1.馮垛生, “太陽能發電原理與應用,” 五南圖書公司,台北市 (2009) p.6.
2.M. Pagliaro, R. Ciriminna and G. Palmisano “Flexible Solar Cells,” ChemSusChem, 1 (2008) 880 – 891.
3.KRI Report No. 8:Solar Cells, February 2005.
4.顧鴻濤, “太陽能電池元件導論-材料、元件、製程、系統,” 全威圖書公司,台北市 (2008).
5.美國國家再生能源實驗室(National Renewable Energy Laboratory; NREL)
6.P. Wang, D. Chen, F. Q. Tang, “Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis,” Langmuir, 22 (2006) 4832-4835.
7.W. Qian, Z. Z. Gu, “Three-dimensionally ordered macroporous polymer materials: An approach for biosensor applications,” Langmuir, 18 (2002) 4526-4529.
8.E. R. Goldman, A. R. Clapp,“Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents,” Anal Chem, 76 (2004) 684-688.
9.S. Freiberg, X.X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm, 282 (2004) 1-18.
10.J. Lim, R. D. Tilton, A. Eggeman, S. A. Majetich, “Design and synthesis of plasmonic magnetic nanoparticles,” J. Magn. Magn. Mater, 311 (2004) 78-83.
11.C. He, Y. Xiong, X. Zhu, “A Novel Method for Improving Photocatalytic Activity of TiO2 Film: The Combination of Ag Deposition with Application of External Electric Field,” Thin Solid Films, 422 (2002) 235–238.
12.S. X. Liu, Z. P. Qu, X. W. Han, C. L. Sun, “A Mechanism for Enhanced Photocatalytic Activity of Silver-loaded Titanium Dioxide,” Catalysis Today, 93–95 (2004) 877–884.
13.A. Syoufian, O. H. Satriya, K. Nakashima, “Photocatalytic activity of titania hollow spheres: Photodecomposition of methylene blue as a target molecule,” Catalysis Communications, 8 (2007) 755–759.
14.C. Song, W. Yu, B. Zhao, “Efficient fabrication and photocatalytic properties of TiO2 hollow spheres,” Catalysis Communications, 10 (2009) 650-654.
15.F. Caruso, R. A. Caruso, H. Möhwald, “Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating,” Science, 282 (1998) 1111-1114.
16.S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Physical Review Letters, 58 (1987) 2486-2489.
17.E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Physical Review Letters, 58 (1987) 2059-2062.
18.E. Yablonovitch, “Photonic crystals: semiconductor of light,” Scientific American December, 47 (2001)
19.P. Yeh, “Optical Waves in Layered Media”, John Wiley and Sons, New York, (1988) p.280.
20.F. F. Reuss, “Notice sur Un Nouvel Effet de l’electricite Galvanique,” Mem.Soc. Imp. Natur. Moscou, 2 (1809) 327-337.
21.S. N. Heavens, “Electrophoretic Deposition as a Processing Route for Ceramics,” Advanced Ceramic Processing and Technology, 7 (1990) 255-283.
22.R. W. Powers, “The Electrophoretic Forming of Beta-Alumina Ceramic,” J. Electrochemical Soc., 122 (1975) 490-500.
23.M. Hein, G. Műller, H. Piel, L. Ponto, M. Becks, U. Klein and M. Peiniger, “Electrophoretic Deposition of Textured YBa2Cu3O7-x Films on Silver Substrates,” J. Applied Physics, 66 (1989) 5940-5943.
24.D. Myers, “Surfaces, Interfaces, and Colloids : Priciples and Applications,” 2nd, Wiley, Chap.4, 4.3. Classification of Physical Forces (1999) 47-48.
25.R. Chaim, G. Stark and L. Gal-Or, “Electrochemical ZrO2 and Al2O3 Coatings on SiC Substrates,” J. Materials Sci., 29 (1994) 6241-6248.
26.I. Zhitomirsky and L.Gal-Or, “Formation of Hollow Fibers by Electrophoretic Deposition,” Materials Letters, 38 (1999) 10-17.
27.L. Vandeperre, O. van der Biest, F. Bouyer, J. Persello and A. Foissy, “Electrophoretic Forming of Silicon Carbide Ceramics,” J. European Ceramic Soc., 17 (1997) 373-376.
28.F. Harbach and H. Nienburg, “Homogeneous Functional Ceramic Components through Electrophoretic Deposition from Stable Colloidal SuspensionsI. Basic Concepts and Application to Zirconia,” J. European Ceramic Soc., 18 (1998) 675-683.
29.J. van Tassel and C. A. Randall, “Electrophoretic Deposition and Sintering of Thin/Thick PZT Films,” J. European Ceramic Soc., 19 (1999) 955-958.
30.L. Vandeperre, O. van der Biest, “SiC-Graphite Laminates Shaped by EPD,” American Ceramic Society Bulletin, 77 (1998) 53-58.
31.L. M. Tham, L. Su, L. Cheng and M. Gupta, “Micromechanical Modeling of Processing-induced Damage in Al-SiC Metal Matrix Composites Synthesized Using the Disintegrated Melt Deposition Technique,” Materials Research Bulletin, 34 (1999) 71-79.
32.R. C. Hayward, D. A. Saville and I. A. Aksay, “Electrophoretic Assembly of Colloidal Crystals with Optically Tunable Micropatterns,” Nature, 404 (2000) 56-59.
33.E. Kumacheva, R. K. Golding, M. Allard and E. H. Sargent, “Colloid Crystal Growth on Mesoscopically Patterned Surfaces: Effect of Confinement,” Advanced Materials, 14 (2002) 221-224.
34.S. O. Lumsdon, E. W. Kaler, J. P. Williams and O. D. Velev, “Dielectrophoretic Assembly of Oriented and Switchable Two-dimensional Photonic Crystals,” Applied Physics Letters, 82 (2003) 949-951.
35.B. Kim, S. L. Tripp and A. Wei, “Self-Organization of Large Gold Nanoparticle Arrays,” J. Am. Chem. Soc., 123 (2001) 7955-7956.
36.Y. Han and D. G. Grier, “Confinement-Induced Colloidal Attractions in Equilibrium,” Physical Review Letters, 91 (2003) 038302.
37.A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander and G. A. Ragoisha, “Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals: A Technique for Rapid Production of High-Quality Opals,” Chemistry of Materials, 12 (2000) 2721-2726.
38.H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, 261 (1976) 402-403.
39.B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353 (1991) 737-740.
40.M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” J. Am. Chem. Soc., 127 (2005) 16835-16847.
41.A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics,” Acc. Chem. Res, 33 (2000) 269-277.
42.P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell,” J. Am. Chem. Soc., 126 (2004) 13590-13591.
43.A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency,” Science, 334 (2011) 629-634.
44.M. Gratzel, “Photoelectrochemical cells,” Nature, 414 (2001) 338-344.
45.M. Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 3-14.
46.C. G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Solar Energy Materials and Solar Cells, 91 (2007) 1529-1598.
47.C. Sima, C. Grigoriu, S. Antohe, “Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO,” Thin Solid Films, 519 (2010) 595-597.
48.巫菁芳,“奈米二氧化鈦覆載於銀擔體之複合物光觸媒對丙酮去除處理之研究”, 國立交通大學碩士論文 (2007).49.鄭智鴻,“量身訂做的二氧化鈦光觸媒之合成及應用”,國立成功大學碩士論文 (2006).50.洪雨利,“溶膠凝膠法製備二氧化鈦光觸媒進行光催化還原二氧化碳之批次反應研究”,國立中山大學碩士論文 (1997).51.S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films, 516 (2008) 4613-4619.
52.瑞士Solaronix官方網站資料http://www.solaronix.com/ (2011).
53.K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes,” Solar Energy Materials and Solar Cells, 77 (2003) 89-103.
54.K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New J Chem, 27 (2003) 783-785.
55.J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang and Y. Huang, “Progress on the electrolytes for dye-sensitized solar cells,” Pure Appl. Chem., 80 (2008) 2241-2258.
56.H. Usuia, H. Matsuia, N. Tanabea, S. Yanagidab, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes,” Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 97-101.
57.T. Stoffel, D. Renné, D. Myers, S. Wilcox, M. Sengupta, R. George, C. Turchi, “Best Practices Handbook for the Collection and Use of Solar Resource Data,” National Renewable Energy Laboratory, 2010.
58.J. Nelson, “The Physics of Solar Cells,” Imperial College Press, (2003) 11-14.
59.F. Caruso, X. shi, R. A. Caruso, and A. Susha, “Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles,” Adv. Mater., 13 ( 2001) 740-744
60.Z. Z. Yang, Z. W. Niu, Y. F. Lu, Z. B. Hu, and C. C. Han, “Templated synthesis of inorganic hollow spheres with tunable cavity size onto core/shell gel particles,” Angew. Chem. Int. Ed, 42 (2003) 1943-1945.
61.Y. Xu, H. B. Sun, J. Y. Ye, S. Matsuo and H. Misawa “Fabrication and Direct Transmission Measurement of High-aspect-ratio Two-dimensional Silicon-based Photonic Crystal Chips,” Journal of the Optical Society of America B, 18 (2001) 1084-1091.
62.F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo and W. F. Hsieh, “Nanomachining of (110)-oriented Silicon by Scanning Probe Lithography and Anisotropic Wet Etching,” Applied Physics Letters, 75 (1999) 2429-2431.
63.A. Boisen, K. Birkelund, O. Hansen, and F. Grey, “Fabrication of submicron suspended structures by laser and atomic force microscopy lithography on aluminum combined with reactive ion etching,” The Journal of Vacuum Science and Technology B, 16 (1998) 2977-2981.
64.S. Shoji and S. Kawata, “Photofabrication of Three-dimensional Photonic Crystals by Multibeam Laser Interference into A Photopolymerizable Resin,” Applied Physics Letters, 76 (2000) 2668-2670.
65.M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, “Fabrication of Photonic Crystals for The Visible Spectrum by Holographic Lithography,” Nature, 404 (2000) 53-56.
66.T. Kawashima, K. Miura, T. Sato and S. Kawakami, “Self-healing Effects in The Fabrication Process of Photonic Crystals,” Applied Physics Letters, 77 (2000) 2613-2615.
67.G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl and W. Koenig “Fabrication of Photonic Crystals by Deep X-ray Lithography,” Applied Physics Letters, 71 (1997) 1441-1443.
68.M. Egen, R. Voss, B. Griesebock, R. Zentel, S. Romanov and C. S. Torres, “Heterostructures of Polymer Photonic Crystal Films,” Chemistry of Materials, 15 (2003) 3786-3792.
69.J. P. Hoogenboom, and D. Derks, P. Vergeer and A.van Blaaderena “Stacking Faults in Colloidal Crystals Grown by Sedimentation,” Journal of Chemical Physics, 117 (2002) 11320-11328.
70.S. Ross, “Sedimentation of Crystals in Hard-Sphere, Monodisperse Colloidal Suspensions,” Howard University. Washington.(2003).
71.A. S. Dimitrov, C. D. Dushkin, H. Yoshimura and K. Nagayama, “Observations of Latex Particle Two-Dimensional-Crystal Nucleation in Wetting Films on Mercury, Glass, and Mica,” Langmuir, 10 (1994) 432-440.
72.A. S. Dimitrov, T. Miwa, and H. Yoshimura, “A Comparison between the Optical Properties of Amorphous and Crystalline Monolayers of Silica Particles,” Langmuir, 15 (1999) 5257-5264.
73.Q. B. Meng, Z. Z. Gu and O. Sato, “Fabrication of Highly Ordered Porous Structures,” Applied Physics Letters, 77 (2000) 4313-4315.
74.Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris, “On-chip Natural Assembly of Silicon Photonic Bandgap Crystals,” Nature, 414 (2001) 289-293.
75.H. Míguez, E. Chomski, F. G. Santamaría, M. Ibisate, S. John, C. López, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader and H. M. van Driel, “Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition,” Advanced Materials, 13 (2001) 1634-1637.
76.J. E. G. J. Wijnhoven and Willem L. Vos, “Preparation of Photonic Crystals Made of Air Spheres in Titania,” Science, 281 (1998) 802-804.
77.J. D. Joannopoulos, “Self-assembly Lights Up,” Nature, 414 (2001) 257-258.
78.Q. Zhou, P. Dong and B. Cheng, “Progress in Three-Dimensionally Ordered Self-assembly of Colloidal SiO2 Particles,” China Particuology, 1 (2003) 124-130.
79.Y. Xia, B. Gates, Y. Yin, and Yu Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Advanced Materials, 12 (2000) 693-713.
80.A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir, 12 (1996) 1303-1311.
81.A. V. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed Colloidal Crystallization,” Nature, 385 (1997) 321-324.
82.R. F. Louh and E. Huang, “Electrophoretic Self-Assembly of Sol-Gel Derived Silica Microspheres,” Solid State Phenomena, 124 (2007) 599-602.
83.O. Vickreva, O. Kalinina and E. Kumacheva, “Colloid Crystal Growth under Oscillatory Shear,” Advanced Materials, 12 (2000) 110-112.
84.G. Subramanian, V. N. Manoharan, J. D. Thorne, D. J. Pine, “Ordered macroporous Materials by colloidal assembly: A possible route to photonic bandgap materials,” Adv. Mater. 11 (1999) 1261-1265.
85.A. Stein, and R. C. Schroden, “Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond,” Solid State Mater. Sci., 5 (2001) 553-564.
86.S. L Kuai, X. F Hu, and V. V Truong, “Synthesis of thin film titania photonic crystals through a dip-infiltrating sol–gel process,” J. Crys. Grow., 259 (2003) 404-410.
87.D. Ramirez, H. Gomez, “Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density,” Electrochimica Acta, 55(2010) 2191-2195.
88.G. T. Duan, F. J. Lv, “General Synthesis of 2D Ordered Hollow Sphere Arrays Based on Nonshadow Deposition Dominated Colloidal Lithography,” Langmuir, 26 (2010) 6295-6302.
89.Q. B. Meng, Z. Z. Gu, O. Sato, A. Fujishima, “Fabrication of highly ordered porous structures,” Appl. Phys. Lett., 77 (2000) 4313-4315.
90.Q. B. Meng, C. H. Fu, Y. Einaga, Z. Z. Gu, A. Fujishima, and O. Sato, “Assembly of Highly Ordered Three-Dimensional Porous Structure with Nanocrystalline TiO2 Semiconductors,” Chem. Mater., 14 (2002) 83-88.
91.Z. Z. Gu, S. Kubo, A. Fujishima and O. Sato, “Infiltration of Colloidal Crystal with Nanoparticles Using Capillary Forces: A Simple Technique for the Fabrication of Films with an Ordered Porous Structure,” Appl. Phys. A, 74 (2002) 127-129.
92.I. Soten, H. Miguez, S. M. Yang, S. Petrov, N. Coombs, N. Tetreault,N. Matsuura, H. E. Ruda, and G. A. Ozin, “Barium Titanate Inverted Opals-Synthesis, Characterization,and Optical Properties,” Adv. Funct. Mater., 12 (2002) 71-77.
93.H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, and A. Stein, “General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion,” Chem. Mater., 12 (2000) 1134-1141.
94.H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl and A. Stein, “Preparation and structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating,” Chem.Commun., 26 (2000) 1477-1478.
95.R. Torrecillas, A. Blanco, M. E. Brito, C. López, M. Mı́guez, F. Meseguer, J. S. Moya, “Microstructural study of CdS/opal composites,” Acta. Mater., 48 (2000) 4653-4657.
96.S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable Photonic Band Gap Crystals Based on a Liquid Crystal-Infiltrated Inverse Opal Structure,” J. Am. Chem. Soc., 126 (2004) 8314-8319.
97.S. Kubo, Z. Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the Optical Band Structure of Liquid Crystal Infiltrated Inverse Opal by a Photoinduced Nematic−Isotropic Phase Transition,” J. Am. Chem. Soc., 124 (2002) 10950-10951.
98.K. Yoshino, H. Takeda, M. Kasano, S. Satoh, T. Matsui, R. Ozaki, A. Fujii, M. Ozaki and A. Kose, “Novel tunable optical properties of liquid crystals, conjugated molecules and polymers in nanoscale periodic structures as photonic crystals,” Macromol.Symp., 212 (2004) 179-190.
99.F. Iskandar, M. Abdullah, H. Yoden, and K. Okuyama, “Optical band gap and ultralow dielectric constant materials prepared by a simple dip coating process,” J.Appl. Phys., 93 (2003) 9237-9242.
100.L. Bechger and W. L. Vos, “Homogeneity of oxide air-sphere crystals from millimeter to 100 nm length scales: a probe for macroporous photonic crystal formation,” Chem. Mater., 16 (2004) 2425-2432.
101.洪明宏,“電泳自組裝模板形成反蛋白石結構光子晶體”,逢甲大學碩士論文 (2012).102.S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., 60 (1938) 309-319.
103.X. Fang, T. Ma , G. Guan, M. Akiyama, T. Kida, E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,” Journal of Electroanalytical Chemistry, 570 (2004) 257-263.
104.C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells, 85 (2005) 115-124.
105.E. S. Kwak, W. Lee, N. G. Park, J. Kim and H. Lee, “Compact Inverse-Opal Electrode Using Non-Aggregated TiO2 Nanoparticles for Dye-Sensitized Solar Cells,” Adv. Funct. Mater., 19 (2009) 1093-1099.