|
[1]Cole, R.H., 1948. Underwater explosions, Princeton University Press, Princeton, NJ. [2]Analysis of Cheonan sinking. http://zongzhichina.163.com. [3]Shin, Y.S., 2006. Naval Ship Shock and Design Analysis, Course Notes for Underwater Shock. Analysis, Nav. Postgrad. Sch., Monterey, California. [4]Gipson, D.C., Blake, J.R., 1980. Growth and collapse of cavitation bubble near flexible boundaries. 7th Australasian Hydraulics and Fluid Mechanics Conference, Brisbane, 18-22 August. [5]Brujan, E.A., Keen, G.S., Vogel, A., Blake, J.R., 2002. The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. of Fluids.14, 1. [6]Lew, K.S.F., Klaseboer, E., Khoo, B.C., 2007. A collapsing bubble-induced mircopump: An experimental study. Sens. and Actuators. A 133, 161-172. [7]Lee, H.L., Gojani, A.B., Han, T.H., 2011. Dynamics of laser-induced bubble collapse visualized by time-resolved optical shadow graph. J. of Vis. 14, 331-337. [8]Chahine, G.L., Frederick, G.S., Lambrecht, C.J., Harris, G.S., Mair, H.U., 1995. Spark-generated bubbles as laboratory-scale models of underwater explosions and their use for validation of simulation tools. SAVIAC Proceeding 66th Shock and Vibration Symposium, Biloxi, MS, Vol.2, pp 265-276, November 1995. [9]Tomita, Y., and Kodama, T., 2003. Interaction of laser-induced cavitation bubbles with composite surfaces. J. Appl. Phys. 94, 2809. [10]Li, B.B., Zhang, H.C., Lu, J., Ni, X.W., 2011. International Conference on Electronics and Optoelectronics (ICEOE 2011). [11]Yang, S.H., Jaw, S.Y., Yeh, K.C., 2012. Experimental Study on Generation of Single Cavitation Bubble Collapse Behavior by a High Speed Camera Record. Mechanical Engineering, Dr. Murat Gokcek (Ed.), ISBN: 978-953-51-0505-3, InTech. [12]Gipson, D.C., and Blake, J.R., 1982. The growth and collapse of bubbles near deformable surfaces. Applied Scientific Research 38: 215-224. [13]Klaseboer, E., Hung, K.C., Wang, C., Khoo, B.C., Boyce, P., Debono, S., Charlier, H., 2005. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. of Fluid Mech. 537, 387-413. [14]Brett, J.M., Yiannakopoulos, G., Schaaf, P. J., 2000. Time-resolved measurement of the deformation of submerged cylinders subjected to loading from nearby explosion. International Journal of Impact Engineering. 24, 875-890. [15]Brett, J.M., Yiannakopoulos, G., 2008. A study of explosive effects in close proximity to a submerged cylinder. International Journal of Impact Engineering. 35, 206-225. [16]Hung, C.F., and Hwangfu, J.J., 2010. Experimental study of the behavior of mini-charge underwater explosion bubbles near different boundaries .J.Fluid Mech.Vols. 651, pp. 55-80. [17]Plesset, M.S., and Chapman, R.B., 1971. Collapse of an initially spherical vapour cavity in the neighborhood of a solid boundary. J. Fluid Mech. 47, 283-290. [18]Blake, J.R., Taib, B.B., Doherty, G., 1986. Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479-497. [19]Blake, J.R., Taib, B.B., Doherty, G., 1987. Transient cavities near boundaries. Part 2. Free surface. J. Fluid Mech. 181, 197-212. [20]Zhang, Y.L., Yeo, K.S., Khoo, B.C., Chong, W.K., 1998. Three-dimensional computation of bubbles near a free surface. J. of Compt. Phys. 146, 105-123. [21]Pearson, A., Cox, E., Blake, J.R., Otto, S.R., 2004. Bubble interactions near a free surface. Eng. Anal. with Bound. Elem. 28, 295-313. [22]Lundgren, T.S., and Mansour, N.N,. 1991. Vortex ring bubbles. J. Fluid Mech. 224, 177-196. [23]Wang, Q.X., Yeo, K.S., Khoo, B.C., Lam, K.Y., 1996. Nonlinear interaction between gas bubble and free surface. Compt. and Fluids. 25, 607-628. [24]Wang, Q.X., Yeo, K.S., Khoo, B.C., Lam, K.Y., 2005. Vortex ring modeling of toroidal bubbles. Theor. Comput. Fluid Dyn. 00, 1-15. [25]Zhang, Y.L., Yeo, K.S., Khoo, B.C., Wang, C., 2001. 3D jet impact and toroidal bubbles. J. of Compt. Phys. 166, 336-360. [26]Wang, C., Khoo, B.C., Yeo, K.S., 2003. Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics. Compt. and Fluids. 32, 1195-1212. [27]Duncan, J.H., Milligan, C.D., Zhang, S., 1996. On the interaction between a bubble and a submerged compliant structure. [28]Zhang, A.M., Yao, X.L., Li, J., 2008. The interaction of an underwater explosion bubble and an elastic-plastic structure. Appl. Ocean Res. 30, 159-171. [29]Zhang, A.M., Yao, X.L., Feng, L.H., 2009. The dynamic behavior of a gas bubble near a wall. OceanEng. 36, 295-305. [30]Klaseboer, E., Khoo, B.C., Hung, K.C., 2005. Dynamics of an oscillating bubble near a floating structure. Journal of Fluid and Structures. 21, 395-412. [31]Barras, G., Souli, M., Aquelet, N., Couty, N., 2011. Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena. Ocean Eng. 41, 53-66. [32]Turgutlu, A., Al-Hassani, S.T.S., Akyurt, M., 1995. Experimental investigation of deformation and jetting during impact spot welding. Int. J. Impact Engng. 16, 789-799. [33]Mabrouki, T., Raissi, K., Cornier, A., 2000. Numerical simulation and experimental study of the interaction between a pure high-velocity water jet and targets: contribution to investigate the decoating process. Wear. 239, 260-273. [34]Chizari, M., Al-Hassani, S.T.S., Barrett, L.M., 2008. Experimental and numerical study of water jet spot welding. J. Mater. Process. Technol. 198, 213-219. [35]Chizari, M., Barrett, L.M., Al-Hassani, S.T.S., 2009. An explicit numerical modeling of the water jet tube forming. Comput. Mater. Sci. 45, 378-384. [36]Field, J.E. and Lesser, M.B., 1977. On the mechanics of high speed liquid jet. Proc. R. Soc. Lond. A 357, 43-162. [37]Matthujak, A., Kasamnimitporn, C., Sittiwong, W., Pianthong., Takayama, K., Milton, B. E., 2013. Characteristics of impact driven high speed liquid jets in water. Shock Waves. 23, 105-114. [38]Cook, S.S., 1928. Erosion of water-hammer. Proc. R. Soc. Lond, Ser. A 119, 418-488. [39]Brunton, J.H., 1966. High speed liquid impact. Phil. Trans. R. Soc. Lond. A 260, 79-85. [40]Smith, D.G., Kinslow, R., 1975. Pressure due to high-velocity impact of a water jet. 1975 SESA Spring Meeting held in Chicago, IL on May 11-16. [41]Shi, H.H., Takayama, K., Nagayasu, N., 1995. The measurement of impact pressure and solid surface response in liquid-solid impact up to hypersonic range. Wear 186-187, 352-359. [42]Obara, T., Bourne, N.K., Field, J.E., 1995. Liquid-jet impact on liquid and solid surfaces. Wear. 186-187, 388-394. [43]Bourne, N.K., 2005. On impacting liquid jets and drops onto polymethylmethacrylate targets. Proc. R. Soc. A 461, 1129-1145. [44]Bowden, F.P., C.B.E., F.R.S., Brunton, J.H., 1958. Damage to solids by liquid impact at supersonic speeds. Nat. 4613. [45]Bowden, F.P., F.R.S., Brunton, J.H., 1961. The deformation of solids by liquid impact at supersonic speeds. Proc. R. Soc. Lond. A 263, 433-450. [46]Bowden, F.P., F.R.S., Field, J.E., 1964. The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc. R. Soc. Lond. A 282, 331-352. [47]Lesser, M.B., 1981. Analytic solutions of liquid-drop impact problems. Proc. R. Soc. Lond. A 377, 289-308. [48]Lesser, M.B., Field, J.E., 1983. The impact of compressible liquids. Ann. Rev. Fluid Mech. 15, 97-122. [49]Field, J.E., Lesser, M.B., Dear, J.P., 1985. Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems. Proc. R. Soc. Lond. A 401, 225-249. [50]Bourne, N.K., Obara, T., Field, J.E., 1996. The impact and penetration of a water surface by a liquid jet. Proc. R. Soc. Lond. A 452, 1497-1502. [51]Victor L. Streeter., E. Benjamin Wylie., 1985. Fluid mechanics. Halliday Lithograph Corporation. [52]Christopher Earls Brennen, 1995. Cavitation and bubble dynamics. Oxford University Press. [53]Simulia ABAQUS 6.11, 2011. ABAQUS Analysis User’s Manual. HKS Inc., Providence, RI, USA. [54]Hans U. Mair., 1995. Hydrocode methodologies for underwater explosion structure/medium interaction. Proceeding of the 66th Shock and Vibration Symposium, Volume II, SAVIAC, 227-248. [55]Kelvin H. Brown, Shawn P. Burns Mark A. Christon., 2002.Coupled Eulerian-Lagrangian Methods for Earth Penetrating Weapon Applications. Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550. [56]Hamashima, H., Kato, Y., Nadamitsu, Y., Itoh, S., 2003. Determination of JWL parameters from underwater explosion test for ideal and non-ideal explosives. Sci. Technol. Energ. Mater. 64, 248-53. [57]Plesset, M.S., Prosperetti, A., 1977. Bubble dynamics and cavitation, Ann. Rev. Fluid Mech. 9, 145-85. [58]Blake, J.R., 1998. The Kelvin impulse: Application to cavitation bubble dynamics. J. Austral. Math. Soc. Ser. B 30, 127-146. [59]Lush, P.A., 1991. Comparision between analytical and numerical calculations of liquid impact on elastic-plastic solid. J. Mech. Phys. Solids. 39, 145-155. [60]MATLAB Getting Started Guide R2010b. The MathWorks, Inc., Natick, Masachusetts, United States.
|