跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳明隆
研究生(外文):Ming-Lung Chen
論文名稱:濃縮棕櫚油中的油酸及棕櫚酸以及合成三棕櫚酸甘油酯
論文名稱(外文):A method for the purification of palmitic and oleic acid from palm oil and the synthesis of tripalmitin
指導教授:朱義旭
指導教授(外文):Yi-Hsu Ju
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:結晶酯化結構性脂質固定化酵素脂解酵素油酸棕櫚酸三棕櫚酸甘油酯
外文關鍵詞:CrystallizationEsterificationStructured lipidsImmobilized enzymeLipaseOleic acidPalmitic acidTripalmitin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1626
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在人類母乳的油脂中含有20-25%的棕櫚酸(C16:0)以及30-35%的油酸(C18:1),其中超過60%的棕櫚酸在甘油中的第二個位置上。嬰兒食品中主要的結構性脂質為1,3-Oleoyl-2-palmitoyl glycerol(OPO),所以本研究希望能從便宜的油脂中得到此結構脂質。由於棕櫚油本身就富含棕櫚酸及油酸,於是本研究利用棕櫚油得到高純度的棕櫚酸和油酸再利用棕櫚酸合成棕櫚酸的三酸甘油酯,製備結構脂質OPO所需的基質。首先將棕櫚油皂化然後利用低溫結晶法純化棕櫚酸及油酸,棕櫚酸純度可達到87.8%回收率85.4%;油酸純度可達到94.5%回收率77.5%。若將低溫結晶法濃縮得到的棕櫚酸再經選擇性酯化反應後,則可得到含94.2%棕櫚酸乙基酯回收率91.4%。以此含94.2%棕櫚酸乙基酯與甘油進行酯化反應,可得到酯化程度88.2%,產物甘油酯中TG含量為79.7%,如果先將乙基酯水解為FFA,再與甘油反應可得到酯化程度97.7%,產物甘油酯中TG含量為98.5%,經矽膠管柱純化後,TG含量達100%。

Human milk fat contains 20-25% palmitic acid (C16:0), 30-35% of oleic acid (C18:1) and more than 60% of the palmitic acid occurs in the sn-2 position of the glycerol backbone. Structured lipid 1,3 — Oleoyl-2- palmitoylglycerol (OPO) is an important ingredient in infant formula. In order to obtain an economically feasible process for the synthesis of OPO structured lipid it is utmost important that starting substrates must be isolated from inexpensive sources by commercially viable methods. Palm oil is a chief and rich source of these fatty acids. Thus, in the present investigation the purification of palmitic acid and oleic acid from the saponified palm oil and lipase assisted enzymatic synthesis of triplamitin were carried out. The method consists of several steps. Firstly, low temperature solvent fractionation of fatty acids from saponified palm oil which gives 87.5% pure palmitic acid and 94.5% pure oleic acid with corresponding recovery of 85.4% and 77.5%, respectively. Secondly, the enrichment of palmitic acid via the lipase catalyzed selective esterification. This step gives 94.2% pure ethyl palmitate with recovery of 91.4%. Finally, the synthesis of tripalmitin from ethyl palmitate and palmitic acid with glycerol by lipase catalysis. Esterification of glycerol with ethyl palmitate gives 79.7% triglycerides with 88.2% degree of esterification while, direct esterification of glycerol with palmitic acid after hydrolysis of ethyl palmitate gives 98.5% triglycerides with 97.7% degree of esterification. Separation of the reaction mixture by silica gel column chromatography resulted in triglyceride with 100% purity.

目錄
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅱ
目錄.....................................................Ⅲ
圖索引...................................................Ⅸ
表索引.................................................ⅩⅡ
符號索引...............................................ⅩⅢ
第一章 緒論..............................................1
1.1酵素催化作用的優點.....................................1
1.2酵素於有機溶劑中的催化反應.............................2
1.3酵素固定化的優點.......................................4
1.4脂解酵素之專一性.......................................6
1.5酵素催化油脂之反應.....................................7
1.6脂肪酸的分類及構造.....................................8
1.7長鏈三酸甘油酯的代謝...................................9
1.8結構脂質..............................................11
1.9內容簡介..............................................13
第二章 文獻回顧.........................................15
2.1棕櫚油及棕櫚酸........................................15
2.1.1棕櫚油的來源........................................15
2.1.2棕櫚油之特性........................................16
2.1.3棕櫚油的發展趨勢....................................20
2.1.4母乳中的脂肪組成....................................21
2.1.5結構性脂質(OPO).....................................23
2.1.6油脂的選擇..........................................23
2.2脂肪酸的濃縮..........................................26
2.2.1脂肪酸的濃縮方法....................................26
2.3富含棕櫚酸之三酸甘油酯的合成..........................32
2.3.1化學法合成TG........................................32
2.3.2脂解酵素催化合成TG的反應............................33
2.3.3脂解酵素催化的甘油酯化反應..........................34
2.3.4有機溶劑對甘油酯化反應的影響........................35
第三章 實驗藥品及儀器..................................37
3.1實驗藥品..............................................37
3.2儀器及設備............................................39
3.3 實驗方法.............................................40
3.3.1酵素固定化..........................................40
3.3.2脂肪酸的製備........................................41
3.3.2.1油脂的皂化........................................41
3.3.2.2皂化值(S.V.)......................................42
3.3.2.3酸值(A.V.)........................................43
3.3.2.4酵素水解棕櫚油....................................43
3.3.2.5 TMSH甲酯化試劑的製備.............................45
3.3.2.6脂肪酸甲基酯化步驟................................45
3.3.2.7氣相層析儀的分析條件..............................46
3.3.3棕櫚酸及油酸的濃縮..................................47
3.3.3.1低溫溶劑結晶法分離飽和及不飽和脂肪酸步驟..........47
3.3.3.2 兩階段低溫溶劑結晶法濃縮油酸之步驟...............47
3.3.3.3 三階段低溫溶劑結晶法濃縮油酸之步驟...............48
3.3.3.4 選擇性酯化反應...................................48
3.3.3.5選擇性酯化反應產物中脂肪酸及酯的組成分析..........48
3.3.4 棕櫚酸三酸甘油酯的合成.............................49
3.3.4.1 脂肪酸乙基酯之水解反應...........................49
3.3.4.2 FFA或FFA乙基酯與甘油之酯化反應...................50
3.3.4.3 以薄層火燄離子分析儀(TLC-FID)分析產物中甘油酯
組成.............................................50
3.3.5 以矽膠充填管柱分離甘油酯混合物.....................51
3.3.6 酵素活性的測定.....................................52
3.3.6.1 脂解酵素之酯化活性測定...........................52
3.3.6.2 Candida rugosa脂解酵素之水解活性測定.............53
第四章 結果與討論.......................................54
4.1酵素之活性............................................54
4.2棕櫚油脂肪酸之組成....................................54
4.2棕櫚油之水解..........................................54
4.3.1酵素篩選............................................55
4.3.2反應溫度............................................55
4.3.3酵素量的影響........................................58
4.4低溫結晶法分離飽和及不飽和脂肪酸......................58
4.5二階段低溫結晶法去除液相中的飽和脂肪酸................62
4.6三階段低溫結晶法......................................64
4.7選擇性酯化反應........................................64
4.7.1酵素篩選............................................65
4.7.2醇鏈長的影響........................................68
4.7.3酵素固定化..........................................68
4.7.4溫度之影響..........................................68
4.7.5轉速的影響..........................................72
4.7.6水含量的影響........................................72
4.7.7基質莫耳比的影響....................................72
4.7.8產物脂肪酸及酯的分離................................73
4.8三棕櫚酸甘油酯的合成..................................76
4.8.1脂肪酸乙基酯與甘油的酯化反應........................77
4.8.1.1是否使用溶劑之影響................................77
4.8.1.2酵素篩選..........................................77
4.8.1.3溫度的影響........................................77
4.8.1.4水含量的影響......................................82
4.8.1.5 結論.............................................82
4.8.2棕櫚酸乙基酯之水解反應..............................84
4.8.2.1酵素篩選..........................................84
4.8.2.2溫度的影響........................................84
4.8.2.3水含量的影響......................................84
4.8.3富含棕櫚酸之FFA與甘油反應...........................87
第五章 結論..............................................91
參考文獻.................................................93
作者簡介................................................103
圖索引
圖1-1 常見PUFA之結構式...................................10
圖1-2 論文研究流程圖.....................................14
圖2-1 生育醇與生育三烯醇結構式之比較.....................18
圖2-2 胡蘿蔔素異構物之結構式.............................19
圖3-1 酚酞在鹼性及酸性下的結構變化.......................44
圖3-2 TMSH製備以及甲酯化反應式...........................46
圖4-1 棕櫚油水解時,探討不同酵素對水解程度隨反應時間之
變化。.............................................56
圖4-2 以Candoda rugosa脂解酵素催化棕櫚油之水解時,反應
溫度對水解程度隨反應時間變化之影響。...............57
圖4-3 以Candoda rugosa脂解酵素水解棕櫚油時,酵素量對水
解程度隨反應時間變化之影響。.......................59
圖4-4 FFA與乙醇之選擇性酯化反應時PA含量及酯化程度隨時間
之變化。...........................................67
圖4-5 FFA與醇之選擇性酯化反應時,醇鏈長對Palmitate含量
及酯化程度隨時間之變化。...........................69
圖4-6 酵素固定化與否對FFA與乙醇之選擇性酯化反應影響。....70
圖4-7 FFA與乙醇之選擇性酯化反應時,溫度對Ethyl palmitate
含量及酯化程度隨時間之變化。.......................71
圖4-8 FFA與乙醇之選擇性酯化反應時,FFA對乙醇莫耳比對棕
櫚酸乙基酯含量及酯化程度隨時間之變化。.............74
圖4-9 在正己烷中,以SP 435催化甘油與乙基酯之酯化反應時
,產物中TG含量隨反應時間之變化。...................78
圖4-10 在正己烷中,以SP 435催化甘油與乙基酯之酯化反應
時,酯化程度隨反應時間之變化。....................79
圖4-11 在無溶劑系統中以不同酵素催化甘油與乙基酯之酯化
反應時,酯化程度及TG含量隨反應時間之變化。........80
圖4-12 以IM 60催化甘油與脂肪酸乙基酯之酯化反應時,探討
溫度對產物中TG含量及酯化程度隨反應時間之變化。....81
圖4-13 以IM 60催化甘油與脂肪酸乙基酯之酯化反應時,探討
水含量對TG含量及酯化程度隨反應時間之變化。........83
圖4-14 脂肪酸乙基酯水解時酵素種類對水解程度隨反應時間之
變化。............................................85
圖4-15 以SP 435水解脂肪酸乙基酯時,溫度對水解程度隨反應
時間之變化。......................................86
圖4-16 以SP 435水解脂肪酸乙基酯時,水含量對水解程度隨反
應時間之變化。....................................88
圖4-17 以IM 60催化甘油與乙基酯之酯化反應時,系統壓力對
產物中TG含量及酯化程度隨反應時間之變化。..........89
圖4-18 以IM 60及SP 435脂解酵素催化甘油與脂肪酸之酯化反
應時,酯化程度及TG含量隨反應時間之變化。..........90
表索引
表2-1 世界各種主要植物油生產量...........................20
表2-2 母乳中的脂肪酸組成.................................22
表2-3 各種油脂酯防酸組成與性質...........................24
表4-1 棕櫚油皂化所得FFA中各個脂肪酸之含量................55
表4-2 使用不同溶劑於低溫溶劑結晶法時,固、液相之組成.....60
表4-3 基質與溶劑比對低溫溶劑結晶法效果之影響.............61
表4-4 以丙酮為溶劑時溶劑量及溫度對低溫結晶法效果之影響...61
表4-5 以丙酮為溶劑經低溫溶劑結晶法後,固液相之脂肪酸組成.62
表4-6 以丙酮為溶劑進行二階段低溫結晶法時,溶劑量及溫度...63
表4-7 以丙酮為溶劑經二階段低溫結晶法處理後產物之組成.....63
表4-8 不同溶劑對第三階段低溫結晶法濃縮油酸效果之影響.....65
表4-9 以氰化甲烷為溶劑行第三階段低溫結晶法時溶劑量及溫度
對產物固相中油酸含量及回收率之影響.................66
表4-10 以氰化甲烷為溶劑經三階段低溫結晶法處理後產物組成..66
表4-11 棕櫚酸與乙醇之選擇性酯化,當基質莫耳比為2:1時,
酯化程度與回收率隨時間變化的關係..................75
表4-12 選擇性酯化後,利用低溫結晶法分離脂肪酸及酯........75
表4-13 選擇性酯化後組成..................................76
符號索引
A.V.:Acid value,酸值
C8:0:Caprylic acid,辛酸
C13:0:Tridecanoic acid,十三酸
C14:0:Myristic acid,肉豆蔻酸
C16:0:Palmitic acid (PA),棕櫚酸
C18:0:Stearic acid,硬酯酸
C18:1:Oleic acid (OA),油酸
C18:2:Linoleic acid, C18:2 n6,亞麻油酸
C18:3 n3:a-Linolenic acid (ALA),a-亞麻酯酸
C18:3 n6:g-Linolenic acid (GLA),g-亞麻酯酸
C20:0:cis-11-Eicosenoic acid,花生酸
C22:0:Docosanoic acid ,山酸
C22:4 n6:Arachidonic acid (AA) 花生四烯酸
C22:5 n3:Docosapentaenoic acid (DPA),二十二碳五烯酸
DG:Diglyceride,二酸甘油酯
FFA:Free Fatty Acid,自由態脂肪酸
GC:Gas chromatography,氣相層析儀
HCl:Hydrochloric acid鹽酸
HMF:Human milk fat,母乳
KHP:Potassium hydrogen phthalate,酞酸氫鉀
KOH:Patassium Hydroxide,氫氧化鉀
LCFA:Long chain fatty acids,長鏈脂肪酸
MCFA:Medium chain fatty acids,中鏈脂肪酸
MG:Monoglyceride,單酸甘油酯
MTBE:Methyl tert-butyl ether,甲基三級丁基酯
NaOH:Sodium hydroxide,氫氧化鈉
N.D.:Not Detected
OPO:1,3-Oleyl-2-palmitoyl-glycerol
PUFA:Polyunsaturated Fatty Acid,多元不飽和脂肪酸
SCFA:Short chain fatty acids,短鏈脂肪酸
S.V.:Saponifacation value,皂化值
rpm:Round per minute,每分鐘轉數
TMSH:Trimethylsulfonium Hydroxide
TG:Triglyceride,三酸甘油酯
TP:Tripalmitin,三棕櫚酸甘油酯

Adlof, R. O. and E. A. Emken, “Synthesis and Purification of Polyunsaturated Triglycerides,” J. Am. Oil Chem. Soc., 61, pp. 83-85 (1984).
Bahulekar, R., N. R. Ayyangar and S. Ponrathnam “Polyethyleneimine in Immobulization of Biocatalysis,” Enzy,e Microb. Technol., 13, pp. 858-868 (1991).
Bottino, N. R., G. A. Vandenburg and R. Reiser, “Resistance of Certain Long-chain Polyunsaturated Fatty Acids of Marine Oils to Pancreatic Lipase Hydrolysis,” Lipids, 2, pp. 489-493 (1967).
Breivik, H., G. G. Haraldsson and B. Kristinsson, “Preparation of Highly Purified Concentrates of Eicosapentaenoic Acid and Docosahexaenoic Acid,” J. Am. Oil Chem. Soc., 74, pp. 1425-1429 (1997).
Brown, J. B. and G. Y. Shinowara, “Studies on the Chemistry of the Fatty Acids. II. The Preparation of Pure Oleic Acid by a Simplified Method,” J. Am. Chem. Soc., 59, pp. 6-8 (1937).
Brown, J. B. and D. K. Kolb, “Application of Low Temperature Crystallization in the Separation of the Fatty Acids and Their Compounds,” Prog. Chem. Fats Lipids, 3, pp. 57-94 (1955).
Brown, J. B., “Fractional Solvent Crystallization,” J. Am. Oil Chem. Soc., 32, pp. 646-652 (1955).
Buchlolz, K., “Characterization of immobilized biocatalysis,” Verlag Chemie, New York, (1979).
Canas, B. J. and M. P. Yurawecz, “Ethyl Carbamate Formation During Urea Complexation for Fractionation of Fatty Acids,” J. Am. Oil Chem. Soc., 76, pp. 537 (1999).
Captex, Product Brochure, Capital City Products, Columbus, (1986).
Carnielli, V. P., J. B. Van Goudoever and A. A. Boerlage, I. H. Luijendijk, E. J. Sulkers, H. J. Degenhart, P. J. Sauer, “Feeding Premature Newbom Infants Palmitic Acid in Amounts and Stereoisomeric Position Similar to that of Human Milk:Effects in Fat and Mineral Balance,” American journal of clinical nutrition, 61, 1037-1042 (1995).
Cartens, M., E. Molina Grima, A. Robles Medina, A. Giménez Giménez and M. J. Ibáñez González, “Eicosapentaenoic Acid (20:5 n3) from the Marine Microalga Phaeodactylum tricornutum,” J. Am. Oil Chem. Soc., 72, pp. 1-7 (1996).
Cerdán, L. E., A. R. Medina, A. G. Giménez, M. J. I. González and E. M. Grima, “Synthesis of Polyunsaturated Fatty Acid-Enriched Triglycerides by Lipase-Catalyzed Esterification,” J. Am. Oil Chem. Soc., 75, pp. 1329-1337 (1998).
Chaplin, M. F. and C. Bucke, “Enzyme technology,” Cambridge, New York, (1990).
Coteron, A., M. Martinez and J. Aracil, “Reactions of Olive Oil and Glycerol over Immobilized Lipases,” J. Am. Oil Chem. Soc., 75, 657-660 (1998).
Dordick, J. D., “Designing Enzymes for Use in Organic Solvents,” Biotechnol. Prog., 8, 259-267 (1991).
Dordick, J. S., “An introduction to industrial biocatalysis,” J. S.
Dordick(ed.), Biocatalysis for Industry, Plenum Press, New York, 1-19 (1992).
Dossat, V., D. Combes and M. Alain, “Continuous Enzymatic Transesterification of High Oleic Sunflower Oil in Packed Bed Reactor,” Enzyme Microb. Technol., 25, pp. 194-200 (1999).
Duxbury, D. D., “Palm Oil Fights Back,” Food Processing, 106-109 (1991)
Edward, M. and D. Jan, “Separation of Oleic Acid from Fatty Acid Impurities,” Separ Sci Tech, 24, 151-155 (1989).
Fersht, A., “Stereochemistry of enzymatic reactions,” 221-247, In: Enzyme Structure and Mechanisms, W. H. Freeman and Company, New York (1985).
Forssell, P., P. Parovuori, P. Linko and K. Poutanen, “Enzymatic Transesterification of Rapeseed Oil and Lauric Acid in A Continuous Reactor,” J. Am. Oil Chem. Soc., 70, 1105-1109 (1993).
Gunstone, F. D., J. McLaughlan, C. M. Scrimgeour and A. P. Watson, “Improved Procedures for the Isolation of Pure Oleic, Linoleic, and Linolenic Acids or Their Methyl Esters from Natural Sources,” J. Sci. Agric., 27, pp. 675-680 (1976).
Gupta, M. N., “Enzyme Function in Organic Solvents,” Eur. J. Biochem., 203, 25-32 (1992).
Haagsma, N., C. M. van Gent, J. B. Luten, R. W. de Jong and E. van Doorn, “Preparation of an w-3 Fatty Acid Concentrate from Cod Liver Oil,” J. Am. Oil Chem. Soc., 59, pp. 117-118 (1982).
Han, J. J. and T.Yamane, “Enhancement of both reaction yield and rate of synthesis of structured triacylglycerol containing eicosapentaenoic acid under vacuum with water activity control,” Lipids., 34, 989-995 (1999).
Haraldsson, G. G. and B. Kristinsson, “Separation of Eicosapentaenoic Acid and Docosahexaenoic Acid in Fish Oil by Kinetic Resolution Using Lipase”, J. Am. Oil Chem. Soc., 75, pp. 1551-1556 (1998).
He, Y. and F. Shahidi, “Enzymatic Esterification of w-3 Fatty Acid Concentrate from Seal Blubber Oil with Glycerol,” J. Am. Oil Chem. Soc., 74, pp. 1133-1136 (1997)
Huang, F. C., Y. H. Ju and C. W. Huang, “Enrichment of g-Linolenic Acid from Borage Oil via Lipase-Catalyzed Reactions,” J. Am. Oil Chem. Soc., 74, pp. 977-981 (1997).
Janssen, A. E. M., A. V. der Padt and K. V. Riet, “Solvent Effects on Lipase-Catalyzed Esterification of Glycerol and Fatty Acids,” Biotechnol. Bioeng., 42, pp. 953-962 (1993a).
Johnson, T. J. A., “Glutaraldehyde Crosslinking:Fast and Slow Modes,” ACS symposium series 516, [Biocatalyst design for stability and specificity], Washington, (1993).
Khmelnitsky, U. L., A. V. Levashov, N. L. Klyachko and K. Martinek, “Engineering Biocatalytic Systems in Organic Media with Low Water Content,” Enzyme Microb. Technol., 10, 710-724 (1988).
Kitamura, Y., H. Matsuyama, A. Nakabuchi, N. Matsui, and Y. Doi, “Separation of Ethyl Ester of Docosahexaenoic Acid by Facilitated Transport Membrane with High Stability,” Sep. Sci. Technol., 34, pp. 277-288 (1999)
Klibanov, A. M., “Enzyme Thermoinactivation in Anhydrous Organic Solvents,” Biotechnol. Bioeng., 37, 843-853 (1991).
Konishi, H., W.E. Neff, and T. L. Mounts, “Chemical Interesterification with Regioselectivity for Edible Oils, ”J. Am. Oil Chem. Soc., 70, 411-415 (1993).
Krajewska, B., M. Leszko and W. Zaborska, “Urease Immobilized on Chitosan Membrane:Preparation and Properties,” J. Chem. Technol. Biotechnol., 48, 337-350 (1990).
Krukonis, V. J., “Supercritical Fluid Fractionation of Fish Oils: Concentration of Eicosapentaenoic Acid,” J. Am. Oil Chem. Soc., 61, pp. 698-699 (1984).
Kubota, F., M. Goto and F. Nakashio, “Separation of Polyunsaturated Fatty Acids with Silver Nitrate Using a Hollow-Fiber Membrane Extractor,” Sep. Sci. Technol., 32, pp. 1529-1541 (1997).
Kurokawa, Y., K. Suzuki and Y. Tamai, “Adsorption and Enzyme(β-galactosidase andα-chymotrypsin):Immobilization Properties of Gel Fiber Prepared by the Gel Formation of Cellulose Acetate and Titanium Iso-propoxide,” Biotechnol. Bioeng., 59, 651-656 (1998).
Laskin, A. I., “Enzymes and immobilized cells in biotechnology,” The Benjamin/Cummings Publishing Company, INC, (1985).
Latip, R. A., B. S. Baharin, Y. B. Che Man and R. A. Rahman, “Effect of Adsorption and Solvent Extraction Process on the Percentage of Carotene Extracted from Crude Palm Oil,” J. Am. Oil Chem. Soc., 78, 83-87 (2001).
Lee, C. H. and K. L. Parkin, “Comparative Fatty Acid Selectivity of Lipases in Esterification Reactions with Glycerol and Diol Analogues in Organic Media,” Biotechnol. Prog., 16, pp. 372-377 (2000).
Lee, C. H. and K. L. Parkin, “Effect of Eater Activity and Immobilization on Fatty Acid Selectivity for Esterification Reactions Mediated by Lipases,” Biotechnol. Bioeng., 75, 2, pp. 219-226 (2001).
Li, Z. Y. and O. P. Ward, “Lipase-Catalyzed Esterification of Glycerol and n-3 Polyunsaturated Fatty Acid Concentrate in Organic Solvent,” J. Am. Oil Chem. Soc., 70, 745-748 (1993).
Macrae, A. R., “Lipase-catalyzed Intersterification of Oils and Fats,” J. Am. Oil Chem. Soc., 60, 291-294 (1983).
Malcata, F. X., H. R. Reyes, H. S. Garcia, C. G. Hill and C. H. Amundson, “Kinetics and Mechanisms of Reaction Catalyzed by Immobilized Lipases,” Enzyme Microb. Technol., 14, 426-446 (1992).
Mangos, T. J., K. C. Jones and T. A. Foglia, “Lipase-catalyzed Synthesis of Structured Low-calorie Triacylglycerols,” J. Am. Oil Chem. Soc., 76, 1127-1132 (1999).
Matthias, B., L. Kurt and P. S. Manfred, “Enzymatic Esterification of Glycerol I. Lipase-catalyzed Synthesis of Regioisomerically Pure 1,3-sn-Diacylglycerols,” J. Am. Oil Chem. Soc., 69, 955-960 (1992).
Mattson, F. H. and R. A. Volpenhein, “Synthesis and Properties of Glycerides,” J. Lipid Res., 3, pp. 281-296 (1962).
Medina, A. R., E. M. Grima, A. G. Giménez and M. J. I. González, “Downstream Processing of Algal Polyunsaturated Fatty Acids,” Biotechnol. Adv., 16, pp. 517-580 (1998).
Medina, A. R., L. E. Cerdán, A. G. Giménez, B. C. Páez, M. J. I. González and E. M. Grima, “Lipase-Catalyzed Esterification of Glycerol and Polyunsaturated Fatty Acids from Fish and Microalgae Oils,” J. Biotechnol., 70, 379-391 (1999).
Mukherjee, K. D., I. Kiewitt, and M. J. Hills, “Substrate Specificities of Lipase in View of Kinetic Resolution of Unsaturated Fatty Acids,” Appl. Microbial. Biotechnol., 40, pp. 489-495 (1993).
Nigam, S. C., A. Sakoda and H. Y. Wang, “Bioproduct Recovery from Unclarified Broths and Homogenates Using Immobilized Adsorbents,” Biotechnol. Prog., 4, 3, 166-172 (1988).
Nilsson, W. B., E. J. Gauglitz Jr, J. K. Hudson, V. F. Stout and J. Spinelli, “Fractionation of Menhaden Oil Ethyl Esters Using Supercritical Fluid CO2,” J. Am. Oil Chem. Soc. 65, pp. 109-117 (1988).
Ortega, N., D. M. Busto, M. Perez-Mateos, “Optimisation of β-glucosidase Entrapment in Alginate and Polyacrylamide Gels,” Biores. Technol., 64, 105-111 (1998).
Rahmatullah, M. S .K. S., V. K. S. Shukla and K. D. Mukherjee, “g-Linolenic Acid Concentrates from Borage and Evening Primrose Oil Fatty Acid via Lipase-Catalyzed Esterification,” J. Am. Oil Chem. Soc., 71, pp. 563-567 (1994).
Rosu, R., Y. Iwasaki, N., Shimidzu, N. Doisaki and T.Yamane, “Enzymatic Synthesis of Glycerides from DHA-enriched PUFA Ethyl Ester by Glycerolysis Under Vacuum,” J. Mol. Cata. B, 4, 191-198 (1998).
Rupley, Y. A. and G. Careri, “Protein hydration and function,” Advances in Protein Chemistry, 41, 37-172 (1991).
Schlenk, H., “Crystallization of Fatty Acids,” J. Am. Oil Chem. Soc., 38, pp. 728-736 (1961).
Schmid, U., U. Y. Bornscheuer, M. M. Soumanou, G. P. Mcneill and R. D. Schmid, “Optimization of the Reaction Conditions in the Lipase- catalyzed Synthesis of Structured Triglycerides,” J. Am. Oil Chem. Soc., 75, 1527-1531 (1998).
Schmitt-Rozieres, M., V. Deyris and L.C. Comeau, “Enrichment of Polyunsaturated Fatty Acids from Sardine Cannery Effluents by Enzymatic Selective Esterification,” J. Am. Oil Chem. Soc., 77, pp. 329-332 (2000).
Sellappan, S. and C. C. Akoh, “Enzymatic Acidolysis of Tristearin with Lauric and Oleic Acids to Produce Coating Lipids,” J. Am. Oil Chem. Soc., 77, 1127-1133 (2000).
Selmi, B., E. Gontier, F. Eragn and D. Thomas, “Effects of Fatty Acid Chain Length and Unsaturation Number on Triglyceride Synthesis Catalyzed by Immobilized Lipase in Solvent-Free Medium,” Enzyme Microb. Technol., 23, pp. 182-186 (1998).
Senanayake, S. P. J. N. and F. Shahidi, “Concentration of Docosahexaenoic Acid (DHA) from Algal Oil via Urea Complexation,” J. Food Lipids, 7, pp. 51-61 (2000).
Shimada, Y., A. Sugihara, H. Nakano, T. Kuramoto, T. Nagao, M. Gemba and Y. Tominaga, “Purification of Docosahexaenoic Acid by Selective Esterification of Fatty Acids from Tuna Oil with Rhizopus delemar Lipase,” J. Am. Oil Chem. Soc., 74, pp. 97-101 (1997a).
Shimada, Y., K. Maruyama, A. Sugihara, S. Moriyama and Y. Tominaga, “Purification of Docosahexaenoic Acid from Tuna Oil by a Two-Step Enzymatic Method: Hydrolysis and Selective Esterification,” J. Am. Oil Chem. Soc., 74, pp. 1441-1446 (1997b).
Shimada, Y., A. Sugihara, M. Shibahiraki, H. Fujita, H. Nakano, T. Nagao, T. Terai and Y. Tominaga, “Purification of g-Linolenic Acid from Borage Oil by a Two-Step Enzymatic Method,” J. Am. Oil Chem. Soc., 74, pp. 1465-1470 (1997c).
Shimada, Y., A. Sugihara, Y. Minamigawa, K. Higashiyama, K. Akimoto, S. Fujikawa, S. Komemushi and Y. Tominaga, “Enzymatic Enrichment of Arachidonic Acid from Mortierella Single-Cell Oil,” J. Am. Oil Chem. Soc., 75, pp. 1213-1217 (1998a).
Shimada, Y., N. Sakai, A. Sugihara, H. Fujita, Y. Honda and Y. Tominaga, “Large-Scale Purification of g-Linolenic Acid by Selective Esterification Using Rhizopus delemar Lipase,” J. Am. Oil Chem. Soc., 75, pp. 1539-1544 (1998b).
Shtilman, M. I., “Immobilization on polymers,” VSP, Utrecht, The Netherlands, (1993).
Shubhada, S. and P. V. Sundaram, “The Role of pH Change Caused by the Addition of Water-miscible Organic Solvents in the Destabilization of an Enzyme,” Enzyme Microb. Technol., 17, 330-335 (1995).
Smith, A. E., “The Crystal Structure of the Urea-Hydrocarbon Complex,” Acta Cryst., 5, pp. 224-235 (1952).
Stacey J. Bell, DSc, RD; Dondeena Bradley, PhD; R. Armour Forse, MD, PhD; Bruce R. Bistrian, MD, PhD, “The New Dietary Fats in Health and Disease,”J. Am. Diete. Asso., 97, 280-286(1997).
Stevenson, D. E., R. A. Stanley and R. H. Furneaux, “Glycerolysis of Tallow with Immobilization Lipase,” Biotechnol. Lett., 15, pp. 1043-1048 (1993).
Tanaka, Y., J. Hirano and T. Funada, “Synthesis of Docosahexaenoic Acid-Rich Triglyceride with Immobilized Chromobacterium viscosum Lipase,” J. Am. Oil Chem. Soc., 71, pp. 331-334 (1994).
Teramoto, M., H. Matsuyama, N. Ohnishi, S. Uwagawa and K. Nakai, “Extraction of Ethyl and Methyl Esters of Polyunsaturated Fatty Acids with Aqueous Silver Nitrate Solutions,” Ind. Eng. Chem. Res., 33, pp. 341-345 (1994).
Tor, R., Y. Dror and A. Freeman, “Enzyme Stabilization by Bilayer Encagement,” Enzyme Microb. Technol., 11, 306-312 (1989).
Volkin, D. B., A. Staubli, R. Langer and A. M. Klibanov, “Enzyme Thermoinactivation in Anhydrons Organic Solvent,” Biotechnol. Bioeng., 37, 843-853 (1991).
Walker, T. H., H. D. Cochran and G. J. Hulbert, “Supercritical Carbon Dioxide Extraction of Lipids from Pythium irregulare,” J. Am. Oil Chem. Soc., 76, pp. 595-602 (1999).
Wanasundara, U. N. and F. Shahidi, “Concentration of Omega-3 Polyunsaturated Fatty Acids of Seal Blubber Oil by Urea Complexation: Optimization of Condition,” Food Chem. 65, pp. 41-49 (1999).
Wheeler, D. H., R. W. Reimenschneider and C. E. Sando, “Preparation, Properties, and Thiocyanogen Absorption of Triolein and Trilinolein ,“ J. Biol. Chem., 132, pp. 687-699 (1940).
Willis, W. M., R. W. Lencki and A. G. Marangoni, “Lipid Modification Strategies in the Production of Nutritionally Functional Fats and Oils,”Critical Reviews in Food Science and Nutrition, 38, 639-674(1998)
Xu, X., “Production of Specific-structured Triacylglycerols by Lipase-catalyzed Reactions: a review,” Eur. J. Lipid Sci. Technol., 287-303. (2000).
Yamamura, R. and Y. Shimomura, “Industrial High-Performance Liquid Chromatography Purification of Docosapentaenoic Acid Ethyl Ester from Single-Cell Oil,” J. Am. Oil Chem. Soc., 74, pp. 1435-1440 (1997).
Yamauchi, K., T. Tanabe and M. Kinoshita, “Trimethylsulfonium Hydroxide: A New Methylating Agent,” J. Org. Chem. 44, pp. 638-639 (1979).
田中嘉郎,“棕櫚所含胡蘿蔔素的物理特性及機能性,”New Food
Industry, 37, 59-70 (1995)
邵志忠,“棕櫚油成長潛力大,”食品工業, 26 n3, 53-57(1994)
侯耀明,“脂肪於兩相系統中之水解動力模式,”成功大學化學工程研究所碩士論文(1993)
范加錫,“D型乙內醯脲酶製備D-胺基酸之研究,”台灣科技大學化學工程研究所博士論文(1999)
陳炳輝,“類胡蘿蔔素的特性與應用,”輔仁大學食品營養系專題報導,第28卷第28期笫599頁(2000)
陳國誠,“微生物酵素工程學,”藝軒圖書公司(1989)
曾德仁,“魷魚內臟油中EPA與DHA之濃縮,”國立臺灣大學農業化學研究所,碩士論文(1994)
黃芳正,“脂解酵素在有機溶劑中水解棕櫚核仁軟酯之研究,”台灣科技大學化學工程研究所博士論文(1995)
楊國珠,“母乳中AA及 DHA含量與影響因子探討,”台灣師範大學家政教育研究所碩士論文(2000)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top