第六章 參考文獻
[1]磁性技術手冊. (中華民國磁性技術協會, 2002).
[2]何開元. 精密合金材料學. (北京冶金工業出版社, 1991).
[3]http://www.magnetnrg.com/pm-history.html. 永久磁石材料最大磁能積的演進.
[4]Nesbitt, E. A., Wernick, J. H. & Corenzwit, E. Magnetic Moments of Alloys and Compounds of Iron and Cobalt with Rare Earth Metal Additions. Journal of Applied Physics 30, 365-367 ( 1959).
[5]Hubbard, W. M., Adams, E. & Gilfrich, J. V. Magnetic Moments of Alloys of Gadolinium with Some of the Transition Elements. Journal of Applied Physics 31, S368-S369 ( 1960).
[6]Strnat, K., Hoffer, G., Ostertag, W. & Olson, J. C. Ferrimagnetism of the Rare‐Earth‐Cobalt Intermetallic Compounds R2Co17. Journal of Applied Physics 37, 1252-1253 (1966).
[7]Strnat, K. J. Cobalt, 133 (1967).
[8]Velge, W. A. J. J. & Buschow, K. H. J. Magnetic and Crystallographic Properties of Some Rare Earth Cobalt Compounds with CaZn5 Structure. Journal of Applied Physics 39, 1717-1720 (1968).
[9]Buschow, K. H. J. MAGNETI MATERIAL WITH A--BH-- MAX OF 18. 5 MILLION GAUSS OERSTEDS. Philips Tech Rew 29, 1717 (1968).
[10] Das, D. Twenty million energy product samarium-cobalt magnet., IEEE Transactions on 5, Magnetics, 214-216 (1969).
[11] Martin, D. & Benz, M. Cobalt-rare earth permanent magnet alloys. Cobalt 50, 11 (1971).
[12] Nesbitt, E. A., Willens, R. H., Sherwood, R. C., Buehler, E. & Wernick, J. H. NEW PERMANENT MAGNET MATERIALS. Applied Physics Letters 12, 361-362 (1968).
[13] Tawara, Y. & Senno, H. Bulk Hardened Magnet of Nonstoichiometric Rare-Earth Cobalt. Japanese Journal of Applied Physics 12, 761 (1973).
[14] Senno, H. & Tawara, Y. Permanent-magnet properties of Sm-Ce-Co-Fe-Cu alloys with compositions between 1-5 and 2-17. IEEE Transactions on Magnetics 10, 313-317 (1974).
[15] Tawara, Y. & Strnat, K. Rare earth-cobalt permanent magnets near the 2-17 composition. IEEE Transactions on Magnetics, 12, 954-958 (1976).
[16] Ojima, T., Tomizawa, S. & Yoneyama, T. New Type Rare Earth Cobalt Magnets with an Energy Product of 30 MGOe. Japanese Journal of Applied Physics 4, 671 (1977).
[17] Clark, A. E. & Belson, H. S. Magnetostriction of Tb‐Fe and Tb‐Co Compounds. AIP Conference Proceedings 5, 1498-1498 (1972).
[18] Clark, A. E., Belson, H. S. & Tamagawa, N. Magnetocrystalline Anisotropy in Cubic Rare Earth‐Fe2 Compounds. AIP Conference Proceedings 10, 749-753 (1973).
[19] Clark, A. E., Belson, H. S. & Strakna, R. E. Elastic properties of rare‐earth‐iron compounds. Journal of Applied Physics 44, 2913-2914 (1973).
[20] Stadelmaier, H. & Park, H. K. The system iron-gadolinium-carbon and its ternary carbides (1981).
[21] Hadjipanayis, G. C., Hazelton, R. C. & Lawless, K. R. Cobalt‐free permanent magnet materials based on iron‐rare‐earth alloys (invited). Journal of Applied Physics 55, 2073-2077 (1984).
[22] Croat, J. J., Herbst, J. F., Lee, R. W. & Pinkerton, F. E. Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets (invited). Journal of Applied Physics 55, 2078-2082 (1984).
[23] Sellmyer, D. J., Ahmed, A., Muench, G. & Hadjipanayis, G. Magnetic hardening in rapidly quenched Fe‐Pr and Fe‐Nd alloys. Journal of Applied Physics 55, 2088-2090 (1984).
[24] Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H. & Matsuura, Y. New material for permanent magnets on a base of Nd and Fe. Journal of Applied Physics 55, 2083-2087 (1984).
[25] Herbst, J. F., Croat, J. J. & Yelon, W. B. Structural and magnetic properties of Nd2Fe14B (invited). Journal of Applied Physics 57, 4086-4090 (1985).
[26] Abache, C. & Oesterreicher, H. Magnetic properties of compounds R2Fe14B. Journal of applied physics 57, 4112-4114 (1985).
[27] Hirosawa, S. et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. Journal of applied physics 59, 873-879 (1986).
[28] Buschow, K. H. J. New permanent magnet materials. Materials Science Reports 1, 1-63 (1986).
[29] Nakamura, M. et al. Preparation of ultrafine jet-milled powders for Nd-Fe-B sintered magnets using hydrogenation–disproportionation–desorption–recombination and hydrogen decrepitation processes. Applied Physics Letters 103 (2013).
[30] http://www.nb-unimag.com/index.html. 各種形狀的燒結釹鐵硼磁石成品.
[31] Park, H. K. Workshop on TE magnets & their application 16th Int., 257 (2000).
[32] Sepehri-Amin, H., Ohkubo, T., Shima, T. & Hono, K. Grain boundary and interface chemistry of an Nd–Fe–B-based sintered magnet. Acta Materialia 60, 819-830 (2012).
[33] Oono, N., Sagawa, M., Kasada, R., Matsui, H. & Kimura, A. Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium–nickel–aluminum alloy. Journal of Magnetism and Magnetic Materials 323, 297-300 (2011).
[34] Nakamura, H., Hirota, K., Ohashi, T. & Minowa, T. Coercivity distributions in Nd–Fe–B sintered magnets produced by the grain boundary diffusion process Journal of Physics D: Applied Physics 44, 064003 (2011).
[35] Tang, X. et al. Enhanced texture in die-upset nanocomposite magnets by Nd-Cu grain boundary diffusion. Applied Physics Letters 102, 072409 (2013).
[36] Liang, L., Ma, T., Zhang, P., Jin, J. & Yan, M. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy32.5Fe62Cu5.5 alloy modification. Journal of Magnetism and Magnetic Materials 355, 131-135 (2014).
[37] Niu, E. et al. Anisotropy of grain boundary diffusion in sintered Nd-Fe-B magnet. Applied Physics Letters 104, 262405 (2014).
[38] Akiya, T. et al. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets. Journal of Applied Physics 115 (2014).
[39] Cullity, B. D. & Graham, C. D. Introduction to magnetic materials. (John Wiley & Sons, 2011).
[40] Becker, J. Reversal mechanism in copper-modified cobalt-rare-earths. IEEE Transactions on Magnetics 12, 965-967 (1976).
[41] Hilscher, G., Grössinger, R., Heisz, S., Sassik, H. & Wiesinger, G. Magnetic and anisotropy studies of Nd-Fe-B based permanent magnets. Journal of Magnetism and Magnetic Materials 54–57, Part 1, 577-578 (1986).
[42] Schaffer, J. P., Saxena, A., Antolovich, S. D., Thomas H. Sanders, J. & Warner, S. B. The Science and Design of Engineering Materials. (The McGraw-Hill Companies, Inc., 1999).
[43] ASM. (http://www.asminternational.org/).
[44] 黃辰軒. 探討以低熔點合金DyM (M=Cu, Al)膜進行晶界擴散對燒結NdFeB磁石之磁特性影響 碩士 thesis, 國立中正大學 (2015).[45] 余逸哲. 以定量RF3 (R=Dy 及Tb) 塗佈層進行NdFeB 燒結永磁體擴散及磁性強化之研究 碩士 thesis, 國立中正大學 (2014).[46] 林明忠. 藉由RF3 (R=Dy 及Tb)定量塗層探討晶界擴散強化NdFeB磁石之量產可行性研究 碩士 thesis, 國立中正大學 (2015).