝的分析方法(上)。烘焙工業,112:4549。
陳弘文。2005。麵包產品老化現象及其影響因子。烘焙工業,121:7275。
陳賢哲。1990。以100%米穀粉製西式麵包及蛋糕。烘焙工業,33:3031。
陳曉菁、王仕賢。2011。台灣米穀粉加工與應用。台南區農業專訊,77:14。
區少梅。2012。食品感官品評學及實習。華格那企業有限公司,台灣台中。
鄭美娟。1996。麵粉的吸水率、攪拌時間與麵糰性質的關係。烘焙工業,65:2123。
劉慧瑛、林禮輝、宋勳、洪梅珠。1988。不同稻米品種之食用品質與化學性質之關係。稻米品質研討會專集,7690。
盧榮錦。1986。麵粉的品質與分析方法。美國小麥協會,110。
戴若瑋。2013。油脂與澱粉對碗粿體外消化性質之影響。國立宜蘭大學食品科技研究所碩士論文。宜蘭。
續光清。1974。修飾澱粉。食品工業,106:16,徐氏基金會出版社,台灣台北。
AACC. 2000. American Association of Cereal Chemists Approved methods, 10th edn. The Association: St. Paul, Minnesota, USA.
AACC. 1983. Approved methods of the American Association of Cereal Chemists 8th edn. Method 7409. The Association: St. Paul, Minnesota, USA.
Ahmad, J. I. 1995. Health and dietary fibre. Nutrition and Food Science 1, 1822.
Araya, H.; Contreras, P.; Alvina, M.; Vera, G.; Pak, N. 2002. A comparison between an in vitro method to determine carbohydrate digestion rate and the glycemic response in young men. European Journal of Clinical Nutrition 56, 735739.
Ball, S.; Guan, H. P.; James, M.; Myers, A.; Keeling, P.; Mouille, G.; Buléon, A.; Colonna, P.; Preiss, J. 1996. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86(3), 349352.
Behall, K. M.; Scholfield, D. J.; Canary, J. 1988. Effect of starch structure on glucose and insulin responses in adults. American Journal of Clinical Nutrition 47, 428432.
BeMiller, J. N. 1964. Iodimetric determination of amylase. In: Methods in Carbohydrate Chemistry, 1658, edited by Whistler, R. L.; Smith, R. J.; BeMiller, J. N.; Wolfrom, M. L., Academic Press: New York.
Berglund, P. T.; Shelton, D. R. 1993. Effect of frozen storage duration on firming properties of breads baked from frozen doughs. Cereal foods world 38(2) p. 8993.
Berry, C. S. 1986. Resistant starch: formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fiber. Journal of Cereal Science 4, 301314.
Björck, I. 1996. Starch: nutritional aspects. In: Carbohydrates in Food, 505553, edited by Eliasson, A. C., New York, Marcel Dekker.
Brand, J. C.; Colagiuri, S.; Crossman, S.; Allen, A.; Roberts, D. C.; Truswell, A. S. 1991. Low-glycemic index foods improve long-term glycemic control in NIDDM. Diabetes Care 14, 95–101.
Brand-Miller, J. 2007. The glycemic index as a measure of health and nutritional quality: An Australian perspective. Cereal Foods World 52, 4144.
Brand-Miller, J.; Foster-Powell, K.; Colagiuri, S.; Leeds, A. 1998. The GI factorThe glucose revolution, 2nd ed., edited by Rydalmere, N. S. W., Holder Headline Australia Pty Ltd.
Brar, D. S.; Khush, G. S. 1997. Alien introgression in rice. Plant Molecular Biology 35, 3547.
Brown, I. L.; McNaught, K. J.; Moloney, E. 1995. Hi-maize™: new directions in starch technology and nutrition. Food Australia 47, 272275.
Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813820.
Casiraghi, M. C.; Brighenti, F.; Pellegrini, N.; Leopardi, E.; Testolin, G. 1993. Effect of processing on rice starch digestibility evaluated by in vivo and in vitro methods. Journal of Cereal Science 17, 147156.
Champ, M. 1992. Determination of resistant starch in foods and food products: interlaboratory study. European Journal of Clinical Nutrition 46(Suppl 2): S51S62.
Cho, S. K.; Ok, S. H.; Jeung, J. U.; Shim, K. S.; Jung, K. W.; You, M. K.; Kang, K. H.; Chung, Y. S.; Choi, H. C.; Moon, H. P.; Shin, J. S. 2004. Comparative analysis of 5211 leaf ESTs of wild rice (Oryza minuta). Plant Cell Reports 22, 839847.
Chung, H. J.; Lim, H. S.; Lim, S. T. 2006. Effect of partial gelatinization and retrogradation on the enzymatic digestion of waxy rice starch. Journal of Cereal Science 43, 353359.
Chung, H. J.; Liu, Q.; Lee, L.; Wei, D. 2011. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloids 25, 968975.
Crockett, R.; Ie, P.; Vodovotz, Y. 2011. How do xanthan and hydroxypropyl methylcellulose individually affect the physicochemical properties in a model gluten-free dough? Journal of Food Science 76(3), E274282.
Cornell, H. 2003. The chemistry and biochemistry of wheat. In: Bread making: improving quality, 3170, edited by Cauvain, S. P., Woodhead Publishing Limited: Sawston.
Curá, J. A.; Jansson, P. E.; Krisman, C. R. 1995. Amylose is not linear. Starch-Stärke 47(6), 207209.
Deepa, G.; Singh, V.; Naidu, K. A. 2010. A comparative study on starch digestibility, glycemic index and resistant starch of pigmented (‘Njavara’ and ‘Jyothi’) and a non-pigmented (‘IR 64’) rice varieties. Journal of Food Science Technology 47(6), 644649.
Doxastakis, G.; Zafiriadis, I.; Irakli, M.; Marlani, H.; Tananaki, C. 2002. Lupin, soya and triticale addition to wheat flour doughs and their effect on rheological properties. Food Chemistry 77, 219227.
Eerlingen, R. C.; Delcour, J. A. 1995. Formation, analysis, structure and properties of TypeⅢenzyme resistant starch. Journal of Cereal Science 22, 129138.
Eerlingen, R. C.; Jacobs, H.; Delcour, J. A. 1994. Enzyme-resistant starch. V. Effect of retrogradation of waxy maize starch on enzyme susceptibility. Cereal Chemistry 71, 351355.
Eliasson, A. C.; Krog, N. 1985. Physical properties of amylose-monoglyceride complexes. Journal of Cereal Science 3, 239–248.
Englyst, H. N.; Cummings, J. H. 1985. Digestion of polysaccharides of some cereal foods in human small intestine. American Journal of Clinical Nutrition 42, 778787.
Englyst, K. N.; Englyst, H. N.; Hudson, G. J.; Cole, T. J.; Cummings, J. H. 1999. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. American Journal of Clinical Nutrition 69, 448–454.
Englyst, H. N.; Kingman, S. M.; Cummings, J. H. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46(suppl. 2): S33S50.
Englyst, H. N.; Wiggins, H. S.; Cummings, J. H. 1982. Determination of the non-polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107, 307318.
Faisant, V.; Planchot, F.; Kozlowski, M. P.; Pacouret, P.; Colonna; Champ, M. 1995. Resistant starch determination adapted to products containing level of resistant starch. Sciences des Aliments 15, 8389.
Fernandes, G.; Velangi, A.; Thomas, M. S. 2005. Glycemic index of potatoes commonly consumed in north American. Journal of the American Dietetic Association 105, 557562.
Food and Agriculture Organization. 1993. Rice in Human Nutrition. Rome: FAO.
Foster-Powell, K.; Holt, S. H.; Brand-Miller, J. C. 2002. International table of glycemic index and glycemic load values. American Journal of Clinical Nutrition 76, 556.
Fredriksson, H.; Björck, I.; Andersson, R.; Liljeberg, H.; Silverio, J.; Eliasson, A. C.; Åman, P. 2000. Studies on -amylase degradation of retrograded starch gels from waxy maize and high-amylopectin potato. Carbohydrate Polymers 43, 8187.
Frei, M.; Siddhuraju, P.; Becker, K. 2003. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry 83, 395402.
Ghavidel, R. A.; Prakash, J. 2007. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT-Food Science and Technology 40, 12921299.
Goni, I.; Garcia-Aionso, A.; Saura-Calixto, F. 1997. A starch hydrolysis procedure to estimate glycemic index. Nutrition Research 17, 427437.
Goni, I.; Garcia-Diz, E.; Manas, E.; Saura-Calixto, F. 1996. Analysis of resistant starch: a method for foods and food products. Food Chemistry 56(4), 445449.
Gujral, H. S.; Guardiola, I.; Carbonell, J. V.; Rosell, C. M. 2003. Effect of cyclodextrin glycoxyl transferase on dough rheology and bread quality from rice flour. Journal of Agricultural and Food Chemistry 51, 38143818.
Guraya, H. S.; Kadan, R. S. ; Champagne, E. T. 1997. Effect of rice starch lipid complexes on in vitro digestibility, complexing index, and viscosity. Cereal Chemistry 74, 561–565.
Granfeldt, Y.; Bjorck, I.; Drews, A.; Tovar, J. 1992. An in vitro procedure based on chewing to predict metabolic responses to starch in cereal and legume products. European Journal of Clinical Nutrition 46, 649660.
Han, M. H.; Cho, J. H.; Kang, W. K.; Koh, B. K. 2012. Rice varieties in relation to rice bread quality. Journal of the Science of Food and Agriculture 92: 14621467.
Han, S. H.; Lee, S. W.; Rhee, C. 2008. Effects of cooking on starch hydrolysis kinetics and digestion-resistant fractions of rice and soybean. European Food Research and Technology 227(5), 13151321.
Haralampu, S. G. 2000. Resistant starch-a review of the physical properties and biological impact of RS3. Carbohydrate Polymers 41, 285292.
Hellendoorn, E. W. 1971. Aspects of retrogradation in some dehydrated starch containing precooked food products. Starch/Stärke 23, 6367.
Hodge, A. M.; English, D. R.; O’Dea, K.; Giles, G. G. 2004. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 27, 27012706.
Holm, J.; Björck, I. 1992. Bioavailability of starch in various wheat-based bread products: evaluation of metabolic responses in healthy subjects and rate and extent of in vitro starch digestion. American Journal of Clinical Nutrition 55, 420429.
Hoover, R.; Sosulski, F. 1985. Studies on the functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes. Starch/Stärke 37, 181191.
Hu, P.; Zhao, H.; Duan, Z.; Linlin, Z.; Wu, D. 2004. Starch digestibility and the estimated glycemic score of different types of rice differing in amylase contents. Journal of Cereal Science 40, 231237.
Jaiboon, P.; Prachayawarakorn, S.; Devahastin, S.; Tungtrakul, P.; Soponronnarit, S. 2011. Effect of high-temperature fluidized-bed drying on cooking, textural and digestive properties of waxy rice. Journal of Food Engineering 105, 8997.
Jaisut, D.; Prachayawarakorn, S.; Varanyanond, W.; Tungtrakul, P.; Soponronnarit, S. 2009. Accelerated aging of jasmine brown rice by high-temperature fluidization technique. Food Research International 42(56), 674681.
Jenkins, D. J. A.; Kendall, C. W. C.; Augustin, L. S. A.; Franceschi, S.; Hamidi, M.; Marchie, A. 2002. Glycemic index: overview of implications in health and disease. American Society for Clinical Nutrition 76, 266S273S.
Jenkins, D. J. A.; Thorne, M. J.; Camelon, K.; Jenkins, A.; Rao, A. V.; Taylor, R. H.; Thompson, L. U.; Kalmusky, J.; Reichert, R.; Francis, T. 1982. Effect of processing on digestibility and the blood glucose response: a study on lentils. American Journal of Clinical Nutrition 36, 10931101.
Jenkins, D. J. A.; Wolever, T. M. S.; Taylor, R. H.; Barker, H.; Fielder, H.; Baldwin, J. M.; Bowling, A. C.; Newman, H. C.; Jenkins, A. L.; Goff, D. V.; Biol, M. 1981. Glycemic index of foods: a physiological basis for carbohydrate exchange. American Journal of Clinical Nutrition 34, 362366.
Juliano, B. O.; Bechtel, D. B. 1985. The rcie grain and its gross composition. Rice Chemistry and Technology, 2nd, 1757, edited by Juliano, B.O., AACC, St Paul, M. N.
Kadan, R. S.; Robinson, M. G.; Thibodeaux, D. P.; Pepperman, Jr. A. B. 2001. Texture and other physicochemical properties of whole rice bread. Journal of Food Science 66, 940944.
Kang, M. Y.; Choi, Y. H.; Choi, H. C. 1997. Effects of gums, fats and glutens adding on processing and quality of milled rice bread. Korean Journal of Food Science and Technology 29, 700704.
Kang, M. Y.; Han, J. Y. 2000. Comparison of some characteristics relevant to rice bread made from eight varieties of endosperm mutants between dry and wet milling process. Korean Journal of Food Science and Technology 32, 7581.
Karim, A. A.; Norziah, M. H.; Seox, C. C. 2000. Methods for the study of starch retrogradation. Food Chemistry 71, 936.
Kovacs, M. I. P.; Fu, B. X.; Woods, S. M.; Khan, K. 2004. Thermal stability of wheat gluten protein: its effect on dough properties and noodle texture. Journal of Cereal Science 39, 919.
Krog, N. 1971. Amylose complexing effect of food grade emulsifiers. Starch/Stärke 23, 206210.
Kulp, K.; Hepburn, F. N.; Lehmann, T. A. 1974. Preparation of bread without gluten. Bakers Digestion 48, 3437.
Leeman, M.; Ostman, E.; Bjorck, I. 2005. Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. European Journal of Clinical Nutrition 59, 12661271.
Lehmann, U.; Robin, F. 2007. Slowly digestible starch – its structure and health implications: a review. Trends in Food Science and Technology 18, 346355.
Liu, Q.; Donner, E.; Yin, Y.; Huang, R. L.; Fan, M. Z. 2006. The physicochemical properties and in vitro digestibility of selected cereals, tubers and legumes grown in China. Food Chemistry 99, 470477.
Liu, S.; Willett, W. C.; Stampfer, M. J.; Hu, F. B.; Franz, M.; Sampson, L.; Hennekens, C. H.; Manson, J. E. 2000. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. American Journal of Clinical Nutrition 71, 1455.
Lu, T. J.; Jane, J. L.; Keeling, P. L. 1997. Temperature effect on retrogradation rate crystalline structure of amylose. Carbohydrate Polymers 33, 1926.
Ludwig, D.S. 2000. Dietary glycemic index and obesity. Journal of Nutrition 130, 280S283S.
Ludwig, D. S. 2002. The glycemic index – physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. Journal of American Medical Association 287(18), 24142423.
Marques, C.; D’auria, L.; Cani, P. D.; Baccelli, C.; Rozenberg, R.; Ruibal-Mendieta, N. L.; Petitjean, G.; Delacroix, D. L.; Quetin-Leclercq, J.; Habib-Jiwan, J. L.; Meurens, M.; Delzenne, N. M. 2007. Comparison of glycemic index of spelt and wheat bread in human volunteers. Food Chemistry 100, 12651271.
Miller, J. B.; Pang, E.; Bramall, L. 1992. Rice: A high or low glycemic index food?. American Journal of Clinical Nutrition 56, 10341036.
Mohamed, A.; Peterson, S. C.; Grant, L. A.; Rayas-Duarte, P. 2006. Effect of jet-cooked wheat gluten/lecithin blends on maize and rice starch retrogradation. Journal of Cereal Science 43, 293300.
Morrison, W. R. 1993. In: Seed Storage Compounds; Biosynthesis, Interactions and Manipulation, edited by Schewry, P. R.; Stobart, A. K., Oxford, Oxford University Press.
Muir, J. G.; O’Dea, K. 1992. Measurement of resistant starch: factors affecting the amount of starch escaping digestion in vitro. American Journal of Clinical Nutrition 56, 123127.
Nishita, K. D.; Roberts, R. L.; Bean, M. M. 1976. Developmentof a yeast leavened rice bread formula. Cereal Chemistry 53, 626635.
Noda, T.; Nishiba, Y.; Sato, T.; Suda, I. 2003. Properties of starches from several low-amylose rice cultivars. Cereal Chemistry 80(2), 193197.
Nugent, A. P. 2005. Health properties of resistant starch. British Nutrition Foundation Nutrition Bulletin 30, 2754.
Nuttall, F. Q. 1993. Perspective in diabetes. Dietary fiber in the management of diabetes. Diabetes 42, 503508.
Okunishi, T. 2009. Bread made from cooked rice and wheat flour blend. Journal of the Japanese Society for Food Science and Technology 56, 424428.
Osman, E. M.; Leith, S. J.; Fles, M. 1961. Complexes of amylose with surfactant. Cereal Chemistry 38, 449.
Ovando-Martínez, M.; Bello-Pérez, L. A.; Whitney, K.; Osorio-Díaz, P.; Simsek, S. 2011. Starch characteristics of bean (Phaseolus vulgaris L.) grown in different localities. Carbohydrate Polymers 85(1), 5464.
Park, E. Y.; Baik, B. K.; Lim, S. T. 2009. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. Journal of Cereal Science 50, 4348.
Perdon, A. A.; Juliano, B. O. 1975. Amylose content of rice and quality of fermented cake. Starch/Stärke 27, 196198.
Rai, S.; Kaur, A.; Singh, B.; Minhas, K. S. 2011. Quality characteristics of bread produced from wheat, rice and maize flours. Journal of Food Science and Technology 49(6), 786789.
Rasmussen, O. W.; Gregersen, S. 1992. Influence of the amount of starch on the glycaemic index to rice in non-insulin-dependent diabetic subjects. British Journal of Nutrition 67, 3717.
Rashmi, S.; Urooj, A. 2003. Effect of processing on nutritionally important starch fractions in rice varieties. International Journal of Food Science and Nutrition 54(1), 27–36.
Rewthong, O.; Soponronnarit, S.; Taechapairoj, C.; Tungtrakul, P.; Prachayawarakorn, S. 2011. Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. Journal of Food Engineering 103(3), 258264.
Ring, S. G.; Gee, J. M.; Whittam, M. A.; Orford, P. D.; Johnson, I. T. 1988. Resistant starch: Its chemical form in food stuffs and effects of digestibility in vitro. Food Chemistry 28, 97109.
Sajilata, M. G.; Singhal, R. S. 2005. Specialty starches for snack foods. Carbohydrate Polymers 59, 13151.
Salmeron, J.; Ascherio, A.; Rimm, E. B.; Colditz, G. A.; Spiegelman, D.; Jenkins, D. J.; Stampfer, M. J.; Wing, A. L.; Willett, W. C. 1997a. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 20, 545550.
Salmeron, J.; Manson, J. E.; Stampler, M. J.; Colditz, G. A.; Wing, A. L.; Willett, W. C. 1997b. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. Journal of the American Medical Association 277, 472477.
Sandhu, K. S.; Lim, S. T. 2008. Digestibility of legume starches as influenced by their physical and structural properties. Carbohydrate Polymers 71, 245252.
Sasaki, T.; Kohyama, K.; Suzuki, Y.; Okamoto, K.; Noel, T. R.; Ring, S. G. 2009. Physicochemical characteristics of waxy rice starch influencing the in vitro digestibility of a starch gel. Food Chemistry 116, 137142.
Schnell, M.; de Delahaye, E. P.; Mezones, Y. 2005. Metabolic responses to Venezualan corn meal and rice bran supplemented arepas (breads). Cereal Chemistry 82(1), 7780.
Schweizer, T.; Reimann, S.; Wursch, P. 1988. Definition and measurement of a starch digestion index and a study of factors determining starch digestion rates in foods. LWT-Food Science and Technology 21, 352357.
Seib, P. A.; Woo, K. 1999. Food grade starch resistant to alpha-amylase and method of preparing the same. US Patent 5,855946.
Shibata, M.; Sugiyama, J.; Tsai, C. L.; Tsuta, M.; Fujita, K.; Kokawa, M.; Araki, T. 2011. Evaluation of viscoelastic properties and air-bubble structure of bread containing gelatinized rice. Procedia Food Science 1, 563567.
Sievert, D.; Pomeranz, Y. 1989. Eynzme-resistant starchⅠ. Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal Chemistry 66(4), 342347.
Snow, P.; O’Dea, K. 1981. Factors affecting the rate of hydrolysis of starch in foods. American Journal of Clinical Nutrition 34, 27212727.
Srichuwong, S.; Jane, J. 2007. Physicochemical properties of starch affected by molecular composition and structure: a review. Food Science and Biotechnology 16, 663674.
Tester, R. F.; Karkalas, J.; Qi, X. 2004. Starch structure and digestibility enzyme-substrate relationship. Worlds Poultry Science Journal 60, 186195.
Tetens, I.; Biswas, S. K.; Glito, L. V.; Kabir, K. A.; Thilsted, S. H.; Choudhury, N. H. 1997. Physicochemical characteristics as indicators of starch availability from milled rice. Journal of Cereal Science 26, 355–361.
Tsai, C. L.; Sugiyama, J.; Shibata, M.; Kokawa, M.; Fujita, K.; Tsuta, M.; Nabetani, H.; Araki, T. 2012. Changes in the texture and viscoelastic properties of bread containing rice porridge during storage. Bioscience, Biotechnology, and Biochemistry 76(2), 331335.
Walter, M.; da Silva, L. P.; Denardin, C. C. 2005. Rice and resistant starch: different content depending on chosen methodology. Journal of Food Composition and Analysis 18(4), 279285.
Wolever, T. M. 2003. Carbohydrate and the regulation of blood glucose and metabolism. Nutrition Reviews 61, S4048.
Zhejiang, B. J.; Bergman, C. J. 2004. The functionality of rice starch. In: Starch in food: Structure, function and applications, 258294, edited by Eliasson, A. C., Woodhead, England.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top