跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 15:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉晉宇
研究生(外文):LIU, CHIN-YU
論文名稱:S-PMIPv6: 在 LMA 內部的移動模型
論文名稱(外文):S-PMIPv6: an Intra-LMA model for IPv6 Mobility
指導教授:呂芳懌呂芳懌引用關係
指導教授(外文):LEU, FANG-YIE
口試委員:羅濟群竇其仁陳金鈴林正偉
口試委員(外文):LO, CHI-CHUNDOW, CHYI-RENCHEN, CHIN-LINGLIN, JHENG-WEI
口試日期:2015-01-17
學位類別:碩士
校院名稱:東海大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:49
中文關鍵詞:PMIPv6F-PMIPv6O-PMIPv6路由優化SCTP換手
外文關鍵詞:PMIPv6F-PMIPv6O-PMIPv6路由優化SCTP換手
相關次數:
  • 被引用被引用:0
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
IPv6 是在 90 年代中期定義的 RFC 2460,IPv6 是 IP 第 4 版本(IPv4)的改進和簡
化的繼任版本。它的目的是保存 IPv4 的優點同時提供更好的網絡互聯能力。移
動 IP 使移動節點可以經由一個網絡移動到其它網路還可以識別的 IP 地址,儘管
在不同網絡間,連接到不同的位置都無需用戶的參與。代理移動 IPv6(PMIPv6
的簡稱),作為基於網絡的移動性管理協議,由 IETF 於 2008 年發布支持 IP 移動
的 RFC5213。但是 MN 的換手期間,也不能完全避免網絡鏈路的斷線。後來 IETF
在 2010 年發布 RFC5949 的快速代理移動 IPv6(F-PMIPv6 的簡稱)協議,該協議
被設計為主要提高其換手的可靠性,特別是用於降低其切換延遲和封包遺失率,
以及降低網絡鏈路斷線的機率。另一方面,無論多麼快的切換,它的延遲難免存
在,且會提高封包遺失率。因此,在此研究中,我們提出了一種新的 PMIPv6 協
議,稱為以 SCTP 作為代理移動 IPv6 的基礎(S- PMIPv6 的簡稱),其中集成 F-PMIPv6、
流控制傳輸保護(SCTP 的簡稱)和路由優化,以提高其 IP 移動的可靠性,實現
無縫切換。我們的模擬表明,S- PMIPv6 實際上可以先“連線”之後在“斷線”,
有效地縮短了終端到終端的延遲封包傳輸和較低的封包遺失率。
IPv6 defined in RFC 2460 in the mid-1990s is an improved and streamlined successor
version of IP version 4 (IPv4). It is designed to coexist with IPv4, while providing
better internetworking capabilities than this successor version. Mobile IP enables a
mobile node to be recognized via a single IP address even though the node is traveling
from one network to another. Despite reposition among different networks,
connectivity at different positions is attained continuously with no user intervention.
Proxy Mobile IPv6 (PMIPv6), as a network-based mobility management protocol,
was released in 2008 by the IETF in RFC 5213 to support IP mobility. But during
MN’s handover, disconnection of a network link cannot absolutely be avoided. The
IETF later in 2010 in RFC 5949 proposed Fast Proxy Mobile IPv6 (F-PMIPv6 for
short) protocol, which was designed to mainly improve the reliability of its switching
process, particularly for reducing its handover latency and packet loss rate, as well as
lowering the probability of network-link disconnection. On the other hand, no matter
how fast a handover is, its delay does unavoidably exist. It in turn rises the packet loss
rate. Therefore, in this study, we propose a novel MIPv6 family protocol, called
SCTP-based Proxy Mobile IPv6 (S-PMIPv6 for short), which integrates F-PMIPv6
with Stream Control Transmission Protocol (SCTP for short) and route optimization
to enhance its IP mobility reliability and achieve the stage of seamless handover. Our
simulation demonstrates that S-PMIPv6 can actually “make” before “break”,
effectively shorten end-to-end delay of packet delivery and lower packet loss rate.
中文摘要 ..............................................................................................................................................................3
Abstract ................................................................................................................................................................4
List of Figures ........................................................................................................................................................7
List of Tables .........................................................................................................................................................8
I. INTRODUCTION ......................................................................................................................................9
II. LITERATURE REVIEW .................................................................................................................. 12
2.1 PMIPv6 ................................................................................................................................................... 12
2.2 F-PMIPv6 ................................................................................................................................................. 13
2.3 O-PMIPv6 ................................................................................................................................................ 13
2.4 SCTP ......................................................................................................................................................... 14
III. THE S-PMIPv6 SCHEME ................................................................................................................ 15
3.1 Topologies ....................................................................................................................................... 17
3.2 Handover procedures .................................................................................................................... 17
(1) Predictive mode .................................................................................................................................. 17
(2) Reactive mode ..................................................................................................................................... 22
IV. SIMULATION ANALYSIS AND DISCUSSIONS ......................................................................... 26
4.1 Handover Signaling costs of PMIPv6, F-PMIPv6 and O-PMIPv6 ........................................................... 28
(1) PMIPv6 ............................................................................................................................................... 28
(2) F-PMIPv6 ............................................................................................................................................ 28
(3) O-PMIPv6 ........................................................................................................................................... 29
4.2 Signaling costs of S-PMIPv6 on Predictive mode ................................................................................... 29
A. Category 1: only MN hands over ...................................................................................................... 29
B. Category 2: both MN and CN hand over ......................................................................................... 30
4.3 Signaling costs of S-PMIPv6 on Reactive mode ..................................................................................... 31
1) (1) Category 1 ...................................................................................................................................... 31
(2) Category 2 ........................................................................................................................................... 31
4.4 MN disconnection duration .................................................................................................................... 33 (1) PMIPv6 ............................................................................................................................................... 33
(2) F-PMIPv6 ............................................................................................................................................ 33
(3) O-PMIPv6 ........................................................................................................................................... 34
(4) S-PMIPv6 ............................................................................................................................................ 34
V. CONCLUSIONS AND FUTURE WORK ........................................................................................ 39
References ......................................................................................................................................................... 40
Appendix A: Signaling messages of the four tested schemes ......................................................................... 43
Appendix B: Sequence charts of PMIPv6, F-PMIPv6, O-PMIPv6 and S-PMOPv6 ........................................... 48
40



REFERENCES
[1] X. P´erez-Costa, M. Torrent-Moreno, and H. Hartenstein, “A performance comparison of mobile
IPv6, hierarchical mobile IPv6, fast handovers for mobile IPv6 and their combination,” ACM
Mobile Computing and Communication. Review, vol. 7, no. 4, pp. 5-19, Oct. 2003.
[2] Y. Gwon, J. Kempf, and A. Yegin, “Scalability and robustness analysis of mobile IPv6, fast
mobile IPv6, hierarchical mobile IPv6, and hybrid IPv6 mobility protocols using a large-scale
simulation,” in Proceedings of IEEE International Conference on Communications, vol. 7, pp.
4087-4091, June 2004
[3] D. Johnson, C. Perkins, and J. Arkko, “Mobility support in IPv6,” IETF RFC 3775, June 2004.
[4] K.S. Kong, Y.H. Han, M.K. Shin, and H. You, “Mobility management for all-IP mobile networks:
mobile IPv6 vs. Proxy Mobile IPv6,” IEEE Wireless Communications, vol. 15, no. 2, pp. 36-45,
April 2008.
[5] S. Thomson, “IPv6 stateless address autoconfiguration,” IETF RFC 4862, Sept. 2007.
[6] R. Hinden, “IP version 6 addressing architecture,” IETF RFC 4291, Feb 2006.
[7] J. Korhonen, “Local Mobility Anchor (LMA) Discovery for Proxy Mobile IPv6,” IETF RFC
6097, Feb 2011.
[8] K. Lee, Y. Han, and M. Shin, “Handover latency analysis of a network-based localized mobility
management protocol,” in Proceedings of IEEE International Conference on Communications,
pp. 1-6, June 2009.
[9] L. Magagula, and H. Anthony, "Early discovery and pre-authentication in Proxy MIPv6 for
reducing handover delay," in proceedings of International Conference on Broadband
Communications, Information Technology & Biomedical Applications, pp. 23-26, Nov. 2008.
[10] H. song, J. Kim, J. Lee, and H.S. Lee, “Analysis of vertical handover latency for IEEE
802.21-enabled Proxy Mobie IPv6,” in proceedings of IEEE International Conference on 41



Advanced Communication Technology, Seoul, Korea, pp. 1059-1063, Feb. 2011.
[11] M. Liebsch, A. Muhanna, and O. Blume, "Transient binding for Proxy Mobile IPv6," RFC 6058,
Mar 2011.
[12] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil, "Proxy Mobile IPv6,"
RFC 5213, Aug. 2008.
[13] Q. Zhang and Z. Shan, “Using fast handover to quicken the re-establishment procedure of
localized routing for Proxy Mobile IPv6," in proceedings of Wireless and Optical
Communication Conference, pp. 349 – 354, May 2013.
[14] D. Zhou, H. Zhang, Z. Xu, and Y. Zhang, “Evaluation of Fast PMIPv6 and Transient Binding
PMIPv6 in vertical handover environment,” in proceedings of IEEE international Conference on
Communications, pp. 1-5, July 2010.
[15] J. Lee, T. Chung, and S. Gundavelli, “A comparative signaling cost analysis of Hierarchical
Mobile IPv6 and Proxy Mobile IPv6,” in Proceedings of IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, pp. 1–6, Sept. 2008.
[16] H. Lee, M. Chung, S. Pack, and S. Gundavelli, “Shall we apply paging technologies to Proxy
Mobile IPv6? ” in Proceedings of of ACM International Workshop on Mobility in the Evolving
Internet Architecture, pp. 37–42, Aug. 2008.
[17] Y. Li, Y. Jiang, H. Su, D. Jin, L. Su, and L. Zeng, “A group-based handoff scheme for correlated
mobile nodes in Proxy Mobile IPv6,” in Proceedings of IEEE Global Telecommun. Conference,
pp. 1–6, Dec. 2009.
[18] H. Yokota, K. Chowdhur, R. Koodli, B. Patil, and F. Xia,“Fast handovers for Proxy Mobile
IPv6,” IETF RFC 5949, Sept. 2010.
[19] R. Koodli, "Fast Handovers for Mobile IPv6,” The Internet Society, RFC 5568, July 2009.
[20] R. Koodli, “Fast Handovers for Mobile IPv6,” IETF RFC 4068, July. 2005. 42



[21] A. Rasem, C. Makaya, and M. St-Hilaire, “A Comparative analysis of predictive and reactive
mode of optimized. PMIPv6,” in proceedings of Wireless Communications and Mobile
Computing Conference, pp. 722 – 727, Aug. 2012.
[22] A. Rasem, C. Makaya, and M. St-Hilaire,” O-PMIPv6: Efficient handover with route
optimization in Proxy Mobile IPv6 domain,” in proceedings of Wireless and Mobile Computing,
Networking and Communications, pp. 47 – 54, Oct. 2012.
[23] K.S. Kong, W. Lee, Y.H. Han, and M.K. Shin, “Handover latency analysis of a network-based
localized mobility management protocol,” in proceeding of IEEE International Conference on
Communications, Beijing China, pp. 5838-5843, 2008.
[24] Y. Choi and T. Chung, “Enhanced light weight route optimization in Proxy Mobile IPv6,” in
Proceedings of the International Joint Conference on INC, IMS and IDC, Fifth International
Joint Conference on, pp. 501-504, Aug. 2009.
[25] B. Han, J. Lee, J. Lee, and T. Chung, “PMIPv6 route optimization mechanism using the routing
table of MAG,” in Proceedings of the International Conference on Systems and Networks
Communications, pp. 274–279, Oct. 2008.
[26] L. Magagula and H. Anthony, "IEEE802.21 optimized handover delay for Proxy Mobile IPv6",
in Proceedings of International Conference on Advanced Communication Technology, pp.
1051-1054, Feb. 2008.
[27]L. J. Wand, G. Hua, D. Bin, and S. Yong-xin, "Research of enhanced route optimum algorithm
for PMIPv6," in Proceedings of International Conference on Wireless Communications,
Networking and Mobile Computing, pp. 12-14, Oct. 2008.
[28] L.A. Magagula, O.E. Falowo, and H.A. Chan, “Handover optimization in heterogeneous
wireless networks: PMIPv6 vs. PMIPv6 with MIH,” IETF RFC 4830, April. 2007.
[29] R. Stewart, “Stream Control Transmission Protocol,” IETF RFC 4960, Sept. 2007 [30] L. Ong and J. Yoakum, “An introduction to the Stream Control Transmission Protocol,” IETF
RFC 3286, May 2002
[31] H. Kong, Y. Jang and H. Choo, “An efficient load balancing of mobile access gateways in Proxy
Mobile IPv6 domains,” in Proceedings of International Conference on Computational Science
and Its Applications, pp.289-292, March 2010.
[32] R. Koodli and C.E. Perkins, “Fast handovers and context transfers in mobile networks,” ACM
Mobile Computing and Conmrrrricnriorr Review, vol. 31, no. 5, Oct. 2001.
[33] S. Tsourdos, A. Michalas, A. Sgora, “Enhanced fast handovers for PMIPv6 in vehicular
environments,” Information, Intelligence, Systems and Applications, IISA 2014, The 5th
International Conference on, pp. 420~425 July. 2014.
[34] Y.H. Cho, K.Y. Oh, J.T. Park, “Intelligent mobile IPv6 handover with multiple pre-registrations
and late tunneling,” in Proceedings of Conference on Communication Systems Software and
Middleware and Workshops, pp. 551~554, Jan. 2008.
[35] F.Y. Leu, F.L. Jeng and F.C. Jiang, “A path switching scheme for SCTP based on round trip
delays,”
Computers & Mathematics with Applications
, vol. 62, issue 9, pp. 3504-3523.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊