跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁文懋
研究生(外文):Wen-Mao Wong
論文名稱:無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之製備與探討
論文名稱(外文):The Investigation and Properties of Solvent-free single pack vulcanization Polyurethane-Acrylate copolymers
指導教授:李大剛
指導教授(外文):Da-Kong Lee
口試委員:蔡宏斌邱少華
口試委員(外文):Hung-Bin TsaiShao-Hua Chiou
口試日期:2014-01-22
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:155
中文關鍵詞:接著劑無溶劑交聯水性PU水性PAhydrazineketonehydrazone
外文關鍵詞:Adhesivessolvent freevulcanizationpolyurethane dispersionpolyacrylate dispersionshydrazineketonehydrazone
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1241
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
在接著劑產業之中,溶劑會造成嚴重的環境汙染的問題,使得降低有機揮發物濃度(Volatile Organic Compound,VOC)已經成為近年來重要的課題。而一般市售最常見的兩大之塗料分別為水性聚丙烯酸酯(PA)與水性聚氨酯(PU)。水性PA成品其具有價格便宜、不黃變、低極性接著性佳、無相容性問題等優點。水性PU則是具有機械性質佳、易成膜性、高極性接著性佳、高韌性、多變化性等優點。兩者差異甚大也因此若能製備出水性PA與水性PU的共聚合物,截取兩者優勢,則成品在塗料市場的競爭性極大。
本實驗分三大系統。系統一之水性PU以m-TMXDI:PCDL-5652:DMBA:TEA:ADH = 3:1:1:1:0.8的方式合成,hydrazine含量為0.5 meq/g;水性PA其ketone含量為0.5 meq/g並且MMA:BA = 0:10、2:8、4:6、6:4、8:2、10:0進行合成,尋求最佳接著力之MMA:BA組成比例。系統二之水性PU以m-TMXDI:PCDL:DMBA:TEA:chain extender = 3:1:1:1:0.8的方式合成,chain extender為EDA與ADH比例為2:8,hydrazine含量為0.4 meq/g;水性PA由系統一固定MMA:BA= 2:8,使用不同添加量之DAAM進行合成,製得ketone當量為0、0.1、0.2、0.3、0.4、0.5 meq/g之PA成品,尋求hydrazine:ketone之最佳剪切接著強度之當量比例。系統三水性PU以m-TMXDI:PCDL:DMBA:TEA:mixed chain extender = 3:1:1:1:0.8當量比例。鏈延伸劑利用三種不同化學結構之hydrazine與EDA摻混,分別為(HYD;CDH;ADH):EDA = 0:10、2:8、4:6、6:4、8:2、10:0,使水性PU中hydrazine官能基當量分別為為0.1、0.2、0.3、0.4、0.5 meq/g;水性PA配方設計為MMA:BA的重量比例為2:8。本系統的變數為使用不同添加量之DAAM,使其ketone官能基當量為0.1、0.2、0.3、0.4、0.5 meq/g,讓PU與PA在重量比為1:1的摻混情況下其hydrazine:ketone含量比為= 0.1 meq:0.1 meq、0.2 meq:0.2 meq、0.3 meq:0.3 meq、0.4 meq:0.4 meq、0.5 meq:0.5 meq。探討成品固定hydrazine:ketone為當量比例1:1時,尋求剪切接著力較佳之hydrazone含量之成品。
根據實驗結果得知:1.本實驗以m-TMXDI為原料成功製備出無溶劑單劑交聯型聚氨酯-聚丙烯酸酯共聚物,製得更具環保性的成品。2.系統一經由剪切接著測試得知其MMA:BA為2:8時為最佳剪切接著力之組成比例。3.系統二經由剪切接著測試得知其hydrazine:ketone最佳剪切接著強度之當量比為1:1。4.CDH為基材之成品之hydrazone為0.1 meq/g時,剪切接著強度為43.9 kPa,優於HYD與ADH成品。

Reducing the volatile organic conpound (VOC) is one of the most important environmental protection topics for adhesive industry for the last few decades. In this research we introduce hydrazine group to polyurethane dispersions and ketone group to polyacrylate dispersions to form solvent free single pack vulcanization polyurethane-acrylate copolymers with hydrazone structure were investigated.
Three series of polyurethane-acrylate copolymers were studied in this research. Series 1: Polyacrylates with various MMA: BA ratios of 0:10; 2:8; 4:6; 6:4; 8:2 and 10:0 wt/wt.The best adhesive strength composition was found to be MMA: BA = 2:8 which was adopted as the basic formular for the following study. Series 2: Hydrazine group concentration in polyurethane: ketone group concentration in polyacrylate= 1:0.25; 1:0.5; 1:0.75; 1:1 and 1:1.25 eq./eq.. The polyurethane-acrylate copolymers with hydrazine: ketone = 1:1 has the best shear adhesive strength, which was chosen as the basic formula for the further research. Series 3: The effects of hydrazine chemical structure and content on the properties of polyurethane-acrylate copolymers were investigated. Polyurethane dispersions were based on m-TMXDI: PCDL-5652: DMBA: TEA: mixed chain extender = 3: 1: 1: 1: 0.8. The mixed chain extender in this study used were(HYD; CDH; ADH) : EDA = 0:10; 2:8; 4:6; 6:4; 8:2 and 10:0; thus PUD has the hydrazine group content of 0.1; 0.2; 0.3; 0.4 and 0.5 meq./g respectively. Polyacrylate dispersions were based on MMA: BA = 2:8 with a DAAM content varied from 0.1; 0.2; 0.3; 0.4 and 0.5 meq./g. Polyurethane and polyacrylate dispersions were blend with a hydrazine:ketone = 1:1 to form the solvent free single pack vulcanization polyurethane-acrylate copolymers.
From the study the following results can be revealed: 1. The environmental friendly solvent free single pack vulcanization polyurethane-acrylate copolymers can be prepared by m-TMXDI. 2. From shear adhesive strength test MMA: BA = 2:8 displars the best shear adhesive strength. 3. The best shear sdhesive strength was discovered on hydrazine: ketone = 1:1. 4. TC0.1-M2D0.1 base on CDH with hydrazine content of 0.1 meq./g display the best adhesive strength of 43.9 kPa which is superior than the correnponding HYD and ADH based polyurethane-acrylate copolymers.

摘要 II
Abstract III
致謝 IV
目錄 V
表目錄 IX
圖目錄 XI
第一章、緒論 1
1-1 前言 1
1-2 研究方向 2
第二章、文獻回顧 4
2-1 接著劑簡介 4
2-2 接著原理 4
2-2.1 機械交互扣鎖原理 4
2-2.2 吸附原理 5
2-2.3 靜電原理 6
2-2.4 擴散原理 6
2-3 接著劑發展歷史 7
2-4 接著劑種類 7
2-5 聚氨酯簡介 8
2-5.1 聚氨酯化學 10
2-5.2 水性聚氨酯簡介 12
2-5.3 水性聚氨酯 13
2-5.3.1 異氰酸鹽 13
2-5.3.2 多元醇 14
2-5.3.3 離子化劑 17
2-5.3.4 鏈延伸劑 18
2-5.4 水性聚氨酯之合成 18
2-6 聚丙烯酸酯簡介 21
2-6.1 水性聚丙烯酸酯簡介 22
2-6.2 單體簡介 23
2-6.3 乳化劑簡介 26
2-6.4 自由基鏈鎖聚合反應之起始劑簡介 27
2-6.5 水性聚丙烯酸酯之合成 28
2-7 無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之探討 29
2-7.1 不同脂肪族異氰酸鹽對水性PU之影響 29
2-7.2 不同多元醇對TPU之影響 33
2-7.3 不同聚碳酸酯二元醇對水性PU之影響 35
2-7.4 不同離子化劑種類對水性PU之影響 36
2-7.5 不同鏈延伸劑添加量對水性PU成品物性之影響 37
2-7.6 無溶劑型水性PU之製程與探討 40
2-7.7 不同MMA含量對水性PA之影響 41
2-7.8 不同DAAM含量對水性PA之影響 43
2-7.9 不同結構之醯肼交聯劑對水性PA之影響 46
2-7.10 不同DAAM含量對水性聚氨酯-聚丙烯酸酯之影響 47
三、實驗 50
3-1實驗藥品 50
3-1.1 水性聚氨酯合成藥品 50
3-1.2 水性聚丙烯酸酯合成藥品 51
3-1.3 鑑定用藥品 53
3-2 實驗設備與儀器 54
3-2.1 合成設備 54
3-2.2 分析儀器 54
3-3 實驗流程 55
3-3.1 水性聚氨酯實驗流程 55
3-3.2 水性聚丙烯酸酯實驗流程 55
3-3.3 單劑交聯型水性聚氨酯-聚丙烯酸酯實驗流程 56
3-3 原料前處理與鑑定 56
3-4.1 NCO官能基濃度或預聚物滴定法(ASTM D2572 - 97) [89] 57
3-4.2 OH官能基濃度滴定法(ASTM D4274 - 11) [90] 58
3-5 實驗設計 60
3-5.1 MMA:BA組成對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯成品物性之影響 60
3-5.2 hydrazine:ketone當量比對單劑交聯型水性聚氨酯-聚丙烯酸酯成品物性之影響 60
3-5.3不同hydrazine化學結構與含量對單劑交聯型水性聚氨酯-聚丙烯酸酯成品物性之影響 61
3-6水性聚丙烯酸酯之合成 62
3-6.1 不同MMA:BA組成之水性聚丙烯酸酯合成 62
3-6.1.1 不同MMA:BA組成之水性聚丙烯酸酯合成步驟 62
3-6.2 不同ketone含量之水性聚丙烯酸酯合成 64
3-6.2.1 不同ketone含量之水性聚丙烯酸酯合成步驟 64
3-7 不同hydrazine含量之水性聚氨酯合成 65
3-7.1不同hydrazine含量之水性聚氨酯合成步驟 66
3-8 實驗樣品之命名原則 68
3-9 不同hydrazine含量之無溶劑型單劑交聯型水性聚氨酯-聚丙烯酸酯成品製備 69
3-10 無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之測試 70
3-10.1 分散液之雷射粒徑分析測試 70
3-10.2 FTIR分析測試 70
3-10.3 凝膠含量分析測試 70
3-10.4 接著分析測試 71
3-10.4.1 剪切接著分析測試(ASTM D1002 - 06) [91] 71
3-10.5 機械性質分析測試 71
3-10.6 DSC分析測試 72
四、結果與討論 73
4-1無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之製備 73
4-2 MMA:BA組成含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯成品物性之影響 73
4-2.1 MMA:BA組成含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯物性之影響 75
4-2.2 MMA:BA組成含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之粒徑尺寸影響 76
4-2.3 MMA:BA組成含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之機械性質影響 80
4-2.4 MMA:BA組成含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之熱學性質影響 82
4-2.5 MMA:BA組成含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之剪切接著力影響 85
4-3 hydrazine:ketone當量比對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯成品物性之影響 87
4-3.1 hydrazine:ketone當量比對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之物性影響 88
4-3.2 hydrazine:ketone當量比對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之粒徑尺寸影響 90
4-3.3 hydrazine:ketone當量比對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之機械性質影響 95
4-3.4 hydrazine:ketone當量比對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之熱學性質影響 97
4-3.5 hydrazine:ketone當量比對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之剪切接著力影響 100
4.4不同hydrazine化學結構與含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯成品物性之影響 102
4-4.1不同hydrazine化學結構與含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之物性影響 102
4-4.1.1以HYD為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之物性影響 103
4-4.1.1.1以HYD為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之粒徑尺寸影響 105
4-4.1.1.2以HYD為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之機械性質影響 111
4-4.1.1.3以HYD為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之熱學性質影響 113
4-4.1.1.4以HYD為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之剪切接著力影響 114
4-4.1.2以CDH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之物性影響 116
4-4.1.2.1以CDH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之粒徑尺寸影響 118
4-4.1.2.2以CDH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之機械性質影響 123
4-4.1.2.3以CDH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之熱學性質影響 124
4-4.1.2.4以CDH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之剪切接著力影響 126
4-4.1.3以ADH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之物性影響 128
4-4.1.3.1以ADH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之粒徑尺寸影響 130
4-4.1.3.2以ADH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之機械性質影響 135
4-4.1.3.3以ADH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之熱學性質影響 137
4-4.1.3.4以ADH為基材對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之剪切接著力影響 139
4-4.2不同hydrazine化學結構與含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之物性影響 141
4-4.2.1不同hydrazine化學結構與含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之粒徑尺寸影響 143
4-4.2.2不同hydrazine化學結構與含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之機械性質影響 146
4-4.2.3不同hydrazine化學結構與含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之熱學性質影響 149
4-4.2.4不同hydrazine化學結構與含量對無溶劑單劑交聯型水性聚氨酯-聚丙烯酸酯之剪切接著力影響 150
五、結論 152
六、參考文獻 154


[1]A. Mori et al., Journal of Wood Science, 51, 1, (2005), 33-37.
[2]LH. Sharpe, Schonhorn H. Adv Chem Ser, 48, (1964), 189.
[3]Pizzi, Marcel Dekker, New York, (1994).
[4]菜燎原, 張季冰, 北京, 化學工業出版社, (2001).
[5]薛敬和, 高立圖書有限公司, 第三版, (2000).
[6]S. Yang et al., Gibson Compos Struct, 51, (2001), 63-71.
[7]A. Baldan, International Journal of Adhesion and Adhesives , 38, (2012), 95-116.
[8]SS. Voyutski, Autoadhesion and Adhesion of High Polymers. New York, Wiley Interscience, (1963).
[9]G. Grundmeier, M. Stratmann, Annu Rev Mater Res, 35, (2005), 571-615.
[10]G. Fourche, Polym Eng Sci, 35, (1995), 957-67.
[11]W. MacBain, J Phys Chem, 29 , (1925), 88.
[12]F. Awaja et al., Prog Polym Sci, 34, 9, (2009), 48-68.
[13]A.H. Landrock, Adhesives Technology Handbook, Noyes Publications, (1985), 4-7.
[14]C.R. Hegedus, The Journal of Coatings Technology, (1996).
[15]A.Lopez et al., Polymer, 52, 14, (2011), 3021-3030.
[16]A.Lopez et al., European Polymer Journal, (2013) .
[17]張豐志, "應用高分子手冊", 五南圖書出版股份有限公司, (2011).
[18]閆福安"水性樹脂與水性塗料", 化學工業出版社, (2010),.
[19]M. Lonescu, Rapra Technology, (2005).
[20]M.B. Fernanda et al., Polymer Degradation and Stability, 70, (2000), 49-57.
[21]蔡宗志"雙胺鏈延長劑長度對陰離子水性PU的影響", 國立中央大學, 化學工程與材料工程學系, (2011),.
[22]C. Hepburn, Applied Science, Lodon, (1982).
[23]G. Oertel, " Polyurethane Handbook", Hanser Publisher, Munich Vienna New York, (1985).
[24]F. Romm et al., Macromol Theory Simul, (2002), 93.
[25]J.H. Saunders et al., Polyurethane, Chemistry and Technology, High polymers, 14, part II, Technology, New York, NY, USA, (1964).
[26]W.D. Vilar, Chemistry and Technology of Polyurethanes, 3rd Edition, (2002).
[27]L. J. Procopio et al., Rohm and Haas Company.
[28]D. Shannon, Jamestown Paint & Varnish Company.
[29]D. Dieterich et al., Angew. Makromol. Chem., 85, (1972), 26.
[30]J. Dormish, Adhesive, 39, (1996), 16.
[31]Skeist, Adhesive, 6, (1993), 979.
[32]J. Julia, D. Salvatella and J. Lope, Adhesive Age, 37, (1994), 26.
[33]黃袈程, 聚氨酯研究與技術服務部, 環保型PU樹脂研討會, (2004).
[34]D. K. Lee et al., J. Appl.Polym. Sci., 126, S2, (2012), E275-E282.
[35]劉光偉, "以奈米級二氧化矽補強聚氨酯分散液之物性探討", 國立宜蘭大學, (2011).
[36]D. K. Lee et al., J.Appl. Polym. Sci, 94, 4, (2004), 1723-1729.
[37]D. K. Lee et al., J.Macromole.Sci. 42, (2005), 85-93.
[38]D. K. Lee et al., J.Appl. Polym. Sci, 102, (2006), 4419-4424..
[39]D. K. Lee et al., ,Polym. Eng. Sci., 46, 5, (2009), 588-593.
[40]D. K. Lee et al., J.Appl. Polym. Sci., 102, (2006), 4419-4424..
[41]D. K. Lee et al., J. Appl.Polym. Sci., 107, (2008), 1573-1577.
[42]蘇訓永, "無溶劑型水性聚氨基甲酸酯之研究" , 國立宜蘭大學, (2009).
[43]BASF Corporation, "Polyurethane TDI Handbook".
[44]CYTEC, "TMXDI (META) Alliphatic Isocyanate The Choice for Aqueous Polyurethane Dispersions", Adhesives, Inks & Specialties.
[45]李大剛, 杜佾璋, 賴聖淵, 宜蘭農工學報, 第八期, (1994), 47-65.
[46]旭化成化學株式會社, "聚碳酸酯二醇的特性與應用", (2005).
[47]M. Furukawa, K. Kojio, J.Appl. Polym. Sci, B, 42, (2004), 4448-4458.
[48]侯薇, 凌有道, 聚氨酯工業, 22, 2, (2007)
[49]B.K. Kim et al., Colloid Polymer, Sci., 270, (1992), 956.
[50]B.K. Kim et al., Polymer International, 42, (1997), 67.
[51]Y. Okamoto et al., Progress in Organic Coatings, 29, (1996), 175-182.
[52]United States Patent, 5137967, (1992).
[53]United States Patent, 4210565, (1980).
[54]Abe Goldstein et al., Adhesives & Sealants Industry, (2005).
[55]Y. Nakayama et al., Progress in Organic Coatings, 51, (2004), 280-299.
[56]M.S. Sanchez-Adsure et al., J. Appl. Polym. Sci, 82, (2001), 3402.
[57]B.K. Kim et al., J. Appl. Polym. Sci, (1994), 1809.
[58]B.K. Kim et al., J. Appl. Polym. Sci. 34, (1996), 1095.
[59]張鵬, 王兆華, "丙烯酸樹脂防腐塗料及應用", 中國腐蝕與防護學會非金屬材料委員會, 化學工業出版社, (2003).
[60]C. Koukiotis, et al., Progress in Organic Coatings, 69, (2010), 504-509.
[61]D. K. Lee et al., J. of Applied Polymer Science, 52, (2012), E275-E278.
[62]淺見高, "亞克力塑膠Acrylic原理與實用", 復漢出版社, (1979).
[63]馬占鏢, "甲基丙烯酸樹脂及其應用", 化學工業出版社, (2001).
[64]H. Hofman, Bayer A G. Ger. Patent, 250690, (1909).
[65]United States Patent, 1732759, (1929).
[66]曹同玉, "聚合物乳液合成原理性能及應用第二版", 化學工業出版社, (2007).
[67]A. Alshuiref, Stellenbose university, (2006).
[68]C. Houtman et al., Minnesota university, (2004).
[69]汪長春, "丙烯酸酯塗料",化學工業出版社, (2009).
[70]I. Ludwig et al., Rhodia Recherches, France, (2005).
[71]I. benedek, "Pressure-Sensitive Adhesives and Applications", (1998).
[72]C. Creton, "Pressure-Sensitive Adhesives:An Introductory Course".
[73]N. V. Tale et al., Archive of SID Iranian Polymer Journal, 19, 10, (2010), 801-810.
[74]蔣碩健, "DAAM 和ADH用於丙烯酸酯聚合物的後交聯", 丙烯酸化工與應用, 16, 3, (2003).
[75]W. C. Griffin, J. Soc. Cosmet. Chem., 1, (1949), 311.
[76]W. C. Griffin, Encyclopedia of Chemical Technology. 3rd, 8, (1980), 900..
[77]I. Capek et al., Advances in Colloid and Interface Science, (1999), 85-149.
[78]E. Unzeta et al., Polymer, 36, (1994), 4301-4308.
[79]G. Odian, "Principles of polymerization, fourth edition", John Wiley & Sons, Inc, (2004).
[80]須本一郎, "苯乙烯系樹脂, PS, AS, ABS", 復漢出版社, (2009).
[81]Dabi et al., United States Patent, "Stabilization of Polyurethanes", 4447571, (1984).
[82]N. Kessel et al., J. Coat. Res., 3, (2008), 285-297.
[83]A. Mori et al., Journal of Wood Science, 51, 1, (2005), 38-41.
[84]Y. J. Park et al., European Polymer Journal, 37, (2001), 965-973.
[85]D. J. Hourston et al., Journal of Applied Polymer Science, 66, 10, (1997), 2035-2044.
[86]D. K. Lee et al., Polym. Eng. Sci, 47, (2007), 695.
[87]H. Xu, N. Wang et al., Journal of Applied Polymer Science, 163, 2, (2011), 1068-1078.
[88]R. A.Hutchinson, Ind Eng Chem Res, 36, (1997), 1103.
[89]ASTM D2572 - 97, "Isocyanate Groups in Urethane Materials or Prepolymers".
[90]ASTM D4274 - 11, "Standard Test Methods for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols".
[91]ASTM D1002 - 06, "Standard Test Method for apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal) "
[92]Rong-Min Wang et al., Progress in Organic Coatings, 71,(2011), 369-375.
[93]楊建軍, 張建安, 吳慶雲et al., 紡織學報, 29,(2008), 2.
[94]王海橋, 曾文慧, 李效玉, 塗料工業, 40, (2010), 9.
[95]F. Wang, J.Q. Hu et al., Progress in Organic Coatings, 62,(2008), 245-250.
[96]S.J. Son et al., J polymer Science,(2011), 000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文