跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 19:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃國聞
論文名稱:簡易的氧化鈦中空微球合成方法與其反蛋 白石結構在染料敏化太陽能電池之應用
論文名稱(外文):A Facile Synthetic Route of Titania Hollow Microspheres and its Inverse Opal Structure for Dye Sensitized Solar Cell Applications
指導教授:駱榮富
口試委員:廖文城吳志明
口試日期:2013-07-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:122
中文關鍵詞:無乳化聚合法硬模板法偶氮二異丁鹽酸鹽(AIBA)二氧化鈦中空微球電泳自組裝(EPSA)溶膠凝膠法(Sol-Gel)二氧化鈦反蛋白石結構染料敏化太陽能電池 (DSSC)
外文關鍵詞:Emulsion-free polymerizationHard-templating methodSol-gelTitania inverse opal (TIO)22azobis(2-methylpropion a midine) dihydrochlorid (AIBA)Titania hollow spheresElectrophoretic self-assembly (EPSA)Dye sensitized solar cells (DSSCs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究重點為無乳化聚合法(Emulsifier-free Emulsion Polymerization)製備聚苯乙烯(Polystrene; PS)微球後,利用硬模板法(Hard-Templating Method)製備二氧化鈦中空微球,並以電泳自組裝(Electrophoretic Deposition Self-Assembly; EPSA)方法,製作PS模板;再利用溶膠凝膠法(Sol-gel)製備二氧化鈦反蛋白石(Titania Inverse Opal; TIO)結構。最後將TiO2中空球與反蛋白石結構應用於染料敏化太陽能電池(Dye Sensitized Solar Cell; DSSC)。研究結果得知,吾人以無乳化聚合法搭配陽離子型起始劑AIBA (2,2,Azobis(2-Methylpropion Amidine) Dihydrochloride)合成表面帶正電荷之PS微球作為模板,利用硬模板法合成TiO2/PS核殼微球,經由450oC煆燒移除PS模板後,可獲得具有銳鈦礦晶相之TiO2中空微球。異丙醇鈦濃度為0.1 M所製備之TiO2中空微球,有著最高比表面積為89.35 m2/g,其染料敏化太陽能電池之光電效率也達到1.5%,勝於商用P25粉體。吾人亦利用EPSA技術有效率地獲得高完整性之PS光子晶體模板,藉由Sol-gel法將TiO2膠體填入PS模板孔隙之中,再經由高溫煆燒移除模板能獲得具有銳鈦礦晶相且無雜質之TIO結構,其光電轉換效率為0.1%。
The main aims of this study are to use the emulsifier-free polymerization to produce polystyrene (PS) microspheres, which were used in the hard-templating method to form titania hollow microsphere. Furthermore, we prepared PS photonic crystal template via electrophoresis self-assembly (EPSA) method, sussequently such photonic crystal templates were used to form a titania inverse opal (TIO) structure via sol-gel method. Both independent titania hollow microspheres and TIO structure serve as the working electrodes in dye-sensitized solar cells (DSSCs) for studying the change of DSSC efficiency. The surfaces of PS microspheres derived from emulsifier-free polymerization with cationic initiator of 2,2,azobis(2-methylpropion a midine) dihydrochloride (AIBA) are associated with positive charges. In hard-templating method, titanium(IV) isopropoxide (TTIP) was used as precursor to produce TiO2/PS core shell microspheres to begin with PS microsphere templates. Finally, TiO2 hollow microspheres with anatase phase were obtained after calcination at 450oC to remove PS templates. Those TiO2 hollow microspheres derived from TTIP of 0.1 M concentration have rather higher specific surface area of 89.35 m2/g. The efficiency of DSSC with electrode of TiO2 hollow microsphere was 1.5 %, which was higher than that of electrode made of commercial titania P25 powders. The 3-D photonic crystal templates with opal structure were easily frabricated by EPSA technique. After voids of PS template were filled up with titania sol, TIO structures of anatase crystalline phase without any imputrities were successfully synthecized by removing the PS microspheres through pyrolysis and calcination. The results indicate that TIO has poor continuity, which led to rather low photoelectric conversion efficiency for DSSCs at 0.1% level.
摘 要 I
英文摘要 II
目錄 III
圖目錄 VII
表目錄 XII
第一章 緒 論 1
1.1太陽能電池發展與應用 1
1.2太陽能電池之總類 4
1.3中空結構之簡介與應用 10
1.4光子晶體簡介 11
1.5反蛋白石光子晶體 14
1.6電泳自組裝技術發展介紹 16
1.7研究目的與重點 18
第二章 理論基礎 22
2.1染料敏化太陽能電池 22
2.1.1染料敏化太陽能電池概述 22
2.1.2染料敏化太陽能電池基本構造與工作原理 23
2.1.3透明導電玻璃 25
2.1.4二氧化鈦(TiO2)工作電極 26
2.1.5染料(Dyes) 31
2.1.6電解液(Electrolytes) 34
2.1.7白金對電極(Pt Counter Electrode) 35
2.1.8染料敏化太陽能電池元件數據量測 36
2.2高分子微球的製作 39
2.3二氧化鈦中空球製程 40
2.4光子晶體模板與反蛋白石光子晶體製程 42
第三章 實驗步驟與方法 47
3.1無乳化聚合法製備聚苯乙烯微球 47
3.2硬模板法合成二氧化鈦中空微球 50
3.3硬模板法製備TiO2中空微球相關反應參數 51
3.3.1煆燒溫度對TiO2中空微球之影響 51
3.3.2煆燒持溫時間對TiO2中空微球之探討 51
3.3.3異丙醇鈦濃度對TiO2中空微球之研究 51
3.3.4反應時間對TiO2中空微球之相依性 52
3.4電泳自組裝PS微球形成光子晶體模板 52
3.5溶膠凝膠法製備二氧化鈦反蛋白石結構 54
3.6 Sol-Gel法製備TIO結構相關反應參數 55
3.6.1浸泡時間對TIO結構之影響 55
3.6.2重複浸泡回數對TIO結構之影響 56
3.6.3乾燥時間對TIO結構之影響 56
3.6.4異丙醇鈦濃度對TIO結構之影響 56
3.7染料敏化太陽能電池全電池封裝 57
3.7.1基板清洗 57
3.7.2二氧化鈦工作電極製備 58
3.7.3浸泡染料 60
3.7.4對電極製備 60
3.7.5 DSSC全電池封裝 60
3.8 分析儀器 61
3.8.1 冷場發射掃描式電子顯微鏡 61
3.8.2 多功能薄膜X光繞射儀 63
3.8.3 穿透式電子顯微鏡 64
3.8.4 示差掃描量熱-熱重分析聯用儀 64
3.8.5 比表面積分析儀 66
3.8.6 Zeta介面電位分析儀 67
3.8.7 太陽光模擬器 69
第四章 結果與討論 70
4.1無乳化聚合法製備聚苯乙烯微球 70
4.2硬模板法合成二氧化鈦中空微球 72
4.2.1煆燒溫度對TiO2中空微球之影響 72
4.2.2煆燒持溫時間對TiO2中空微球之探討 76
4.2.3異丙醇鈦濃度對TiO2中空微球之研究 78
4.2.4反應時間對TiO2中空微球之相依性 80
4.2.5煆燒溫度對TiO2中空微球之晶相分析 82
4.2.6 TiO2中空微球之比表面積分析 83
4.2.7 TiO2中空微球應用於染料敏化太陽能電池之效率分析 87
4.3溶膠凝膠法製備二氧化鈦反蛋白石結構 94
4.3.1浸泡時間對TIO結構之影響 94
4.3.2浸泡回數對TIO結構之影響 96
4.3.3乾燥時間對TIO結構之影響 97
4.3.4異丙醇鈦濃度對TIO結構之影響 97
4.3.5 二氧化鈦反蛋白石結構之晶相分析 101
4.3.6 二氧化鈦反蛋白石結構之元素分析 101
4.3.7 TiO2反蛋白石結構應用於DSSC之效率分析 104
4.6未來研究方向 105
第五章 結 論 109
參考文獻 111
1.馮垛生, “太陽能發電原理與應用,” 五南圖書公司,台北市 (2009) p.6.
2.M. Pagliaro, R. Ciriminna and G. Palmisano “Flexible Solar Cells,” ChemSusChem, 1 (2008) 880 – 891.
3.KRI Report No. 8:Solar Cells, February 2005.
4.顧鴻濤, “太陽能電池元件導論-材料、元件、製程、系統,” 全威圖書公司,台北市 (2008).
5.美國國家再生能源實驗室(National Renewable Energy Laboratory; NREL)
6.P. Wang, D. Chen, F. Q. Tang, “Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis,” Langmuir, 22 (2006) 4832-4835.
7.W. Qian, Z. Z. Gu, “Three-dimensionally ordered macroporous polymer materials: An approach for biosensor applications,” Langmuir, 18 (2002) 4526-4529.
8.E. R. Goldman, A. R. Clapp,“Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents,” Anal Chem, 76 (2004) 684-688.
9.S. Freiberg, X.X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm, 282 (2004) 1-18.
10.J. Lim, R. D. Tilton, A. Eggeman, S. A. Majetich, “Design and synthesis of plasmonic magnetic nanoparticles,” J. Magn. Magn. Mater, 311 (2004) 78-83.
11.C. He, Y. Xiong, X. Zhu, “A Novel Method for Improving Photocatalytic Activity of TiO2 Film: The Combination of Ag Deposition with Application of External Electric Field,” Thin Solid Films, 422 (2002) 235–238.
12.S. X. Liu, Z. P. Qu, X. W. Han, C. L. Sun, “A Mechanism for Enhanced Photocatalytic Activity of Silver-loaded Titanium Dioxide,” Catalysis Today, 93–95 (2004) 877–884.
13.A. Syoufian, O. H. Satriya, K. Nakashima, “Photocatalytic activity of titania hollow spheres: Photodecomposition of methylene blue as a target molecule,” Catalysis Communications, 8 (2007) 755–759.
14.C. Song, W. Yu, B. Zhao, “Efficient fabrication and photocatalytic properties of TiO2 hollow spheres,” Catalysis Communications, 10 (2009) 650-654.
15.F. Caruso, R. A. Caruso, H. Möhwald, “Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating,” Science, 282 (1998) 1111-1114.
16.S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Physical Review Letters, 58 (1987) 2486-2489.
17.E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Physical Review Letters, 58 (1987) 2059-2062.
18.E. Yablonovitch, “Photonic crystals: semiconductor of light,” Scientific American December, 47 (2001)
19.P. Yeh, “Optical Waves in Layered Media”, John Wiley and Sons, New York, (1988) p.280.
20.F. F. Reuss, “Notice sur Un Nouvel Effet de l’electricite Galvanique,” Mem.Soc. Imp. Natur. Moscou, 2 (1809) 327-337.
21.S. N. Heavens, “Electrophoretic Deposition as a Processing Route for Ceramics,” Advanced Ceramic Processing and Technology, 7 (1990) 255-283.
22.R. W. Powers, “The Electrophoretic Forming of Beta-Alumina Ceramic,” J. Electrochemical Soc., 122 (1975) 490-500.
23.M. Hein, G. Műller, H. Piel, L. Ponto, M. Becks, U. Klein and M. Peiniger, “Electrophoretic Deposition of Textured YBa2Cu3O7-x Films on Silver Substrates,” J. Applied Physics, 66 (1989) 5940-5943.
24.D. Myers, “Surfaces, Interfaces, and Colloids : Priciples and Applications,” 2nd, Wiley, Chap.4, 4.3. Classification of Physical Forces (1999) 47-48.
25.R. Chaim, G. Stark and L. Gal-Or, “Electrochemical ZrO2 and Al2O3 Coatings on SiC Substrates,” J. Materials Sci., 29 (1994) 6241-6248.
26.I. Zhitomirsky and L.Gal-Or, “Formation of Hollow Fibers by Electrophoretic Deposition,” Materials Letters, 38 (1999) 10-17.
27.L. Vandeperre, O. van der Biest, F. Bouyer, J. Persello and A. Foissy, “Electrophoretic Forming of Silicon Carbide Ceramics,” J. European Ceramic Soc., 17 (1997) 373-376.
28.F. Harbach and H. Nienburg, “Homogeneous Functional Ceramic Components through Electrophoretic Deposition from Stable Colloidal SuspensionsI. Basic Concepts and Application to Zirconia,” J. European Ceramic Soc., 18 (1998) 675-683.
29.J. van Tassel and C. A. Randall, “Electrophoretic Deposition and Sintering of Thin/Thick PZT Films,” J. European Ceramic Soc., 19 (1999) 955-958.
30.L. Vandeperre, O. van der Biest, “SiC-Graphite Laminates Shaped by EPD,” American Ceramic Society Bulletin, 77 (1998) 53-58.
31.L. M. Tham, L. Su, L. Cheng and M. Gupta, “Micromechanical Modeling of Processing-induced Damage in Al-SiC Metal Matrix Composites Synthesized Using the Disintegrated Melt Deposition Technique,” Materials Research Bulletin, 34 (1999) 71-79.
32.R. C. Hayward, D. A. Saville and I. A. Aksay, “Electrophoretic Assembly of Colloidal Crystals with Optically Tunable Micropatterns,” Nature, 404 (2000) 56-59.
33.E. Kumacheva, R. K. Golding, M. Allard and E. H. Sargent, “Colloid Crystal Growth on Mesoscopically Patterned Surfaces: Effect of Confinement,” Advanced Materials, 14 (2002) 221-224.
34.S. O. Lumsdon, E. W. Kaler, J. P. Williams and O. D. Velev, “Dielectrophoretic Assembly of Oriented and Switchable Two-dimensional Photonic Crystals,” Applied Physics Letters, 82 (2003) 949-951.
35.B. Kim, S. L. Tripp and A. Wei, “Self-Organization of Large Gold Nanoparticle Arrays,” J. Am. Chem. Soc., 123 (2001) 7955-7956.
36.Y. Han and D. G. Grier, “Confinement-Induced Colloidal Attractions in Equilibrium,” Physical Review Letters, 91 (2003) 038302.
37.A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander and G. A. Ragoisha, “Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals: A Technique for Rapid Production of High-Quality Opals,” Chemistry of Materials, 12 (2000) 2721-2726.
38.H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, 261 (1976) 402-403.
39.B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353 (1991) 737-740.
40.M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” J. Am. Chem. Soc., 127 (2005) 16835-16847.
41.A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics,” Acc. Chem. Res, 33 (2000) 269-277.
42.P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell,” J. Am. Chem. Soc., 126 (2004) 13590-13591.
43.A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency,” Science, 334 (2011) 629-634.
44.M. Gratzel, “Photoelectrochemical cells,” Nature, 414 (2001) 338-344.
45.M. Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 3-14.
46.C. G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Solar Energy Materials and Solar Cells, 91 (2007) 1529-1598.
47.C. Sima, C. Grigoriu, S. Antohe, “Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO,” Thin Solid Films, 519 (2010) 595-597.
48.巫菁芳,“奈米二氧化鈦覆載於銀擔體之複合物光觸媒對丙酮去除處理之研究”, 國立交通大學碩士論文 (2007).
49.鄭智鴻,“量身訂做的二氧化鈦光觸媒之合成及應用”,國立成功大學碩士論文 (2006).
50.洪雨利,“溶膠凝膠法製備二氧化鈦光觸媒進行光催化還原二氧化碳之批次反應研究”,國立中山大學碩士論文 (1997).
51.S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films, 516 (2008) 4613-4619.
52.瑞士Solaronix官方網站資料http://www.solaronix.com/ (2011).
53.K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes,” Solar Energy Materials and Solar Cells, 77 (2003) 89-103.
54.K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New J Chem, 27 (2003) 783-785.
55.J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang and Y. Huang, “Progress on the electrolytes for dye-sensitized solar cells,” Pure Appl. Chem., 80 (2008) 2241-2258.
56.H. Usuia, H. Matsuia, N. Tanabea, S. Yanagidab, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes,” Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 97-101.
57.T. Stoffel, D. Renné, D. Myers, S. Wilcox, M. Sengupta, R. George, C. Turchi, “Best Practices Handbook for the Collection and Use of Solar Resource Data,” National Renewable Energy Laboratory, 2010.
58.J. Nelson, “The Physics of Solar Cells,” Imperial College Press, (2003) 11-14.
59.F. Caruso, X. shi, R. A. Caruso, and A. Susha, “Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles,” Adv. Mater., 13 ( 2001) 740-744
60.Z. Z. Yang, Z. W. Niu, Y. F. Lu, Z. B. Hu, and C. C. Han, “Templated synthesis of inorganic hollow spheres with tunable cavity size onto core/shell gel particles,” Angew. Chem. Int. Ed, 42 (2003) 1943-1945.
61.Y. Xu, H. B. Sun, J. Y. Ye, S. Matsuo and H. Misawa “Fabrication and Direct Transmission Measurement of High-aspect-ratio Two-dimensional Silicon-based Photonic Crystal Chips,” Journal of the Optical Society of America B, 18 (2001) 1084-1091.
62.F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo and W. F. Hsieh, “Nanomachining of (110)-oriented Silicon by Scanning Probe Lithography and Anisotropic Wet Etching,” Applied Physics Letters, 75 (1999) 2429-2431.
63.A. Boisen, K. Birkelund, O. Hansen, and F. Grey, “Fabrication of submicron suspended structures by laser and atomic force microscopy lithography on aluminum combined with reactive ion etching,” The Journal of Vacuum Science and Technology B, 16 (1998) 2977-2981.
64.S. Shoji and S. Kawata, “Photofabrication of Three-dimensional Photonic Crystals by Multibeam Laser Interference into A Photopolymerizable Resin,” Applied Physics Letters, 76 (2000) 2668-2670.
65.M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, “Fabrication of Photonic Crystals for The Visible Spectrum by Holographic Lithography,” Nature, 404 (2000) 53-56.
66.T. Kawashima, K. Miura, T. Sato and S. Kawakami, “Self-healing Effects in The Fabrication Process of Photonic Crystals,” Applied Physics Letters, 77 (2000) 2613-2615.
67.G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl and W. Koenig “Fabrication of Photonic Crystals by Deep X-ray Lithography,” Applied Physics Letters, 71 (1997) 1441-1443.
68.M. Egen, R. Voss, B. Griesebock, R. Zentel, S. Romanov and C. S. Torres, “Heterostructures of Polymer Photonic Crystal Films,” Chemistry of Materials, 15 (2003) 3786-3792.
69.J. P. Hoogenboom, and D. Derks, P. Vergeer and A.van Blaaderena “Stacking Faults in Colloidal Crystals Grown by Sedimentation,” Journal of Chemical Physics, 117 (2002) 11320-11328.
70.S. Ross, “Sedimentation of Crystals in Hard-Sphere, Monodisperse Colloidal Suspensions,” Howard University. Washington.(2003).
71.A. S. Dimitrov, C. D. Dushkin, H. Yoshimura and K. Nagayama, “Observations of Latex Particle Two-Dimensional-Crystal Nucleation in Wetting Films on Mercury, Glass, and Mica,” Langmuir, 10 (1994) 432-440.
72.A. S. Dimitrov, T. Miwa, and H. Yoshimura, “A Comparison between the Optical Properties of Amorphous and Crystalline Monolayers of Silica Particles,” Langmuir, 15 (1999) 5257-5264.
73.Q. B. Meng, Z. Z. Gu and O. Sato, “Fabrication of Highly Ordered Porous Structures,” Applied Physics Letters, 77 (2000) 4313-4315.
74.Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris, “On-chip Natural Assembly of Silicon Photonic Bandgap Crystals,” Nature, 414 (2001) 289-293.
75.H. Míguez, E. Chomski, F. G. Santamaría, M. Ibisate, S. John, C. López, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader and H. M. van Driel, “Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition,” Advanced Materials, 13 (2001) 1634-1637.
76.J. E. G. J. Wijnhoven and Willem L. Vos, “Preparation of Photonic Crystals Made of Air Spheres in Titania,” Science, 281 (1998) 802-804.
77.J. D. Joannopoulos, “Self-assembly Lights Up,” Nature, 414 (2001) 257-258.
78.Q. Zhou, P. Dong and B. Cheng, “Progress in Three-Dimensionally Ordered Self-assembly of Colloidal SiO2 Particles,” China Particuology, 1 (2003) 124-130.
79.Y. Xia, B. Gates, Y. Yin, and Yu Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Advanced Materials, 12 (2000) 693-713.
80.A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir, 12 (1996) 1303-1311.
81.A. V. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed Colloidal Crystallization,” Nature, 385 (1997) 321-324.
82.R. F. Louh and E. Huang, “Electrophoretic Self-Assembly of Sol-Gel Derived Silica Microspheres,” Solid State Phenomena, 124 (2007) 599-602.
83.O. Vickreva, O. Kalinina and E. Kumacheva, “Colloid Crystal Growth under Oscillatory Shear,” Advanced Materials, 12 (2000) 110-112.
84.G. Subramanian, V. N. Manoharan, J. D. Thorne, D. J. Pine, “Ordered macroporous Materials by colloidal assembly: A possible route to photonic bandgap materials,” Adv. Mater. 11 (1999) 1261-1265.
85.A. Stein, and R. C. Schroden, “Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond,” Solid State Mater. Sci., 5 (2001) 553-564.
86.S. L Kuai, X. F Hu, and V. V Truong, “Synthesis of thin film titania photonic crystals through a dip-infiltrating sol–gel process,” J. Crys. Grow., 259 (2003) 404-410.
87.D. Ramirez, H. Gomez, “Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density,” Electrochimica Acta, 55(2010) 2191-2195.
88.G. T. Duan, F. J. Lv, “General Synthesis of 2D Ordered Hollow Sphere Arrays Based on Nonshadow Deposition Dominated Colloidal Lithography,” Langmuir, 26 (2010) 6295-6302.
89.Q. B. Meng, Z. Z. Gu, O. Sato, A. Fujishima, “Fabrication of highly ordered porous structures,” Appl. Phys. Lett., 77 (2000) 4313-4315.
90.Q. B. Meng, C. H. Fu, Y. Einaga, Z. Z. Gu, A. Fujishima, and O. Sato, “Assembly of Highly Ordered Three-Dimensional Porous Structure with Nanocrystalline TiO2 Semiconductors,” Chem. Mater., 14 (2002) 83-88.
91.Z. Z. Gu, S. Kubo, A. Fujishima and O. Sato, “Infiltration of Colloidal Crystal with Nanoparticles Using Capillary Forces: A Simple Technique for the Fabrication of Films with an Ordered Porous Structure,” Appl. Phys. A, 74 (2002) 127-129.
92.I. Soten, H. Miguez, S. M. Yang, S. Petrov, N. Coombs, N. Tetreault,N. Matsuura, H. E. Ruda, and G. A. Ozin, “Barium Titanate Inverted Opals-Synthesis, Characterization,and Optical Properties,” Adv. Funct. Mater., 12 (2002) 71-77.
93.H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, and A. Stein, “General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion,” Chem. Mater., 12 (2000) 1134-1141.
94.H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl and A. Stein, “Preparation and structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating,” Chem.Commun., 26 (2000) 1477-1478.
95.R. Torrecillas, A. Blanco, M. E. Brito, C. López, M. Mı́guez, F. Meseguer, J. S. Moya, “Microstructural study of CdS/opal composites,” Acta. Mater., 48 (2000) 4653-4657.
96.S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable Photonic Band Gap Crystals Based on a Liquid Crystal-Infiltrated Inverse Opal Structure,” J. Am. Chem. Soc., 126 (2004) 8314-8319.
97.S. Kubo, Z. Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the Optical Band Structure of Liquid Crystal Infiltrated Inverse Opal by a Photoinduced Nematic−Isotropic Phase Transition,” J. Am. Chem. Soc., 124 (2002) 10950-10951.
98.K. Yoshino, H. Takeda, M. Kasano, S. Satoh, T. Matsui, R. Ozaki, A. Fujii, M. Ozaki and A. Kose, “Novel tunable optical properties of liquid crystals, conjugated molecules and polymers in nanoscale periodic structures as photonic crystals,” Macromol.Symp., 212 (2004) 179-190.
99.F. Iskandar, M. Abdullah, H. Yoden, and K. Okuyama, “Optical band gap and ultralow dielectric constant materials prepared by a simple dip coating process,” J.Appl. Phys., 93 (2003) 9237-9242.
100.L. Bechger and W. L. Vos, “Homogeneity of oxide air-sphere crystals from millimeter to 100 nm length scales: a probe for macroporous photonic crystal formation,” Chem. Mater., 16 (2004) 2425-2432.
101.洪明宏,“電泳自組裝模板形成反蛋白石結構光子晶體”,逢甲大學碩士論文 (2012).
102.S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., 60 (1938) 309-319.
103.X. Fang, T. Ma , G. Guan, M. Akiyama, T. Kida, E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,” Journal of Electroanalytical Chemistry, 570 (2004) 257-263.
104.C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells, 85 (2005) 115-124.
105.E. S. Kwak, W. Lee, N. G. Park, J. Kim and H. Lee, “Compact Inverse-Opal Electrode Using Non-Aggregated TiO2 Nanoparticles for Dye-Sensitized Solar Cells,” Adv. Funct. Mater., 19 (2009) 1093-1099.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊