|
[1] T.P. Brody, J.A. Asars and G.D. Dixon, IEEE Trans. Electron Devices, vol. ED-20, pp. 995-1001, 1973. [2] P. G. Le Comber, W. E. Spear, and A. Ghaith, “Amorphous-silicon Filed-effect device and possible application,” Electronics Letters, vol. 15, no. 6, pp. 179-191, 1979. [3] http://sharp-world.com/sc/library/lcd_e/s2_4_3e.htm [4] R A Street, “Technology and applications of amorphous silicon,” New York : Springer, pp. 7-93, 2000. [5] S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of Hydrogen-Induced Crystallization of Amorphous Silicon,” Nature, vol.418, pp. 62-65, 2002. [6] G. A. Bhat, Z. Jin, H. S. Kwok, and M. Wong, “Effects of longitudinal grain boundaries on the performance of MILC-TFTs,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 97-99, 1999. [7] J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett., vol. 63, pp. 1969-1971, 1993. [8] G. K. Giust and T. W. Sigmon, “Microstructural characterization of solid-phase crystallized amorphous silicon films recrystallized using an excimer laser,” Appl. Phys. Lett., vol.70, pp.767-769, 1997. [9] S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,” J. Appl. Phys., vol. 82, pp. 4086-4094, 1997. [10] J. S. Im, M.A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. J. Song, and H. S. Cho, “Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation and Optimization,” Phys. Stat. Sol. (a), vol. 166, pp. 603-617, 1998. [11] A. T. Voutsas, “A new era of crystallization: advances in polysilicon crystallization and crystal engineering,” Appl. Surf. Sci., vol. 208, pp. 250-262, 2003. [12] M. A. Crowder, P. G. Carey, P. M. Smith, R. S. Sposili, H. S. Cho, and J. S. Im, “Low-temperature single-crystal Si TFTs fabricated on Si films processed via sequential lateral solidification,” IEEE Electron Device Lett., vol. 19, no. 8, pp. 306-308, 1998. [13] R. Dassow, J. R. Köhler, Melanie Nerding, M. Grouvogl, R. B. Bergmann, and J. H. Werner, “Laser-Crystallized Polycrystalline Silicon on Glass for Photovoltaic Applications,” Solid State Phenom., vols. 67–68, pp. 193-198, 1999. [14] A. Hara, F. Takeuchi, and N. Sasaki, IEEE Electron Devices Society, Proc. of 2000 International Electron Device Meeting, p. 209, 2000.
[15] S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater., vol. 1, pp. 217-224, 2002. [16] A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermalmelting in semiconductors measured at femtosecond resolution,” Nature, vol. 410, pp. 65-68, 2001. [17] K. Sokolowski-Tinten, J. Biakowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B, vol. 51, pp. 14186-14198, 1995. [18] T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys., vol.92, no. 9, pp. 4918-4925, 2002. [19] X. Liu, D. Du, and G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1706-1716, 1997. [20] T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao, “Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers,” Appl. Phys. Lett., vol. 82, pp. 4382-4384, 2003. [21] Jia-Min Shieh, Zun-Hao Chen, and Bau-Tong Dai, Yi-Chao Wang, Alexei Zaitsev, and Ci-Ling Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett., vol. 85, no. 7, pp. 1232-1234, 2004. [22] Y. J. Chang, K. H. Kim, J. H. Oh, and Jin Janga, “Ni-mediated crystallization of amorphous silicon with a SiO2 nanocap,” Electrochemical and Solid-State Letters, vol. 7, pp. 207-209, 2004. [23] http://www.toppoly.com/Toppoly/tw/Technology/LTPS_Tech.asp [24] H. Kakinuma, M. Mohri and T. Tsuruoka, “Mechanism of low-temperature polycrystalline silicon growth from a SiF4/SiH4/H2 plasma,” J. Appl. Phys., vol. 77, pp. 646-652, 1995. [25] W.G. Hawkins, “Polycrystalline-silicon devices technology for large-area electronics,” IEEE Trans. Electron Devices, vol. ED-33, pp. 477-481, 1986. [26] Myung-Kwan Ryu, Jang-Yeon Kwon, and Ki-Bum Kim, “SOLID PHASE CRYSTALLIZATION (SPC) BEHAVIOR OF AMORPHOUS Si BILAYER FILMS WITH DIFFERENT CONCENTRATION OF OXYGEN: Surface vs. Interface-nucleation,” Mat. Res. Soc. Symp. Proc., vol. 621, 2000. [27] Noriyoshi Yamauchi and Rafael Reif, “Polycrystalline silicon thin films processed with silicon ion implantation and subsequent solid-phase crystallization: Theory, experiments, and thin-film transistor applications,” J. Appl. Phys., vol. 75, no. 7, pp. 3235-3257, 1994. [28] K. Zellama, P. Germain, S. Squelard, J. C. Bourgoin, and P. A. Thomas, “Crystallization in amorphous silicon,” J. Appl. Phys., vol. 50, no. 11, pp. 6995-7000, 1979.
[29] Miltiadis K. Hatalis and David W. Greve, “Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., vol. 63, pp. 2260-2266, 1988. [30] David J. Elliott, “ULTRAVIOLET LASER TECHNOLOGY AND APPLICATIONS,” Academic Press, pp.17-18, 89, 1995 [31] http://www.schmidt.com.tw/e-htm/FDP2.htm [32] Ludolf Herbst, Hans-Jürgen Kahlert, Burkhard Fechner, Ulrich Rebhan, Rustem Osmanow, “300 W XeCl Excimer Laser Annealing and Sequential Lateral Solidification in Low Temperature Poly Silicon Technology,” SPIE USE, vol. 2, pp. 2-8, 2002. [33] J.S. Im, H.J. Kim, M.O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett., vol. 63, pp. 1969-1971, 1993. [34] W. Sinke, F.W. Saris, “Evidence for a Self-Propagating Melt in Amorphous Silicon upon Pulsed-Laser Irradiation,” Phys. Rev. Lett., vol. 53, pp. 2121-2124, 1984. [35] J.S. Im, H.J. Kim, “On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films,” Appl. Phys. Lett., vol. 64, pp. 2303-2305, 1994.
[36] J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. Jin Song, and H. S. Cho, “Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation and Optimization”, phys. stat. sol., vol. 166, pp. 603-617, 1998. [37] J. S. Im and R. S. Sposili, “Crystalline Si films for integrated active-matrix liquid-crystal displays,” MRS Bull. 21, no. 3, pp. 39-48, 1996. [38] J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett., vol. 70, pp. 3434-3436, 1997. [39] Callan, J. P. in Ultrafast Dynamics And Phase Changes In Solids Excited By Femtosecond Laser Pulses 59–104 Thesis, Harvard Univ., Cambridge, 2000. [40] C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett., vol. 50, no. 6, pp. 454–457, 1983. [41] Lowndes, D. H. & Jellison, G. E. Jr., in Semiconductors and Semimetals vol. 23 (eds Wood,R. F.,White, C. W. & Young,R. T.) pp. 313–404, 1984. [42] http://www.nuance.northwestern.edu/NIFTI/download/Tsunami_ Brochure.pdf [43] http://www.castech-us.com/casbbo.htm
[44] A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, and R. W. Collins, Xunming Deng, Gautam Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys., vol. 92, no. 5, pp. 2424-2436, 2002. [45] S. Ferrero, P. Mandracci, G. Cicero, F. Giorgis, C.F. Pirri, G. Barucca, “Large area microcrystalline silicon films grown by ECR-CVD,” Thin Solid Films, 383 (1-2), pp. 181-184, 2001. [46] I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett., vol. 84, no. 16, pp. 3079-3081, 2004. [47] K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump–terahertz-probe experiments,” Appl. Phys. Lett., vol. 78, no. 22, pp. 3478-3480, 2001. [48] S. M. Sze, “Semiconductor Devices: Physics and Technology,” Wiley, New York, p. 257, 1985. [49] J. M. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses,” Appl. Phys. Lett., vol. 39, pp. 755-757, 1981.
[50] L. A. Lampre, J. M. Liu, H. Kurz, and N. Bloembergen, “Time-resolved temperature measurement of picosecond laser irradiated silicon,” Appl. Phys. Lett., vol. 43, pp. 168-170, 1983. [51] A. M. Malvezzi, H. Kurz, and N. Bloembergen, Appl. Phys. A, vol. 36, pp. 143 , 1985. [52] G. Gorodetsky, J. Kanicki, T. Kazyaka, and R. L. Melcher, “Far UV pulsed laser melting of silicon,” Appl. Phys. Lett., vol. 46, pp. 547-549, 1985. [53] K. Virupaksha Reddy, “Excimer-laser gas-assisted deposition of crystalline and amorphous films,” J. Opt. Soc. Am. B, vol. 3, no. 5, pp. 801-805, 1986.
|