跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇國賓
研究生(外文):Kuo-Pin Su
論文名稱:不同BGA基板金屬球墊表面處理對Sn-Ag-Cu與Sn-Zn-Al無鉛錫球焊接研究
論文名稱(外文):Solder Joints Reactions Between Different BGA Substrate Metallised Surface And Pb-Free Solder
指導教授:鍾卓良
指導教授(外文):Cho-Liang Chung
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:126
中文關鍵詞:有機抗氧化劑OSP化學鎳金ENIG無鉛焊錫化學銀Im-Ag錫銀銅香濱泡沫磷含量介金屬化合物IMC錫鋅鋁介面反應焊點強度
外文關鍵詞:Interfacial reactionKirkendall VoidsSolder JointsIntermetallic CompoundMicro voidsSn-Zn-AlPhosphorous containImmersion SilverElectroless NickelImmersion GoldOrganic Solderability PreservativeLead-freeSn-Ag-Cu
相關次數:
  • 被引用被引用:5
  • 點閱點閱:2513
  • 評分評分:
  • 下載下載:205
  • 收藏至我的研究室書目清單書目收藏:1
本文主要為電子基板構裝技術中BGA (Ball Grid Array)基板金屬球墊表面處理與無鉛焊錫焊點結合問題研究,目前BGA 基板金屬球墊表面處理大多以電鍍方式用導電線路加上電鍍鎳與電鍍金方式進行生產,但隨電子業輕、薄、短、小需求下,需要拉導電線線路去做電鍍鎳金方式將會浪費設計空間,降低細線路電子業設計需求。
所以本實驗重點在於選擇不需拉導電線表面處理方式,變化不同BGA 基板金屬球墊表面處理,再配合目前電子業使用較多無鉛錫球中Sn-3.5Ag-0.5Cu與Sn-7.0Zn-100ppmAl進行實驗,而BGA基板金屬球墊表面處理選擇主要有三種:為有機抗氧化劑OSP(Organic Solderability Preservative )、化學鎳金ENIG (Electroless Nickel Immersion Gold )、化學銀Im-Ag (Immersion Silver)進行各項實驗分析進行討論。
主要分析為將完成不同BGA基板金屬球墊表面處理與無鉛錫球,過IR Reflow後進行高溫老化實驗,再利用切片分析IMC (Intermetallic Compound)成長狀況,並進行錫球推力試驗了解何種表面處理使用上較佳,並分析較佳與較差原因,再加上介金屬成長及界面反應分析各項實驗,而實驗結果歸納主要結論如下:
1.由錫球推力發現,不同基板金屬球墊表面處理加上錫銀銅雖受溫度影響,但降低狀況不會因表面處理不同而改變,而錫鋅鋁則會受不同基板金屬球墊表面處理影響,其中以OSP銅面與化學銀表面處理最顯著。
2.觀察錫鋅鋁錫球在OSP銅面與化學鎳金表面處理介金屬成長狀況,發現OSP銅面表面處理隨時間與溫度成長快速,而化學鎳金表面處理相對較慢,顯示鎳層對於阻絕熱傳與介金屬擴散相當明顯。
3.另外發現錫鋅鋁加上OSP銅面或化學銀表面處理,於時效熱處理120 oC、1000小時下就會產生基板球墊銅面咬蝕狀況,隨溫度上升而更加嚴重,容易造成焊點推力降低問題產生。
4.化學銀表面處理可以觀察到明顯較大香濱泡沫(Micro Voids),而其他表面處理界面Kirkendall Voids問題也非常明顯,但相對焊點強度與信賴性而言,化學銀表面處理則有較大風險。
總結本研究結果可看出BGA基板金屬球墊表面處理與無鉛錫球配合選擇必須相當注意,而以實驗結果做最佳組合排列為,錫銀銅配合化學鎳金高磷表面處理最穩定,其次分別為錫銀銅與OSP銅面與化學銀表面處理,再來為錫鋅鋁與化學鎳金表面處理,最差為錫鋅鋁搭配OSP銅面及化學銀表面處理,最差組合主要原因在於時效熱處理老化後,容易出現嚴重咬蝕基板金屬球墊銅面效應,使錫球推力急速下降產生焊點強度問題,所以該搭配並不適用於高信賴性電子構裝上。
This research paper includes surface finish of BGA (Ball Grid Array) solder pads and the lead-free solder ball combine with solder joints uses in electronic package technology. Nowadays, BGA metal surface finish, is produced to regard electroplating the way as mostly to deal with electroplate nickel and electricity gold-plated methods. But, in the electron industry, under the thin, short, & small demand, it wastes the design space and reduces the electron industry demand for fine pitch when BGA needs to draw the conductive line circuit to do plating with Nickel and Gold.

Consequently, the focal point of an experiment lies in choosing not to need drawing the conductive line surface finish and dealing with the way to change different BGA solder pads metal surface finish and to cooperate with uses of a lead-free solder ball, such as Sn-3.5Ag-0.5Cu and Sn-7.0Zn-100ppmAl at the electron industry under this experiment. And, BGA solder pads metal surface finish is it chosen for 3 kinds to deal with. That is, OSP (Organic Solderability Preservative), ENIG (Electroless Nickel Immersion Gold), & the chemical silver (Immersion Silver) are carried on every experimental analysis and discussed.

Analysis for different BGA solder pads surface finish and lead-free solder ball combine with solder joints , that after the IR Reflow carrying on the aging experiment of the high temperature mainly. Through x-section, to analyze the state that IMC grows up, and it carried on the shear force to search for solder joints reliability to check which metal surface finish was the best choice. Then, to analyze which surface finish has its own advantage and disadvantage for the root cause of low shear force and to check metal growing up and interface analysis of reacting of every experiment. Moreover, the experimental result is summed up for the main conclusion as follows:
1.It was found different surface finish by solder ball shear force. Although, the Sn-3.5Ag-0.5Cu were influenced by temperature, reduction did not change on various surface finish effects. It was the most significant for low shear force that it influenced dealing with OSP copper and chemistry silver surface finish among them that the Sn-7.0 Zn-100ppm Al would be dealt with by different kinds of surface finish.
2.To observe Sn-7.0 Zn-100ppmAl solder ball & IMC growing-up state of ENIG and OSP copper surface finish, it was found that OSP copper surface finish growing up with time and temperature fast. Nonetheless, ENIG glowed up slower. It was shown that the layers for hindering nickel was more adiabatic to spread and diffusion between metal not to spread quite obviously. Based on above analysis, it was found OSP higher than ENIG. Due to that reason, it could get stable shear force by ENIG surface finish.
3.In addition, it was found that a Sn-7.0 Zn-100ppm Al solder ball shear force OSP and chemistry silver surface finish dealt with 120oC under 1000 hours was it produced that solder pads copper face was copper etching condition . As temperature rises, it condition seriously causes solder joints shear force reduced.
4.The chemistry silver surface finish was observed for the obvious larger micro voids, but other finish surface interfaces had a ‘Kirkendall Voids’ problem obviously even under this experiment. Nevertheless, relative solder joint & reliability silver surface were they had heavy risk to deal with.

In conclusion, a result of study shows it needs very carefully that Ball Grid Array solder pad surface finish and selection of lead free solder ball. It was finally found with an experimental result that we can give to arrange in order from follow: Sn-3.5 Ag-0.5Cu+ ENIG P%> Sn-3.5Ag-0.5 Cu+ OSP> Sn-3.5Ag-0.5Cu+ Im-Ag > Sn-7.0Zn-100ppm Al+ ENIG P%> Sn-7.0Zn-100ppm Al+ OSP >Sn-7.0 Zn-100ppm Al+ Im-Ag . That is main a reason Sn-7.0 Zn-100ppm Al collocated OSP copper face or chemistry silver surface was apt to appear solder ball shear force reduced & insufficient solder-joint strength. Moreover, It was also found copper etching due to high diffusion reaction. In brief, those kinds of combination should not used for are high reliability electronic package construct.
中文摘要 I
英文摘要 IV
誌謝 VII
總目錄 VIII
圖目錄 XII
表目錄 XX
第一章 緒論1
1.1電子構裝簡介1
1.2錫鉛合金簡介3
1.3世界各主要國家禁鉛立法4
1.4世界各主要國家無鉛研究發展5
第二章 文獻回顧7
2.1電子構裝可靠度測試7
2.2無鉛焊錫特性7
2.3無鉛焊錫合金元素變化8
2.4常見無鉛材料簡介9
2.4.1錫-銀系統9
2.4.2錫-鋅系統12
2.5焊接基板表面處理簡介15
2.5.1有機抗氧化劑15
2.5.2化學鎳金18
2.5.3化學銀流程23
2.6不同基板金屬表面處理與無鉛焊錫合金反應相關研究25
2.7研究動機與目的28
第三章 實驗步驟及方法29
3.1實驗構想29
3.2BGA基板與不同表面處理製作31
3.2.1BGA基板之設計31
3.2.2BGA基板之製作32
3.2.3BGA基板不同表面處理製作33
3.2.3.1OSP表面處理製作33
3.2.3.2高低溫有機抗氧化劑處理銅表面特性分析33
3.2.3.3鍍鎳金不同磷含量表面處理製作34
3.2.3.4變化磷含量製作Cu/Ni-P/Au表面特性分析35
3.2.3.5化學銀表面處理製作36
3.2.3.6化學銀表面特性分析36
3.3不同金屬焊墊表面處理之BGA基板球墊與無鉛錫球接合37
3.3.1無鉛錫球之採用37
3.3.2無鉛錫球與基板球墊間之黏合固定助焊劑37
3.3.3迴焊製程39
3.4焊錫球之推力強度試驗40
3.4.1迴焊錫球推力後DSC試驗40
3.4.2迴焊時效熱處理後焊錫球之推力強度試驗40
3.5錫銀銅與錫鋅鋁界面介金屬化合物成長狀況40
3.6錫銀銅與錫鋅鋁焊錫與不同表面處理基板界面反應分析41
3.6.1界面介金屬化合物分析41
3.6.2界面介金屬反應孔洞(Voids)分析41
3.6.3其他界面介金屬反應現象觀察41
第四章 結果與討論42
4.1BGA球墊不同金屬表面處理製作分析42
4.1.1有機抗氧化劑(OSP)製作分析42
4.1.1.1有機抗氧化劑GC/Mass原料分析42
4.1.1.2有機抗氧化劑TGA原料分析42
4.1.1.3有機抗氧化劑DSC原料分析42
4.1.1.4有機抗氧化劑製作後進行IR Reflow分析43
4.1.1.5有機抗氧化劑IR Reflow後進行FTIR分析43
4.1.1.6有機抗氧化劑焊錫能力分析44
4.1.2化學鎳金基板球墊表面製作分析50
4.1.2.1不同磷含量化學鎳金板製作分析50
4.1.2.2不同磷含量化學鎳金板分析54
4.1.3化學銀面製作分析58
4.1.4BGA基板球墊AFM表面粗糙度分析60
4.1.5小結61
4.2.BGA球墊焊錫球之結合強度62
4.2.1迴焊後焊錫球之表面型態62
4.2.2迴焊後將錫球由基板取下做DSC分析63
4.2.3迴焊後變化時間與溫度焊錫球之推力強度分析64
4.2.4變化球墊表面處理時間與溫度焊錫球之推力強度分析68
4.2.5.變化球墊表面處理時間與溫度焊錫球之推力強度趨勢分析75
4.2.6焊點強度下降原因探討80
4.2.7小結82
4.3無鉛錫球與不同球墊表面處理基板之材料界面反應83
4.3.1錫球與不同球墊表面處理基板之材料介金屬表面形態84
4.3.2錫球與不同表面處理基板之材料介金屬厚度量測分析87
4.3.3時效熱處理後材料介金屬化合物變化分析90
4.3.3.1球墊表面處理與無鉛錫球所形成介金屬化合物分析90
4.3.3.2變化溫度不同球墊表面處理形成介金屬化合物形態分析98
4.3.3.3溫度變化下不同球墊表面處理咬蝕現象分析104
4.3.4球墊表面處理變化對孔洞(Voids)影響分析110
4.3.4.1 Kirkendall Voids現象分析110
4.3.4.2香濱泡沫(Micro Voids)現象分析112
4.3.4.3錫鬚(Tin Whisker)生成原因分析113
4.3.5小結114
第五章 結論116
第六章 參考文獻119
[1]. 林定皓,高密度印刷電路板技術,台灣印刷電路板協會,2006年,第二章。
[2]. Mulugeta Abtew and Guna Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering , vol.27, no.5-6, 2000, pp.95-141.
[3]. William D.Callister, J.R , Materials Science And Engineering An Introduction 5nd, John Wiley & Sons, Inc., New York, 2003, pp.308-322.
[4]. K.J.R Wassink and M.M.F. Verguld, Manufacturing Techniques for Surface Mount Assembly, Electrochemical Publications Ltd., GB-Port Erin, British Isles, 1995, p.17.
[5]. J.H.Vincent and G. Humpston, “Lead-free Solders for Electronic Assembly ”, GEC Journal of Research,vol.11, no.2, 1994, pp.76-89.
[6]. H.H.Manko, Solders and Soldering, McGraw-Hill Book Company., New York, 1979, Chapter 2-4.
[7]. A.Z.Miric and A.Girusd, “Lead-free Alloys Soldering &Surface Mount Technology”, vol.10, no.1, 1998, pp.19-25.
[8]. “Directive 2002/95/EC of The European Parliament And of The Council”, Official Journal of the Europe Union, 27 January 2003.vol.10, no.1, 1998, pp.19-25.
[9]. 林育堯,“綠色設計電子報”,第九期,2004年。
[10]. 謝哲松,王任,“無鉛銲錫對我電子產業之衝擊”,化工資訊,
.第14之12期,2000年,61-66頁。
[11]. 陳信文,陳立軒,林永森,陳志銘,微系統構裝基礎原理,高立圖
.書有限公司,2002年。
[12]. C.Melton, “Alternative of Lead bearing Alloys”, Processing of the IEEE International Symposium on Electronic and the Environment, Arlington, USA, 1993, pp.94-97.
[13]. 陳信文,“無鉛焊料簡介”,電子與材料,第一期,1999年,74-77
.頁。
[14]. David Suraski and Karl Seeling, “The Current Status of Lead-free Solder Alloys”, IEEE Transaction on Electronics Package Manufacturing, vol.24, no.4, 2001, pp.244-248.
[15]. N.C. Lee, “Getting Ready for Lead-free Solder”, Soldering& Surface Mount Technology, no.26, 1997, pp.65-68.
[16]. C.L.Lin, J.L.Ou, H.C. Chen and R.K. Shiue, “The Study of Sn-Zn Based Lead-free Solders on Au/Ni/Cu Substrate”, 2002材料年會論文集,台灣大學,2002年。
[17]. V.I. Igoshev, U.Mihon and et al, “Fracture of Sn-3.5%Ag Solder AlloyUnder Creep”, Journal of Electronic Materials, vol.29, no.12, 2000, pp.1356-1361.
[18]. W.J.Tomlinson and A.Fulllylove,“Strength of Tin-Based Soldered Joints”, Journal of Electronic Materials, vol.27, no.21, 1992, pp.5782-5782.
[19]. S.Kang and A.Sarkhel, “Lead-free Solders for Electronic Package”, Journal of Electronic Materials, vol.23, no.8, 1994, pp.701-707.
[20]. Wenge Yang, Lawrence E.Felton and Robert W.Messler,“The Effect of Soldering Process Variables on The Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints”, Journal of Electronic Materials, vol.24, no.10, 1995 .
[21]. C.Andersson, D.R. Andersson, P.E. Tegehall, J.Liu,“ Effect of different temperature cycling profiles on the crack initiation and propagation of Sn-3.5Ag wave solder joints”, Microelectronics Reliability, vol.47, 2007, pp.266-272.
[22]. K.S. Kim, S.H. Huh, K.Suganuma, “Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints”, Journal of Alloys and Compounds, vol.1, 2002, pp.000-001.
[23]. I.E.Anderson, B.A.Cook, J.Harringa, R.L.Terpstra, J.C.Foley and O.Unal, “Effect of Alloying in Near-Eutectic Sn-Ag-Cu Solder Joints”, Materials Transactions (JIM), vol.43, no.8, 2002, pp.954-958.
[24]. T.B.Massalski, “ Binary Alloy Phase Diagrams”, William W.Scott, vol.1, 1986, p.71.
[25]. T.B.Massalski, “Binary Alloy Phase Diagrams”, William W.Scott, vol.1, 1986, p.965.
[26]. M.Date, K.N.Tu, TShoji and Fujiyoshi, K.Sato, “Ductile-to-
Brittle transition in Sn-Zn solder Joints Measured by Impact Test”, Scripta Materialia, vol.51, 2004, pp.641-645.
[27]. K.Suganuma and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, Journal of Electronic Materials, vol.29, no.10, 2000, pp.1160-1163.
[28]. 黃家緯,“錫鋅系無鉛銲錫研究”,國立成功大學材料科學及工程學
.系研究所博士論文,2005年。
[29]. T.B.Massalski, “Binary Alloy Phase Diagrams”, William W.Scott, vol.2, 1986, p.2086.
[30]. K.S.Kim, K.W.Ryu, C.H.Yu, I.O.Jung, H.H.Kim, “Analysis on interfacial reactions between Sn-Zn Solders and the Au/Ni/Cu interfaces”, Microelectronics and Reliability, vol.45, no 3-4, 2005, pp.647-655.
[31]. K.S.Kim, J.M.Yang, C.H.Yu, I.O.Jung, H.H.Kim, “Analysis on interfacial reactions between Sn-Zn Solders and the Au/Ni/Cu electrolytic-plated Cu pad”, Journal of Alloys and Compounds, vol.379, 2004, pp.314-318.
[32]. Masayuki Kitajima, Tadaaki Shono, “Reliability study of new SnZnAl lead-free solders used in CSP package”, Microelectronic Reliability, vol.45, 2005, pp.1208-1214.
[33]. K.L.Lim and H.M.Hsu,“Sn-Zn-Al Pb-free Solder-An Inherent Barrier Solder for Cu Contact”, Journal of Electronic Materials, vol.30, no.9, 2001, pp.1068-1072.
[34]. S.P.Yu, M.C.Wang, M.H.Hon, “Formation of Intermetallic compounds at eutectic Sn-Zn-Al Solder/Cu Interface ”, Journal of Materials Research, vol.16, no.1, 2001, pp.79-82.
[35]. S.C.Chang, S.C.Lin, K.C.Hsieh, “The Formation of Growth of Intermetallic compounds in Sn-Zn and Sn-Zn-Al With Ni/Au Surface Finish”, Journal of Materials Research, vol.35, no.3, 2001, pp.399-405.
[36]. C.M.Chuang, T.S.Lui and L.H.Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aged Sn-9Zn Eutectic Solder”, Journal of Materials Science, vol.37, no.1, 2002, pp.191-195.
[37].Jing Li Fang, “The problem of acidic immersion silver and new weak alkaline immersion silver”, TPCA Forum, 2006, pp.30-46.
[38]. 白蓉生,電鍍板與無鉛焊錫,台灣印刷電路板協會,2006年,34-37
.頁。
[39]. John Fudala, Robert Farrell, “The property and thickness evaluation of high temperature resistant OSP coating for lead free assembly process”, TPCA Forum, 2006, pp.21-31.
[40]. Koji Saeki, “Next Generation OSP for Lead-free Soldering Mixed Metal Finish PWB and BGA Substrate”, TPCA Forum, 2005.
[41]. Lin Keh Wen, Michael Carano, “Quality and Reliability test methods introduction of OSP for Lead-free soldering and results comparison”, TPCA Forum, 2005.
[42]. G. O. Mallory and J.B.Hajdu, Electroless Plating Fundamentals and Applications, AESF, Orlando Florida USA, 1990, Chap.1.
[43]. G. G. Gawrilov, Chemical Electroless Nickel-Plating, Porcullis Press Limlted, Redhill surrey, 1979, Chapter.1.
[44].黃飛雄,“無電鍍鎳特性與應用”,工業技術,85期,1981年,21-28頁。
[45]. X.Chen, J.Yi, G.Qi and F.Lin, “Electroless Nickel Bath for Wafer Bumping: Influence of Additive”, IEEE International Symposium on Electronic Materials and Package, 2000, pp.12-17.
[46]. M. D. Feldstein, “Composite Electroless Nickel Coatings for the Aerospace and Airline Industries”, Plating and Surface Finishing, 1998, pp.248-251.
[47]. W.Chen, L.Li, J.Qi, Y.Wang and Z.Gui, “Influence of Electroless Nickel Plating on Muti-layer Ceramic Capacitors and Implications for Reliability in Muti-layer Ceramic Capacitors”, Journal of American Ceramic Society, vol.81, no.10, 1998, pp.2751-2752.
[48].Young-Doo Jeon, Yong-Bin Lee, Young-Sik Choi, “Thin Electroless Cu/OSP on Electroless Ni as a Novel Surface Finish for Flip Chip Solder Joints”, IEEE Electronic Components and Technology Conference, 2006, pp.119-124.
[49]. Nicholas Biunno et al, “A root cause failure mechanism for solder joint integrity of electroless nickel/immersion gold surface finish”, HADCO Santa Clara Inc, 2003.
[50].Iu-Jie Shang, Fu-Kai Yao, “The Influence of Atmospheric Tarnishing on Immersion Silver Appearance and Solderability”, TPCA Forum, 2004, pp.112-122.
[51]. Elizabeth Norwood, John Swanson, “Enhancing the Tarnish Performance of Immersion Silver Finish”, Mac Dermid Inc, Waterbury CT USA, 2004.
[52]. Srinivas Chada et al, “Investigation of immersion silver PCB finish for portable product applications”, APTC, Motorola Inc, 2000.
[53]. Kejun Zeng , Vesa Vuorinen,“Interfacial reactions between lead-free SnAgCu solder and Ni(P) surface finish on print circuit boards ”, IEEE Electronic Components and Technology Conference, 2002, pp.162-167.
[54]. M.N. Islam, Y.C. Chan, “Effect of 9wt.% In addition to Sn3.5Ag0.5Cu solder on the interfacial reaction with the Au/NiP metallization on Cu pads ”, Journal of Alloys and Compounds, vol.396, 2005, pp.217-223 .
[55]. Dezhi Li, Changqing Liu, Paul P.Conway, “Interfacial reactions between Pb-free solders and metallised substrate”, IEEE International Conference on Electronic Packaging Technology, 2005, pp.1-6.
[56]. Phil Geng, Raiyo Aspandiar, Tiffany Byrne, “Alternative lead-free solder joint integrity under room temperature mechanical ”, IEEE International Conference on Electronic Packaging Technology, 2004 , pp.304-308.
[57]. Kwang-Lung Lin and Hui-Min Hsu, “Material Interaction between Inherent Barrier Pb-free Sn-Zn-Al Solder and Cu Contact ”, IEEE International Symp on Electronic Packaging, 2000, pp.379-382.
[58]. Kwang-Lung Lin and Hui-Min Hsu, “Sn-Zn-Al Pb-free Solder-An Inherent Barrier Solder for Cu Contact”, Journal of Electronic Materials, vol.30, no.9, 2001, pp.1068-1072.
[59]. S.P.Yu, M.C.Wang, M.H.Hon, “ Formation of Intermetallic compounds at eutectic Sn-Zn-Al Solder/Cu Interface ”, Journal of Materials Research , vol.16, no.1, 2001, pp.76-82.
[60]. S.C.Chang, S.C.Lin, KC.Hsieh, “The Formation and Growth of Intermetallic Compounds in Sn-Zn and Sn-Zn-Al Solder with Ni/Au Surface Finish”, Journal of Materials Research, vol.35, no.3, 2006, pp.399-405.
[61]. H.W.Chiang, J.Y.Chen,C.B.Lee and S.M.Li, “Interfacial Reaction Study on Solder Joint with Sn-4Ag-0.5Cu Solder Ball and Sn-7Zn-Al(30ppm) Solder Paste in a Lead-free Wafer Level Chip Scale Package ”, Journal of Electronic Materials ,vol.33, no.12, 2004, pp.1550-1556.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top