|
[1] R. H. Haitz, “Studies on optical coupling between silicon p-n junctions,”Solid-State Electronics, vol. 8, pp. 417–425, Sept. 1965. [2] P. P. Webb and R. J. McIntyre, “Single photon detection with avalanche photodiodes,” In Bulletin of the American Physical Society, vol. 15, no. 6,p. 813, 1970. [3] S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” Journal of Modern Optics, vol. 51, pp. 1267–1288, June 2004. [4] C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18 μm CMOS technology,” in Proceedings of IEEE International Electron Devices Meeting,2010. [5] I. Rech, D. Resnati, A. Gulinatti, M. Ghioni, and S. Cova, “Self-suppression of reset induced triggering in picosecond SPAD timing circuits,” Review of Scientific Instruments, vol. 78, no. 086112, pp. 086112–1–086112–3, 2007. [6] A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy,and N. Gisin, “Single photon detector fabricated in a complementary metaloxide-semiconductor high-voltage technology,” Review of Scientific Instruments,vol. 74, pp. 3263–3271, Jul. 2003. [7] R. Walker, J. Richardson, and R. Henderson, “A 128x96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13 μm CMOS imaging technology,” in Proceedings of IEEE Solid-State Circuits Conference Digest of Technical Papers, pp. 410–412, 2011. [8] C. Niclass, M. Soga, H. Matsubara, M.Ogawa, and M.Kagami, “A 0.18 μm CMOS SoC for a 100 m-range 10-frame/s 200 96-pixel time-of flight depth sensor,” in Proceedings of IEEE Solid-State Circuits Conference Digest of Technical Papers, pp. 488–489, 2013. [9] E. Fisher, I. Underwood, and R. K. Henderson, “A reconfigurable singlephoton-counting integrating receiver for optical communications,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 1638–1650, 2013. [10] M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A timeresolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 1394–1407, 2012. [11] Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS,” IEEE Journal of Solid-State Circuits, vol. 49, pp. 179–189, Jan. 2014. [12] N. Dutton, L. A. Grant, and R. Henderson, “9.8 mum SPAD-based analogue single photon counting pixel with bias controlled sensitivity,” in Proceeding of International Image Sensor Workshop, Jau. 2013. [13] C. Veerappan, C. Bruschini, and E. Charbon, “Sensor network architecture for a fully digital and scalable SPAD based PET system,” in IEEE Nuclear Science Symposium Conference Record, pp. 1115–1118, 2012. [14] L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Mas-sari, M.Perenzoni, D.Stoppa, and R.Walker, “An 8x16-pixel 92k SPAD timeresolved sensor with on-pixel 64 ps 12b TDC and 100MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications,” in Proceedings of IEEE Solid-State Circuits Conference Digest of Technical Papers, pp. 486–487, 2013. [15] F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors and Actuators, A: Physical,vol. 140, pp. 103–112, Oct. 2007. [16] T. Frach, G. Prescher, C. Degenhardt, R. D. Gruyter, S. A., and R. Ballizany,“The digital silicon photomultiplier - Principle of operation and intrinsic detector performance,” in Proc. of IEEE Nuclear Science Symposium, pp. 1959–1965, Oct. 2009. [17] S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Review of Scientific Instruments, vol. 52,pp. 408–412, Mar. 1981. [18] R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,”Measurement, vol. 3, no. 4, pp. 146–152, 1985. [19] E. Charbon and M. W. Fishburn, Monolithic Single-Photon Avalanche Diodes: SPADs, ch. 7, pp. 123–156. Springer, 2011. [20] R. H. Haitz, “Model for the elelectrical behavior of a microplasma,” Journal of Applied Physics, vol. 35, pp. 1370–1377, May 1964. [21] A. Ingargiola, M. Assanelli, I. Rech, A. Gallivanoni, M. Ghioni, and S. Cova,“Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field,” in Proceeding of SPIE Advanced Photon Counting Techniques III, vol. 7320, pp. 73200K1–73200K–12, April 2009. [22] S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Applied Optics, vol. 35, pp. 1956–1976, Apr. 1996. [23] F. Zappa, A. Tosi., A. D. Mora, and S. Tisa, “SPICE modeling of single photon avalanche diodes,” Sensors and Actuators, A: Physical, vol. 153, pp. 197–204, Aug. 2009. [24] S. M. Sze, Physics of Semiconductor Devices. New York, NY, USA: Wiley, 2nd ed., 1981. [25] A. Rochas, Single-Photon Avalanche Diodes in CMOS Technology. PhD thesis, EPFL, Lausanne,Switzerland, 2003. [26] A. Tosi, A. D. Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Review of Scientific Instruments, vol. 83, no. 1, pp. 013104–1–013104–9, 2012. [27] S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosenano scale,” IEEE Electron Device Letters, vol. 12, pp. 685–687, Dec. 1991. [28] A. C. Giudice, M. Ghioni, S. Cova, and F. Zappa, “A process and deep level evaluation tool: afterpulsing in avalanche junctions,” in Proc. of IEEE European Solid-State Device Research, 2003, pp. 347–350, Sep. 2003. [29] H. Zimmermann, Integrated silicon optoelectronics. Springer, 2nd ed., 2009. [30] J. S. Lee, R. I. Hornsey, and D. Renshaw, “analysis of CCMOS photodiodespart I: quantum efficiency,” IEEE Transactions on Electron Devices, vol. 50, pp. 1233–1238, May 2003. [31] A. Lacaita, M. Mastrapasqua, M. Ghioni, and S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p-n junctions,” Applied Physics Letters, vol. 57, p. 489, May 1990. [32] A. Lacaita and M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electronics Letters, vol. 26, pp. 2053–2054, Nov. 1990. [33] A. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Transactions on Electron Devices, vol. 40, pp. 577–582, Mar. 1993. [34] A. Gulinatti, P. Maccagnani, I. Rech, and S. Cova, “35 ps time resolution at room temperature with large area single photon avalanche diodes,” Electronics Letters, vol. 41, pp. 272–274, Mar. 2005. [35] M. Assanelli, A. Ingargiola, I. Rech, A. Gulinatti, and M. Ghioni, “Photontiming jitter dependence on injection position in single-photon avalanche diodes,” IEEE Journal of Quantum Electronics, vol. 47, pp. 151–159, Feb.2011. [36] A. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electronics Letters, vol. 25, pp. 841–843, Jun.1989. [37] A. Lacaita, S. Cova, M. Ghioni, and F. Zappa, “single-photon avalanche diode with ultrafast pulse response free from slow tails,” IEEE Electron Device Letters, vol. 14, pp. 360–362, Jul. 1993. [38] E. A. Webster, L. A. Grant, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44 % photon detection efficiency at 690 nm,” IEEE Electron Device Letters, vol. 33, pp. 694–696, May 2012. [39] C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 1847–1854, Sep.2005. [40] E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Letters, vol. 33, pp. 589–591, Nov 2012. [41] H. Finkelstein, M. J. Hsu, and S. C. Esener, “Dual-junction single-photon avalanche diode,” Electronics Letters, vol. 43, pp. 1228–1229, Oct. 2007. [42] R. K. Henderson, E. Webster, and L. A. Grant, “”a dual-junction single photon avalanche diode in 130-nm cmos technology”,” IEEE Electron Device Letters, vol. 34, pp. 429–431, Mar. 2013. [43] V. Savuskan, M. Javitt, G. Visokolov, I. Brouk, and Y. Nemirovsky, “”selecting single photon avalanche diode (spad) passive-quenching resistance:an approach”,” IEEE Sensors Journal, vol. 13, pp. 2322–2328, Jun. 2013. [44] D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nuclear Instruments &; Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, vol. 567,pp. 48–56, 2006. [45] J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,”Journal of Lightwave Technology, vol. 25, pp. 109–121, Jan. 2007. [46] C. Niclass, A. Rochas, P. A. Besse, R. Popovic, and E. Charbon, “ A 4 μs integration time imager based on CMOS single photon avalanche diode technology ,” Sensors and Actuators, A: Physical, vol. 130-131, pp. 273–281,March 2006. [47] P. K. Lu, “Temporal characteristics of photo-counts and dark counts in single photon avalanche diodes,” Master’s thesis, National Chiao Tung University,Jul. 2014. [48] J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE Journal of Quantum Electronics, vol. 48, pp. 1505–1511, Dec. 2012. [49] Synopsys, Mountain View, CA, USA, Sentaurus User Guide, 2011. [50] E. A. Webster and R. K. Henderson, “A TCAD and spectroscopy study of dark count mechanisms in single-photon avalanche diodes,” IEEE Transactions on Electron Devices, vol. 60, pp. 4014–4019, 2013. [51] E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Transient Single Photon Avalanche Diode Operation, Minority Carrier Effects and Bipolar Latch Up,” IEEE Transactions on Electron Devices, vol. 60, pp. 1188–1194,Mar. 2013. [52] F. P. Chou, G. Y. Chen, C. W. Wang, Y. C. Liu, W. K. Huang, and Y. M. Hsin, “Silicon photodiodes in standard CMOS technology,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 730–740, May 2011. [53] J. Richardson, E. A. G. Webster, L. Grant, and R. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,”IEEE Transactions on Electron Devices, vol. 58, pp. 2028–2035, 2011. [54] M. W. Fishburn, Y. Maruyama, and E. Charbon,“Reduction of fixedposition noise in position-sensitive single-photon avalanche diodes,” IEEE Transactions on Electron Devices, vol. 58, pp. 2354–2361, August 2011. [55] M. Dandin and P. Abshire, “High singal-to-noise ratio avalanche photodiodes with perimeter field gate and active readout,” IEEE Electron Device Letters, vol. 33, pp. 570–572, Apr. 2012. [56] R. J. Walker, E. A. G. Webster, N. M. J. Li, and R. K. Henderson, “High fill factor digital silicon photomultiplier structures in 130 nm CMOS imaging technology,” in Proceeding of IEEE Nuclear Science Symposium and MedicalImaging Coference, pp. 1945–1948, Nov. 2012. [57] J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Optics Express, vol. 22, pp. 4202–2413, Feb 2014. [58] M. J. Hsu, H. Finkelstein, and S. C. Esener, “A CMOS STI-bound singlephoton avalanche diode with 27-ps timing resolution and a reduced diffusion tail,” IEEE Electron Device Letters, vol. 30, pp. 641–643, Jun 2009. [59] M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. K.Henderson, L. Grant, and E. Charbon, “A low-noise single-photon detector implemented in a 130 nm CMOS imaging process,” Solid-State Electronics,vol. 53, no. 7, pp. 803–808, 2009. [60] C. Niclass, M. Gersbacha, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode Implemented in 130-nm CMOS technology ,”IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 863–869, Jul. 2007. [61] K. Cameron, T. Clayton, B. Rae, A. Murray, R. Henderson, and E. Charbon,“Poisson distributed noise generation for spiking neural applications,”in In the Proceedings of IEEE International Symposium on Circuits and Systems, pp. 365–368, May 2010. [62] T. Clayton, K. Cameron, B. R. Rae, N. Sabatier, E. Charbon, R. K. Henderson, G. Leng, and A. Murray, “An implementation of a spike-response model with escape noise using an avalanche diode,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, pp. 231–243, June 2011. [63] M. A. Karami, M. Gersbach, H. J. Yoon, and E. Charbon, “A new singlephoton avalanche diode in 90nm standard CMOS technology,” Optics Express, vol. 18, pp. 22158–22166, Oct. 2010. [64] E. Charbon, H. J. Yoon, and Y. Maruyama, “A Geiger mode APD fabricated in standard 65nm CMOS technology,” in Proceeding of IEEE International Electron Devices Meeting, 2013. [65] D. Bronzi, F. Villa, S. Bellisai, S. Tisa, G. Ripamonti, and A. Tosi, “Figures of merit for CMOS SPADs and arrays,” in Proceeding of SPIE Photon counting applications IV, vol. 8773, pp. 877304–1–877304–7, 2013. [66] C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35 μm CMOS and based on an event-driven readout for TCSPC experiments,” in Proceeding of SPIE Advanced Photon Counting Techniques III, vol. 6372, pp. 63720S–1–63720S–12, October 2006. [67] H. I. Kwon, I. M. Kang, B. G. Park, J. D. Lee, and S. S. Park, “The analysis of dark signals in the CMOS APSimagers from the characterization of test structures,” IEEE Transactions on Electron Devices, vol. 51, pp. 178–184,Feb. 2004. [68] A. G. Andreou, M. A. Marwick, and P. O. Pouliquen, “Deep submicron and nano cos single photon photodetector pixel with event based circuits for readout data-rate reduction communication system,” U.S. Patent No.0245809. [69] V. Savuskan, I. Brouk, M. Javitt, and Y. Nemirovsky, “An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) non-uniformity,” IEEE Sensors Journal, vol. 13, pp. 1637–1640, 2013. [70] F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” in Proceeding of SPIE Sensors,Cameras, and Systems for Industrial/Scientific Applications XI, vol. 7536,pp. 753605–1–753605–10, 2010. [71] D. Stoppa, L. Pancheri, M. Scandiuzzo, L. Gonzo, G.-F. D. Betta, and A. Simoni, “A CMOS 3-D imager based on single photon avalanche diode,”IEEE Transactions on Circuits and Systems, vol. 54, pp. 4–12, Jan 2007. [72] J. Burm, Y. Choi, S. R. Cho, M. D. Kim, S. K. Baek, D. Y. Rhee, B. O.Jeon, H. Y. Kang, and D. H. Jang, “Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications,” IEEE Photonics Technology Letters, vol. 16, pp. 1721–1723, July 2004. [73] A. Tosi, F. Acerbi, A. D. Mora, M. A. Itzler, and X. Jiang, “Active area uniformity of InGaAs/InP single-photon avalanche diodes,” IEEE Photonics Journal, vol. 3, pp. 31–42, February 2011. [74] F. Z. Hsu, J. Y. Wu, and S. D. Lin, “Low-noise single-photon avalanche diodes in 0.25 μm high-voltage CMOS technology,” Optics Letters, vol. 38,pp. 55–57, 2013. [75] L. Pancheri and D. Stoppa, “Low-Noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proceedings of IEEE Europen Solid State Device Research Conference, pp. 362–365, September 2007. [76] C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256×64-pixel single-photonimager in CMOS for a MEMS-based laser scanning time-of-flight sensor,”Optics Express, vol. 20, pp. 11863–11881, 2012. [77] C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of large-scale nonuniformities in a 20 k TDC/SPAD array integrated in a 130 nm CMOS process,” in Proceedings of IEEE Europen Solid State Device Research Conference,pp. 331–334, 2011. [78] N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology,”IEEE Transactions on Electron Devices, vol. 55, pp. 760–767, 2008. [79] S. Radovanovic, High-speed photodiodes in standard CMOS technology. PhD thesis, Twente, Enschede, The Nether-lands, 2004. [80] G. Chynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Physical Review, vol. 102, pp. 369–376, 1956. [81] G. L. Teh, W. K. Chim, Y. K. Swee, and Y. K. Co, “Spectroscopic photon emission measurements of n-channel MOSFET’s biased into snapback breakdown using a continuous-pulsing transmission line technique ,” Semiconductor Science and Technology, vol. 12, pp. 662–671, 1997. [82] O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, “Defect-induced breakdown in multicrystalline silicon solar cells,” IEEE Transactions on Electron Devices,vol. 57, pp. 2227–2234, 2010. [83] D. Lausch, K. Petter, H. V. Wenckstern, and M. Grundmann, “Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells,”Physica Status Solidi (RRL) -Rapid Reserach Letters, vol. 3, no. 2-3, pp. 70–72, 2009. [84] V. Ryzhii, “Characteristics of quantum well infrared photodetectors,” Journal of Applied Physics, vol. 81, pp. 6442–6449, May 1997. [85] A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantumwell infrared photodetector dual-band focal plane arrays,” Optical Engineering, vol. 42, pp. 30–46, Jan 2003. [86] E. Renier, F. Meriaudeau, P. Suzeau, and F. Truchetet, “CCD temperature imaging: applications in steel industry,” in Proceedings of IEEE Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1295–1300, August 1996. [87] P. J. Moore and F. Harscoet, “Low cost thermal imaging for power systems applications using a conventional CCD camera,” in Proceedings of Energy Management and Power Delivery, vol. 2, pp. 589–594, Mar 1998. [88] T. Sentenac, Y. L. Maoultt, G. Rolland, and M. Devy, “Temperature correction of radiometric and geometric models for an uncooled CCD camerain the near infrared,” IEEE Transactions on Instrumentation and Measurement,vol. 52, pp. 46–60, Feb 2003. [89] G. Zauner, D. Heim, K. Niel, G. Hendorfer, and H. Stoeri, “CCD cameras as thermal imaging devices in heat treatment process,” in Proceeding of SPIE Machine Vision Applications in Industrial Inspection XII, vol. 5303, pp. 81–89, May 2004. [90] G. Zauner and G. Hendorfer, “Multiresolution denoising of CCD thermalimages for improved spatial temperature resolution,” in Proceeding of SPIE Wavelet Applications in Industrial Processing III, vol. 6001, pp. 60010C–1–60010C–10, Oct 2005. [91] S. Dhokkar, B. Serio, P. Lagonotte, and P. Meyrueis, “Power transistor nearinfrared microthermography using an intensified CCD camera and frame integration,” Measurement Science and Technology, vol. 18, pp. 2689–2697,Aug 2007. [92] B. Serio, J. Hunsinger, F. Conseil, P. Derderian, D. Collard, L. Buchaillot,and M. Ravat, “Near infrared thermography using an intensified CCD camera: application in non-destructive high resolution evaluation of electrothermally actuated MEMS,” in Proceeding of SPIE Optical Measurement Systems for Industrial Inspection IV, vol. 5856, pp. 819–829, Aug 2005. [93] A. Eisele, R. Henderson, B. Schmidtke, T. Funk, L. A. Grant, J. Richardson, and W. Freude, “185 MHz count rate, 139 dB dynamic rangesingle-photon avalanche diode with active quenching circuit in 130 nm CMOS technology,” in Proceeding of International Image Sensor Workshop, vol. R43, pp. 278–280, 2011. [94] R. A. Serway, C. Moses, and C. A. Moyer, Modern Physics. Thomson, 2nd ed., 1997. [95] A. Fisenko and S. Ivashov, “Determination of the true temperature of emitted radiation bodies from generalized Wien’s displacement law,” Journal of Physics D: Applied Physics, vol. 32, pp. 2882–2885, Sep 1999. [96] F. Meriaudeau, “Real time multispectral high temperature measurement: application to control in thei ndustry,” Image and Vision Computing, vol. 25, pp. 1124–1133, July 2007. [97] http://www.micro-photon-devices.com/Products. [98] S. Dhokkar, P. Lagonotte, and A. Piteau, “Experimental setup for the measurement of local temperature in electronic component during the steady and transient state,” in Proceeding of IEEE 50th Midwest Symposium on Circuits and Systems, pp. 1241–1244, Aug 2007. [99] S. Mandai, M. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Optics Express, vol. 20, pp. 5849–5857, Mar 2012. [100] A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi,L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in timeresolved measurements,” Optics Express, vol. 19, pp. 10735–10746, Mar 2011. [101] I. Rech, I. Labanca, G. Armellini, A. Gulinatti, M. Ghioni, and S. Cova, “Operation of silicon single photon avalanche diodes at cryogenic temperature,”Review of Scientific Instruments, vol. 78, no. 063105, pp. 063105–1–063105–3, 2007.
|